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Gradient-type deformations of cycles in EPH
geometries
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Abstract. The aim of this paper is to study the cycles of EPH geometries through
their homogeneous gradient-type deformations recently introduced by the author.
A special topic is the orthogonality between a given cycle C and its deformations
as well as between C and its rotated version R(C).
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1. Introduction

It is well-known that up to isomorphisms there are three 2-dimensional real
algebras: C = R[X]/(x2 + 1), D = R[X]/(x2) and A = R[X]/(x2 − 1). The theory
of the first algebra is richer than the following two, a fact corresponding to the field
property of C. Inspired by the terminology of [6, p. 1458] or [7, p. 2] we call EPH
geometries these spaces and a common image consists in A(σ) := R[X]/(x2−σ) with
σ := i2 ∈ {−1, 0, 1} respectively and i the corresponding imaginary unit.

The recent papers [2] and [5], devoted to Finsler geometry, start with a defor-
mation of a conic Γ obtained by deforming the gradient vector field for the quadratic
form defining Γ. These deformations are inspired by the scaling (linear) transforma-
tion of Computer Graphics: (x, y) ∈ R2 → (λx · x, λy · y) ∈ R2, following [8, p. 136].
Using the well-known invariants from the Euclidean geometry of conics we obtained
the classifications of the new conics which depends on two scalars denoted α and β,
having the role of λx, λy. The new conic of [2], denoted Γ̃, is a degenerate one and

we could interpret the map Γ→ Γ̃ as a ”curve shortening” transformation. The same
fact holds for the new conic of [5], denoted Γm, if the initial conic Γ does not have
linear terms.

In this note we use these classes of gradient-type deformation to a main object
of EPH geometries, called cycle, which is a particular case of conic sections, invariant
under the action of the group SL(2,R) through Mobiüs transformations. A detailed
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analysis of the deformed cycles depends on the vanishing or not of σ as well as the
vanishing or not of a parameter k separating the circles to lines. Also, we discuss the
transformation of a square matrix associated to any cycle C.

Moreover, we treat these deformations in terms of A(σ)-numbers. In the second
section we study the orthogonality of a given cycle C with its deformations restricting
to the σ 6= 0 case. In the last section we introduce a natural rotation R in A(σ) and
we study the relationships between a given C and its rotated cycle R(C).

2. The cycles of EPH geometries and their gradient-type
deformations

In the two-dimensional Euclidean space R2 let us consider the conic Γ implicitly
defined by f ∈ C∞

(
R2
)

as: Γ = {(x, y) ∈ R2 | f (x, y) = 0} where f is a quadratic

function of the form f(x, y) = r11x
2 + 2r12xy + r22y

2 + 2r10x + 2r20y + r00 with
r2
11 + r2

12 + r2
22 6= 0 for the non-degenerate conics.

It is well-known that the gradient vector field of f , namely

∇f =

(
fx =

∂f

∂x
, fy =

∂f

∂y

)
,

gives important properties of Γ; for example, the centers of Γ are exactly the critical
points of ∇f . Inspired by this fact we introduced recently:

Definition 2.1. Fix the scalars α, β with αβ 6= 0.
i) ([2, p. 86-87], [3, p. 60]) The (α, β)-deformation of Γ is the conic:

Γ̃ = Γα,β : α

[
1

2
fx

]2

+ β

[
1

2
fy

]2

= 0. (2.1)

ii) ([5, p. 102]) The (α, β)-mixed deformation of Γ is the conic:

Γm = Γmα,β : αy

[
1

2
fx

]
+ βx

[
1

2
fy

]
= 0. (2.2)

A main object in EPH geometries is given in [6, p. 1459], [7, p. 4]:

Definition 2.2. The common name cycle will be used to denote circles, parabolas and
hyperbolas (as well as straight lines as their limits) in the respective EPH geometry.

An analytical study of a cycle can be done via the general equation given in [6, p.
1460] or [7, p. 6]:

C : f(u, v) := k(u2 − σv2)− 2lu− 2nv +m = 0 (2.3)

and hence C is a conic section completely defined by the data (k, l, n,m) ∈ P3. As
usual, if k = 0 then C can be called a degenerate cycle. In fact, in the cited works C
is identified with the matrix:

Csσ̆ :=

(
l + ı̆sn −m
k −l + ı̆sn

)
(2.4)
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where s is a new parameter, usually equal to ±1, and a new imaginary unit ı̆. Its
square σ̆ := ı̆2 belongs again to {−1, 0, 1} but independently of σ.

Since C is a conic section we can apply the ideas of Definition 2.1 to introduce
the gradient-type deformations of a cycle:{

C̃ = Cα,β : α(ku− l)2 + β(kσv + n)2 = 0,
Cm : αv(ku− l)− βu(kσv + n) = 0

(2.5)

which yields immediately:

Proposition 2.3. Since α 6= 0 we have:
i) C̃ is a cycle if and only if σ(α+ σβ) = 0,
ii) Cm is a cycle if and only if k(α− βσ) = 0. In this case Cm is the straight line:

(βn)u+ (αl)v = 0.

Example 2.4. In the following we discuss the remarkable particular cases of the result
above.
i) Suