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Abstract. In this work, the necessary and sufficient conditions for oscillation of
a class of second order neutral impulsive systems are established and our im-
pulse satisfies a discrete neutral nonlinear equation of similar type. Further, one
illustrative example showing applicability of the new result is included.
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1. Introduction

Impulsive differential equations are now recognized as an excellent source of
models to simulate processes and phenomena observed in control theory, physics,
chemistry, population dynamics, industrial robotics, biotechnologies, economics and
to mention a few. Due to the wide range application of this theory to the real world
problem, a good number of interests has been given to study impulsive differential
equations, since it is much richer than the corresponding theory of differential equa-
tions without impulse effect. We refer the readers to the monographs [1, 2, 10, 13, 14]
and [18], where a number of properties of their solutions are discussed and the refer-
ences cited there in.

In [28], Tripathy has considered the impulsive system

(E1)

{(
y(t) + p(t)y(t− τ)

)′
+ q(t)G

(
y(t− σ)

)
= 0, t 6= τk, k ∈ N,

∆
(
y(τk) + p(τk)y(τk − τ)

)
+ q(τk)G

(
y(τk − σ)

)
= 0, k ∈ N,

and studied the oscillatory character of solutions of the system. For all ranges of
p(t), he has established the oscillation criteria for the impulsive system (E1) which
is highly nonlinear and G could be linear, sublinear or superlinear. In [29], Tripathy
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and Santra have made an attempt to establish the necessary and sufficient condition
for oscillation of a class of forced impulsive differential equations of the form{(

y(t) + p(t)y(t− τ)
)′

+ q(t)G
(
y(t− σ)

)
= f(t), t 6= τk, k ∈ N,

∆
(
y(τk) + p(τk)y(τk − τ)

)
+ r(τk)G

(
y(τk − σ)

)
= g(τk), k ∈ N.

In an another paper [30], Tripathy and Santra have studied the characterization of
the impulsive system

(E2)

{(
y(t)− ry(t− τ)

)′
+ qy(t− σ) = 0, t 6= τk, k ∈ N,

∆
(
y(τk)− ry(τk − τ)

)
+ py(τk − σ) = 0, k ∈ N,

and linearized oscillation of the system

(E3)

{(
y(t)− r(t)g(y(t− τ))

)′
+ q(t)f

(
y(t− σ)

)
= 0, t 6= τk, k ∈ N,

∆
(
y(τk)− r(τk)g(y(τk − τ))

)
+ p(τk)f

(
y(τk − σ)

)
= 0, k ∈ N.

They have established the conditions pertaining the oscillation of the system (E2)
using the pulsatile constant and hence the linearized oscillation results carried out for
(E3) by using its limiting equation (E2).

Motivated by the works [28, 29, 30], an attempt is made here to discuss the
oscillation properties of a class of second order neutral impulsive system of the form:

(E)

{(
r(t)(y(t) + p(t)y(t− τ))′

)′
+ q(t)G

(
y(t− σ)

)
= 0, t 6= τk, k ∈ N,

∆
(
r(τk)(y(τk) + p(τk)y(τk − τ))′

)
+ q(τk)G

(
y(τk − σ)

)
= 0, k ∈ N,

where τ, σ ∈ R+ = (0,+∞); τ1, τ2, · · · , τk, · · · are the fixed moments of impulse effect;
p(τk), r(τk) and q(τk) are real sequences for k ∈ N; G ∈ C(R,R) is nondecreasing
such that xG(x) > 0 for x 6= 0; q, r ∈ C(R+,R+); p ∈ PC(R+,R), and

∆
(
r(τk)z′(τk)

)
= r(τk + 0)z′(τk + 0)− r(τk − 0)z′(τk − 0);

y(τk − 0) = y(τk) and y(τk − τ − 0) = y(τk − τ), k ∈ N.

The objective of this work is to establish the necessary and sufficient conditions
for oscillation of the impulsive system (E). Here, we are concerned with oscillating
systems which remain oscillating after being perturbed by instantaneous change of
state. We may note that this type of work is very rare in the literature signifying that
the impulse of the differential equation follows a difference equation of same type. In
this direction, we refer the reader to some of the related works [3, 4, 5, 6, 7, 8, 9, 11,
12, 15, 16, 17, 19, 26, 27, 32, 33, 34] and the references cited there in.

Definition 1.1. A function y : [−ρ,+∞) → R is said to be a solution of (E) with
initial function φ ∈ C([−ρ, 0],R), if y(t) = φ(t) for t ∈ [−ρ, 0], y ∈ PC(R+,R),
z(t) = y(t) + p(t)y(t− τ) and r(t)z′(t) are continuously differentiable for t ∈ R+, and
y(t) satisfies (E) for all sufficiently large t ≥ 0, where ρ = max{τ, σ}, PC(R+,R) is
the set of all functions U : R+ → R which are continuous for t ∈ R+, t 6= τk, k ∈ N,
continuous from the left- side for t ∈ R+, and have discontinuity of the first kind at
the points τk ∈ R+, k ∈ N.
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Definition 1.2. A nontrivial solution y(t) of (E) is said to be nonoscillatory, if there
exists a point t0 ≥ 0 such that y(t) has a constant sign for t ≥ t0. Otherwise, the
solution y(t) is said to be oscillatory.

Definition 1.3. A solution y(t) of (E) is said to be regular, if it is defined on some
interval [Ty,+∞) ⊂ [t0,+∞) and

sup{|y(t)| : t ≥ Ty} > 0

for every Ty ≥ T . A regular solution y(t) of (E1) is said to be eventually positive
(eventually negative), if there exists t1 > 0 such that y(t) > 0 (y(t) < 0) for t ≥ t1.

2. Main results

This section deals with the necessary and sufficient conditions for oscillation of
all solutions of the impulsive system (E). We introduce the following assumptions for
our use in the sequel:

(A0)
∫∞
0

dt
r(t) <∞ if and only if

∑∞
k=1

1
r(τk)

<∞;

(A1) 0 < τ1 < τ2 < · · · and limk→∞ τk = +∞;
(A2) p ∈ PC(R+,R), pk = p(τk − 0) = p(τk), rk = r(τk − 0) = r(τk) and

qk = q(τk − 0) = q(τk), k ∈ N.

Theorem 2.1. Let −1 < −a ≤ p(t) ≤ 0, a > 0 and t ∈ R+. Assume that (A0), (A1)
and (A2) hold. Furthermore, assume that

(A3) G(−u) = −G(u), u ∈ R
and

(A4)
∫∞
σ
q(t)G

(
CR(t− σ)

)
dt+

∑∞
k=1 q(τk)G

(
CR(τk − σ)

)
< +∞ for every constant

C > 0

hold, where R(t) =
∫ t
0

ds
r(s) . Then every unbounded solution of the system (E) oscillates

if and only if

(A5)
∫∞
0

ds
r(s) < +∞.

Proof. Let y(t) be a regular solution of (E) which is unbounded. So, there exists
t0 > 0 such that y(t) > 0 or < 0, for t ≥ t0. Without loss of generality and because of
(A3), we may assume that y(t) > 0, y(t−τ) > 0 and y(t−σ) > 0, for t ≥ t1 > t0+ρ.
Setting

z(t) = y(t) + p(t)y(t− τ) (2.1)

in the system (E), it follows that(
r(t)z′(t)

)′
= −q(t)G

(
y(t− σ)

)
< 0, t 6= τk (2.2)

∆
(
r(τk)z′(τk)

)
= −qk G

(
y(τk − σ)

)
< 0, k ∈ N

for t ≥ t1. Hence, there exists t2 > t1 such that r(t)z′(t) is nonincreasing on [t2,∞).
Since z(t) is monotonic, then there exists t3 > t2 such that z(t) > 0 or < 0, for
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t ≥ t3. Indeed, z(t) < 0 for t ≥ t3 implies that y(t) < y(t − τ), y(τk) < y(τk − τ),
y(τk + 0) < y(τk + 0− τ) and hence

y(t) < y(t− τ) < y(t− 2τ) < · · · < y(t3), t 6= τk,

y(τk) < y(τk − τ) < y(τk − 2τ) < · · · < y(t3), k ∈ N,
y(τk + 0) < y(τk + 0− τ) < y(τk + 0− 2τ) < · · · < y(t3), k ∈ N,

that is, y(t) is bounded, which is absurd. Hence, z(t) > 0 for t ≥ t3. If r(t)z′(t) > 0
for t ≥ t3, then r(t)z′(t) is nonincreasing on [t3,∞) and hence there exist a constant
C > 0 and t4 > t3 such that r(t)z′(t) ≤ C for t ≥ t4. Consequently,

z(t) ≤ z(t4) +
∑

t4≤τk<t

z′(τk) + C

∫ t

t4

ds

r(s)
,

since r(τk)z′(τk) ≤ C. Therefore, the last inequality becomes

z(t) ≤ z(t4) + C

∫ t

t4

ds

r(s)
+

∑
t4≤τk<t

1

r(τk)

 <∞,
as t → ∞ due to (A0). On the other hand, y(t) is unbounded, and thus there exists
{ηn} such that ηn →∞ as n→∞, y(ηn)→∞ as n→∞ and

y(ηn) = max{y(s) : t3 ≤ s ≤ ηn}.

Therefore,

z(ηn) = y(ηn) + p(ηn)y(ηn − τ)

≥ (1− a)y(ηn)→ +∞, as t→∞

implies that z(t) (ultimately z(τk) for k ∈ N) is unbounded, a contradiction.
Obviously, the case r(t)z′(t) < 0, z(t) > 0 for t ≥ t3 is not possible.
Hence, every unbounded solution of the system (E) oscillates.

Next, we suppose that (A5) doesn’t hold. Assume that∫ ∞
0

ds

r(s)
= +∞

and due to our assumption (A4), let∫ ∞
T

q(t)G
(
CR(t− σ)

)
dt+

∞∑
k=1

qk G
(
CR(τk − σ)

)
≤ C

4
, C > 0.

Let’s consider

M = {y : y ∈ C([T − ρ,+∞),R), y(t) = 0 for t ∈ [T − ρ, T ] and

C

4

[
R(t)−R(T )

]
≤ y(t) ≤ C

[
R(t)−R(T )

]
}
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and define Φ : M → C([T − ρ,+∞),R) such that

(Φy)(t) =


0, t ∈ [T − ρ, T )

−p(t)y(t− τ) +
∫ t
T

1
r(u)

[
C
4 +

∫∞
u
q(s)G

(
y(s− σ)

)
ds

+
∑∞
k=1 qkG

(
y(τk − σ)

)]
du, t ≥ T.

For every y ∈M ,

(Φy)(t) ≥
∫ t

T

1

r(u)

[
C

4
+

∫ ∞
u

q(s)G
(
y(s− σ)

)
ds+

∞∑
k=1

qkG
(
y(τk − σ)

)]
du

≥ C

4

∫ t

T

du

r(u)
=
C

4

[
R(t)−R(T )

]
and y(t) ≤ CR(t) implies that

(Φy)(t) ≤ −p(t)y(t− τ) +
C

2

∫ t

T

du

r(u)

≤ aC
[
R(t− τ)−R(T )

]
+
C

2

[
R(t)−R(T )

]
≤ aC

[
R(t)−R(T )

]
+
C

2

[
R(t)−R(T )

]
=

(
a+

1

2

)
C
[
R(t)−R(T )

]
≤ C

[
R(t)−R(T )

]
implies that (Φy)(t) ∈M . Define un : [T − ρ,+∞)→ R by the recursive formula

un(t) =
(
Φun−1

)
(t), n ≥ 1,

with the initial condition

u0(t) =

{
0, t ∈ [T − ρ, T )
C
4

[
R(t)−R(T )

]
, t ≥ T.

Inductively it is easy to verify that

C

4

[
R(t)−R(T )

]
≤ un−1(t) ≤ un(t) ≤ C

[
R(t)−R(T )

]
.

for t ≥ T . Therefore for t ≥ T − ρ, limn→∞ un(t) exists. Let

lim
n→∞

un(t) = u(t) for t ≥ T − ρ.

By the Lebesgue’s dominated convergence theorem u ∈M and
(
Φu
)
(t) = u(t), where

u(t) is a solution of the impulsive system (E) on [T −ρ,∞) such that u(t) > 0. Hence,
(A5) is necessary. This completes the proof of the theorem. �

Remark 2.1. In Theorem 2.1, G could be linear, sublinear or superlinear.

Theorem 2.2. Let −1 < −a ≤ p(t) ≤ 0, a > 0 for t ∈ R+. Assume that (A1) − (A3)
and (A5) hold. Furthermore, assume that

(A6)
∫∞
T

1
r(t)

[∫ t
T
q(s)G

(
CR1(s− σ)

)
ds+

∑∞
k=1 q(τk)G

(
CR1(τk − σ)

)]
dt = +∞
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and

(A7)
∫∞
T
q(s)ds+

∑∞
k=1 q(τk) = +∞

hold for every constants C, T > 0, where R1(t) =
∫∞
t

ds
r(s) . Then every solution of the

system (E) either oscillates or converges to zero.

Proof. Let y(t) be a regular solution of (E). Proceeding as in Theorem 2.1, we have
(2.2) for t ≥ t1. Hence, there exists t2 > t1 such that r(t)z′(t) and z(t) are of constant
sign on [t2,∞). If z(t) < 0 for t ≥ t2, then y(t) is bounded. Consequently, limt→∞ z(t)
exists. As a result,

0 ≥ lim
t→∞

z(t) = lim sup
t→∞

z(t)

≥ lim sup
t→∞

(
y(t)− a y(t− τ)

)
≥ lim sup

t→∞
y(t) + lim inf

t→∞

(
−a y(t− τ)

)
= (1− a) lim sup

t→∞
y(t)

implies that lim supt→∞ y(t) = 0 [∵ 1 − a > 0] and thus limt→∞ y(t) = 0 for t 6= τk,
k ∈ N. We may note that {y(τk − 0)}k∈N and {y(τk + 0)}k∈N are sequences of reals,
and because of continuity of y

lim
k→∞

y(τk − 0) = 0 = lim
k→∞

y(τk + 0)

due to

lim inf
t→∞

y(t) = 0 = lim sup
t→∞

y(t).

Hence for all t and τk, k ∈ N, limt→∞ y(t) = 0. Let z(t) > 0 for t ≥ t2. If r(t)z′(t) < 0
for t ≥ t2, then z(t) is bounded and hence limt→∞ z(t) exists. Therefore, for s ≥ t > t2,
r(s)z′(s) ≤ r(t)z′(t) implies that

z′(s) ≤ r(t)z′(t)

r(s)
,

that is,

z(s) ≤ z(t) + r(t)z′(t)

∫ s

t

dθ

r(θ)
.

Because r(t)z′(t) is nonincreasing, we can find a constant C > 0 such that r(t)z′(t) ≤
−C for t ≥ t2. As a result,

z(s) ≤ z(t)− C
∫ s

t

dθ

r(θ)

and hence 0 ≤ z(t) − CR1(t) for t ≥ t2. Ultimately, z(τk) ≥ CR1(τk), k ∈ N. From
the system (2.2) it is easy to see that(

r(t)z′(t)
)′

+ q(t)G
(
CR1(t− σ)

)
≤ 0, t 6= τk

∆
(
r(τk)z′(τk)

)
+ q(τk) G

(
CR1(τk − σ)

)
≤ 0, k ∈ N.
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Integrating the last inequality from t2 to t(> t2), we obtain[
r(s)z′(s)

]t
t2

+

∫ t

t2

q(s)G
(
CR1(s− σ)

)
ds−

∑
t3≤τk<t

∆
(
r(τk)z′(τk)

)
≤ 0,

that is,∫ t

t2

q(s)G
(
CR1(s− σ)

)
ds+

∑
t2≤τk<t

qkG
(
CR1(τk − σ)

)
≤ −

[
r(s)z′(s)

]t
t2

≤ −r(t)z′(t)

implies that

1

r(t)

∫ t

t2

q(s)G
(
CR1(s− σ)

)
ds+

∑
t2≤τk<t

qkG
(
CR1(τk − σ)

) ≤ −z′(t)
and further integration of the preceding inequality, we have∫ u

t3

1

r(t)

∫ t

t3

q(s)G
(
CR1(s− σ)

)
ds+

∑
t3≤τk<t

qkG
(
CR1(τk − σ)

) dt
≤ −

[
z(t)

]u
t3

+
∑

t3≤τk<u

∆z(τk)

= −
[
z(t)

]u
t3

+
∑

t3≤τk<u

[
z(τk + 0)− z(τk − 0)

]
≤ z(t3) +

∑
t3≤τk<u

z(τk + 0)

< +∞.

Ultimately,∫ ∞
t3

1

r(t)

[∫ t

t3

q(s)G
(
CR1(s− σ)

)
ds+

∞∑
k=1

qkG
(
CR1(τk − σ)

)]
dt <∞,

gives a contradiction to (A6). Hence, r(t)z′(t) > 0 for t ≥ t2. As z(t) is nondecreasing
on [t2,∞), there exist a constant C > 0 and t3 > t2 such that z(t) ≥ C for t ≥ t3.
Therefore, the system (2.2) becomes(

r(t)z′(t)
)′

+ q(t)G(C) ≤ 0, t 6= τk

∆
(
r(τk)z′(τk)

)
+ q(τk) G(C) ≤ 0, k ∈ N.

We integrate the preceding inequality from t3 to +∞ and obtain∫ ∞
t3

q(s)ds+
∑

t3≤τk<∞

q(τk) < +∞,

which is a contradiction to (A7). Thus the proof of the theorem is complete. �

Theorem 2.3. Let −1 < −a ≤ p(t) ≤ 0, a > 0 for t ∈ R+. Assume that (A5) and
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(A8)
∫∞
0
q(s)ds+

∑∞
k=1 q(τk)dt <∞

hold. Then the impulsive system (E) admits a positive bounded solution.

Proof. Due to (A5), it is easy to verify that∫ ∞
0

1

r(s)

[∫ ∞
s

q(t)dt+

∞∑
k=1

q(τk)

]
ds < +∞. (2.3)

Let there exist T > ρ such that

G
(
R(t)

) ∫ t

T

1

r(s)

[∫ ∞
s

q(θ)dθ +

∞∑
k=1

q(τk)

]
ds ≤ R(t)

4
, T ≥ ρ.

Consider

M = {y ∈ C([T − σ,+∞),R) : y(t) =
R(t)

4
, t ∈ [T − ρ, T ];

R(t)

4
≤ y(t) ≤ R(t) for t ≥ T}

and let Φ : M →M be defined by

(Φy)(t) =


(Φy)(T ), t− ρ ≤ t ≤ T,
−p(t)y(t− τ) + R(t)

4 +
∫ t
T

1
r(s)

[∫∞
s
q(θ)G

(
y(θ − σ)

)
dθ

+
∑∞
k=1 q(τk)G

(
y(τk − σ)

)]
ds, t ≥ T.

For every y ∈M , (Φy)(t) ≥ R(t)
4 and

(Φy)(t) ≤ aR(t) +
R(t)

4
+G(R(t))

∫ t

T

1

r(s)

[∫ ∞
s

q(θ)dθ +

∞∑
k=1

q(τk)

]
ds

≤ aR(t) +
R(t)

4
+
R(t)

4
=

(
a+

1

2

)
R(t) ≤ R(t)

implies that (Φy) ∈M . Proceeding as in the proof of Theorem 2.1, we conclude that
the operator T has a fixed point u ∈M , that is, u(t) = (Tu)(t), t ≥ T − ρ. Therefore,

u(t) is a solution of the impulsive system (E) with R(t)
4 ≤ u(t) ≤ R(t) for t ≥ T

which is regular and does not tend to zero as t→∞ when the limit exists. Thus the
theorem is proved. �

Theorem 2.4. Let 0 ≤ p(t) ≤ a < ∞ for t ∈ R+. Assume that (A1) − (A3) and (A5)
hold. Furthermore, assume that

(A9) there exists λ > 0 such that G(u) +G(v) ≥ λG(u+ v) for u, v ∈ R+,
(A10) G(uv) ≤ G(u)G(v), u, v ∈ R+,

(A11)
∫∞
T

1
r(t)

[∫ t
T1
Q(s)G

(
CR1(s− σ)

)
ds+

∑∞
k=1Q(τk)G

(
CR1(τk − σ)

)]
dt

= +∞, T, T1 > 0

and

(A12)
∫∞
T
Q(t)dt+

∑∞
k=1Q(τk) = +∞, T > ρ

hold, where Q(t) = min{q(t), q(t − τ)}, t ≥ τ . Then every solution of the impulsive
system (E) oscillates.
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Proof. On the contrary, let y(t) be a regular nonoscillatory solution of (E). Proceeding
as in Theorem 2.1, we have two cases namely z(t) > 0, r(t)z′(t) < 0 and z(t) > 0,
r(t)z′(t) > 0 for t ∈ [t2,∞). Consider the former one. Ultimately, y(t) is bounded.
Using the same type of argument as in the proof of the Theorem 2.2, we obtain that
z(t) ≥ CR1(t) for t ≥ t2. From the system (E) it is easy to see that(

r(t)z′(t)
)′

+ q(t)G
(
y(t− σ)

)
+G(a)

[(
r(t− τ)z′(t− τ)

)′
+ q(t− τ)G

(
y(t− τ − σ)

)]
= 0, t 6= τk,

∆
(
r(τk)z′(τk)

)
+ q(τk)G

(
y(τk − σ)

)
+G(a)

[
∆
(
r(τk − τ)z′(τk − τ)

)
+ q(τk − τ)G

(
y(τk − τ − σ)

)]
= 0, k ∈ N.

Using (A9) and (A10) in the above system, it follows that(
r(t)z′(t)

)′
+G(a)

(
r(t− τ)z′(t− τ)

)′
+ λQ(t)G

(
z(t− σ)

)
≤ 0

∆
(
r(τk)z′(τk)

)
+G(a)∆

(
r(τk − τ)z′(τk − τ)

)
+ λQ(τk)G

(
z(τk − σ)

)
≤ 0, (2.4)

where z(t) ≤ y(t) + ay(t− τ). Ultimately, (2.4) reduces to(
r(t)z′(t)

)′
+G(a)

(
r(t− τ)z′(t− τ)

)′
+ λQ(t)G

(
CR1(t− σ)

)
≤ 0

∆
(
r(τk)z′(τk)

)
+G(a)∆

(
r(τk − τ)z′(τk − τ)

)
+ λQ(τk)G

(
CR1(τk − σ)

)
≤ 0

for t ≥ t3 > t2, t 6= τk, k ∈ N. Integrating the last system from t3 to t (> t3), we get[
r(s)z′(s)

]t
t3

+G(a)
[
r(s− τ)z′(s− τ)

]t
t3
−

∑
t3≤τk<t

∆
(
r(τk)z′(τk)

)
−G(a)

∑
t3≤τk<t

∆
(
r(τk − τ)z′(τk − τ)

)
+ λ

∫ t

t3

Q(s)G
(
CR1(s− σ)

)
ds ≤ 0,

that is,

λ
[∫ t

t3

Q(s)G
(
CR1(s− σ)

)
ds +

∑
t3≤τk<t

Q(τk)G
(
CR1(τk − σ)

)]
≤ −

[
r(s)z′(s) +G(a)

(
r(s− τ)z′(s− τ)

)]t
t3

≤ −
[
r(t)z′(t) +G(a)

(
r(t− τ)z′(t− τ)

)]
≤ −

(
1 +G(a)

)
r(t)z′(t).

Therefore,

λ

1 +G(a)

1

r(t)

[∫ t

t3

Q(s)G
(
CR1(s− σ)

)
ds+

∑
t3≤τk<t

Q(τk)G
(
CR1(τk − σ)

)]
≤ −z′(t).

Integrating the above inequality, we obtain

λ

1 +G(a)

∫ ∞
t3

1

r(t)

[∫ t

t3

Q(s)G
(
CR1(s− σ)

)
ds+

∑
t3≤τk<t

QkG
(
CR1(τk − σ)

)]
dt <∞
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which is a contradiction to (A11). If the latter case holds, then there exist a constant
C > 0 and t3 > t2 such that z(t) ≥ C for t ≥ t3. From (2.4), it follows that(

r(t)z′(t)
)′

+G(a)
(
r(t− τ)z′(t− τ)

)′
+ λQ(t)G(C) ≤ 0

∆
(
r(τk)z′(τk)

)
+G(a)∆

(
r(τk − τ)z′(τk − τ)

)
+ λQ(τk)G(C) ≤ 0.

Integrating the last inequality from t3 to +∞, we get a contradiction to (A12). This
completes the proof of the theorem. �

Theorem 2.5. Let 0 ≤ p(t) ≤ R(t) < 1 for t ∈ R+. Assume that (A5) and (A8)
hold. Furthermore, assume that G is Lipschitzian on the intervals of the form [a, b],
0 < a < b <∞. Then the impulsive system (E) admits a positive bounded solution.

Proof. Proceeding as in the proof of Theorem 2.3, we get (2.3). So, there exists T > ρ
such that ∫ ∞

T

1

r(s)

[∫ ∞
s

q(t)dt+

∞∑
k=1

q(τk)

]
ds <

1−R(t)

3L
.

where L = max{L1, G(1)}, L1 is the Lipschitz constant of G on
[
1−R(t)

2 , 1
]

for t ≥ T .

Let X = BC([T,∞),R) be the space of real valued continuous functions on [T,∞).
Indeed, X is a Banach space with respect to the sup norm defined by

‖y‖ = sup{|y(t)| : t ≥ T}.

Define

S = {v ∈ X :
1−R(t)

2
≤ v(t) ≤ 1, t ≥ T}.

We notice that S is a closed and convex subspace of X. Let Φ : S → S be such that

(Φy)(t) =


(Φy)(T + ρ), t ∈ [T, T + ρ],

−p(t)y(t− τ) + 5+R(t)
6 −

∫∞
t

1
r(s)

[∫∞
s
q(u)G

(
y(u− σ)

)
du

+
∑∞
k=1 q(τk)G

(
y(τk − σ)

)]
ds, t ≥ T + ρ.

For every y ∈ X, (Φy)(t) ≤ 5+R(t)
6 < 1 and

(Φy)(t) ≥ −R(t) +
5 +R(t)

6
− 1−R(t)

3
=

1

2
(1−R(t))

implies that Φy ∈ S. For y1, y2 ∈ S,

|(Φy1)(t)− (Φy2)(t)| ≤ R(t)|y1(t− τ)− y2(t− τ)|

+

∫ ∞
t

1

r(s)

[∫ ∞
s

q(u)|G
(
y1(u− σ)

)
−G

(
y2(u− σ)

)
|du

+

∞∑
k=1

qk|G
(
y1(τk − σ)

)
−G

(
y2(τk − σ)

)
|
]
ds,
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that is,

|(Φy1)(t)− (Φy2)(t)| ≤ R(t)‖y1 − y2‖+ ‖y1 − y2‖L1

×
∫ ∞
t

1

r(s)

[∫ ∞
s

q(u)du+

∞∑
k=1

qk

]
ds

≤
(
R(t) +

1−R(t)

3

)
‖y1 − y2‖

implies that

|(Φy1)(t)− (Φy2)(t)| ≤ µ‖y1 − y2‖,

where (
R(t) +

1−R(t)

3

)
≤ 1 + 2α

3
= µ < 1

and α = lim supt→∞R(t) (∵ R(t) < ∞, R′(t) > 0). Therefore, Φ is a contraction.
Using Banach’s fixed point theorem, it follows that Φ has a unique fixed point y(t)

in
[
1−R(t)

2 , 1
]
. This completes the proof of the theorem. �

Theorem 2.6. Let 1 < a1 ≤ p(t) ≤ a2 < ∞, a21 ≥ a2 for t ∈ R+. Assume that (A5)
and (A8) hold. Let G be Lipschitzian on intervals of the form [a, b], 0 < a < b < ∞.
Then the impulsive system (E) admits a positive bounded solution.

Proof. Proceeding as in the proof of Theorem 2.3, we have obtained (2.3). Let∫ ∞
T

1

r(t)

[∫ ∞
t

q(s)ds+

∞∑
k=1

q(τk)

]
dt <

a1 − 1

4L
,

where L = max{L1, L2}, L1 is the Lipschitz constant of G on [a, b], L2 = G(b) with

a =
4µ(a21 − a2)− a2(a1 − 1)

4a12a2

b =
a1 − 1 + 4µ

4a1
, µ >

a2(a1 − 1)

4(a12 − a2)
> 0.

Let X = BC([T,∞),R) be the space of real valued functions defined on [T,∞).
Indeed, X is a Banach space with respect to sup norm defined by

||y|| = sup{|y(t)| : t ≥ T}.
Define

S = {u ∈ X : a ≤ u(t) ≤ b, t ≥ T} .
Let Φ : S → S be such that

(Φy)(t) =


Φy(T + ρ), t ∈ [T, T + ρ]

−y(t+τ)p(t+τ) + µ
p(t+τ) + 1

p(t+τ)

∫ t+τ
T

1
r(s)

[∫∞
s
q(v)G

(
y(v − σ)

)
dv

+
∑∞
k=1 q(τk)G

(
y(τk − σ)

)]
ds, t ≥ T + ρ.
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For every y ∈ S,

(Φy)(t) ≤ G(b)

p(t+ τ)

∫ t+τ

T

1

r(s)

[∫ ∞
s

q(v)dv +

∞∑
k=1

q(τk)

]
ds+

µ

p(t+ τ)

≤ G(b)

p(t+ τ)

∫ ∞
T

1

r(s)

[∫ ∞
s

q(v)dv +

∞∑
k=1

q(τk)

]
ds+

µ

p(t+ τ)

≤ 1

a1

[
a1 − 1

4
+ µ

]
= b

and

(Φy)(t) ≥ −y(t+ τ)

p(t+ τ)
+

µ

p(t+ τ)
> − b

a1
+

µ

a2
= a

implies that Φy ∈ S. For y1, y2 ∈ S

|(Φy1)(t)− (Φy2)(t)| ≤ 1

|p(t+ τ)|
|y1(t+ τ)− y2(t+ τ)|

+
G(b)

|p(t+ τ)|

∫ t+τ

T

1

r(s)

[∫ ∞
s

q(v)|y1(v − σ)− y2(v − σ)|dv

+

∞∑
k=1

q(τk)|y1(τk − σ)− y2(τk − σ)|
]
ds,

that is,

|(Φy1)(t)− (Φy2)(t)| ≤ 1

a1
||y1 − y2||+

G(b)

a1
||y1 − y2||

×
∫ t+τ

T

1

r(s)

[∫ ∞
s

q(v)dv +

∞∑
k=1

q(τk)

]
ds

<
1

a1
||y1 − y2||

(
1 +

a1 − 1

4

)
.

Therefore,

||(Φy1)− (Φy2)|| ≤
(

1

a1
+
a1 − 1

4a1

)
||y1 − y2||.

As
(

1
a1

+ a1−1
4a1

)
< 1, Φ is a contraction mapping. We note that S is a closed convex

subset of X and hence by the Banach’s fixed point theorem Φ has a unique fixed
point, that is, Φy(t) = y(t) on [a, b]. Thus the proof of the theorem is complete. �

Theorem 2.7. Let −∞ < −a1 ≤ p(t) ≤ −a2 < −1 for t ∈ R+, where a1, a2 > 0.
Assume that (A1)− (A3) and (A5)− (A7) hold. If

(A13)
∫∞
T

1
r(t)

[∫ t
T
q(s)ds+

∑∞
k=1 q(τk)

]
dt = +∞,

then every bounded solution of the system (E) either oscillates or converges to zero.
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Proof. Let y(t) be a bounded regular solution of (E). Proceeding as in Theorem 2.1,
it follows that z(t) and r(t)z′(t) are monotonic functions on [t2,∞). Since y(t) is
bounded, then z(t) is bounded and hence limt→∞ z(t) exists. Using the arguments
as in the proof of Theorem 2.2, we get contradictions to (A6) and (A7) for the cases
z(t) > 0, r(t)z′(t) < 0 and z(t) > 0, r(t)z′(t) > 0 respectively. Consider the case
z(t) < 0, r(t)z′(t) > 0 for t ≥ t2. We claim that limt→∞ z(t) = 0. If not, there exist
β < 0 and t3 > t2 such that z(t + τ − σ) < β for t ≥ t3. Hence, z(t) ≥ −a1y(t − τ)
implies that y(t − σ) ≥ −a−11 β for t ≥ t3. Consequently, the impulsive system (2.2)
reduces to (

r(t)z′(t)
)′

+G
(
−a−11 β

)
q(t) ≤ 0, t 6= τk

∆
(
r(τk)z′(τk)

)
+G

(
−a−11 β

)
q(τk) ≤ 0, k ∈ N (2.5)

for t ≥ t3. Integrating (2.5) from t3 to +∞, we get[∫ ∞
t3

q(s)ds+
∑

t3≤τk≤∞

q(τk)

]
<∞

which is a contradiction to (A7). So, our claim holds and

0 = lim
t→∞

z(t) = lim inf
t→∞

(
y(t) + p(t)y(t− τ)

)
≤ lim inf

t→∞
(y(t)− a2 y(t− τ))

≤ lim sup
t→∞

y(t) + lim inf
t→∞

(
−a2 y(t− τ)

)
= (1− a2) lim sup

t→∞
y(t)

implies that lim supt→∞ y(t) = 0 [∵ 1− a2 < 0]. Thus, limt→∞ y(t) = 0.
Let z(t) < 0, r(t)z′(t) < 0 for t ≥ t2. Proceeding as in the previous case, we get (2.5).
Integrating (2.5) from t3 to t, we obtain∫ t

t3

q(s)G
(
−a−11 β

)
ds+

∑
t3≤τk≤t

q(τk)G
(
−a−11 β

)
≤ −r(t)z′(t),

that is,

1

r(t)

[∫ t

t3

q(s)G
(
−a−11 β

)
ds+

∑
t3≤τk≤t

q(τk)G
(
−a−11 β

)]
≤ −z′(t)

for t ≥ t3. Further integration of the above inequality from t3 to +∞, we get∫ ∞
t3

1

r(t)

[∫ t

t3

q(s)ds+
∑

t3≤τk≤t

q(τk)

]
dt <∞

which contradicts (A13). Thus limt→∞ z(t) = 0. Rest of this case follows from the
previous case. This completes the proof of the theorem. �

Theorem 2.8. Let −∞ < −a1 ≤ p(t) ≤ −a2 < −1 for t ∈ R+, where a1, a2 > 0
such that 4a2 > a1. Assume that (A5) and (A8) hold. Furthermore, assume that G is
Lipschitzian on the intervals of the form [a, b], 0 < a < b <∞. Then the system (E)
admit a positive bounded solution.
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Proof. Proceeding as in the proof of Theorem 2.3, we get (2.3). So, it is possible to
find T > ρ such that∫ ∞

T

1

r(s)

[∫ ∞
s

q(t)dt+

∞∑
k=1

q(τk)

]
ds <

a2 − 1

4L
,

where L = max{L1, G(1)}, L1 is the Lipschitz constant of G on (a, 1),

a =
(a2 − 1)(4a2 − a1)

4a1a2
.

Let X = BC([T,∞),R) be the space of real valued continuous functions defined on
[T,∞). Indeed, X is a Banach space with the supremum norm defined by

||y|| = sup{|y(t)| : t ≥ T}.

Define

S = {v ∈ X : a ≤ v(t) ≤ 1, t ≥ T} .

We may note that S is a closed and convex subspace of X. Let Ψ : S → S be such
that

(Ψy)(t) =


Ψy(T + ρ), t ∈ [T, T + ρ]

−y(t+τ)p(t+τ) −
a2−1
p(t+τ) + 1

p(t+τ)

∫ t+τ
T

1
r(s)

[∫∞
s
q(u)G

(
y(u− σ)

)
du

+
∑∞
k=1 q(τk)G

(
y(τk − σ)

)]
ds, t ≥ T + ρ.

For every y ∈ S,

(Ψy)(t) ≤ −y(t+ τ)

p(t+ τ)
− a2 − 1

p(t+ τ)

≤ 1

a2
+
a2 − 1

a2
= 1

and

(Ψy)(t) ≥ − a2 − 1

p(t+ τ)
+

1

p(t+ τ)

×
∫ t+τ

T

1

r(s)

[∫ ∞
s

q(u)G
(
y(u− σ)

)
du+

∞∑
k=1

q(τk)G
(
y(τk − σ)

)]
ds

≥ a2 − 1

a1
+

G(1)

p(t+ τ)

∫ t+τ

T

1

r(s)

[∫ ∞
s

q(u)du+

∞∑
k=1

q(τk)

]
ds

≥ a2 − 1

a1
− G(1)

a2

∫ ∞
T

1

r(s)

[∫ ∞
s

q(u)du+

∞∑
k=1

q(τk)

]
ds

≥ a2 − 1

a1
− a2 − 1

4a2
= a
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implies that (Ψy) ∈ S. For y1, y2 ∈ S, we have that

|(Ψy1)(t)− (Ψy2)(t)| ≤ 1

|p(t+ τ)|
|y1(t+ τ)− y2(t+ τ)|

+
L1

|p(t+ τ)|

∫ t+τ

T

1

r(s)
[

∫ ∞
s

q(u)|y1(u− σ)− y2(u− σ)|du

+

∞∑
k=1

q(τk)|y1(τk − σ)− y2(τk − σ)|]ds,

that is,

|(Ψy1)(t)− (Φy2)(t)| ≤ 1

a2
||y1 − y2||+

a2 − 1

4a2
||y1 − y2||

implies that

||(Ψy1)− (Ψy2)|| ≤ µ||y1 − y2||,
where µ = 1

a2

(
1 + a2−1

4

)
< 1. Therefore, Ψ is a contraction. By the Banach’s fixed

point theorem, Ψ has a unique fixed point y ∈ S. It is easy to see that limt→∞ y(t) 6= 0.
This completes the proof of the theorem. �

3. Discussion and example

It is worth observation that we could succeed to establish the necessary and
sufficient conditions for oscillation of all solutions of the impulsive system (E1) when
−1 < p(t) ≤ 0 only. However, we failed to obtain the necessary and sufficient condi-
tions for the other ranges of p(t) and hence the undertaken problem is open for other
ranges of p(t). May be some other method is required to overcome the problem.

We conclude this section with the following example:

Example 3.1. Consider the impulsive system

(E4)

{(
r(t)(y(t) + p(t)y(t− 1))′

)′
+ q(t)y(t− 1) = 0, t 6= τk

∆
(
r(τk)(y(τk) + p(τk) y(τk − 1))′

)
+ q(τk) y(τk − 1) = 0, k ∈ N,

where −1 < p(t) = e−t − 1 ≤ 0, q(t) = e−t, r(t) = et, R(t) = 1 − e−t, G(x) = x,
ρ = 1 and τk = 2k, k ∈ N. Clearly, all conditions of Theorem 2.1 are satisfied. Thus
by Theorem 2.1, every unbounded solution of the system (E4) oscillates.
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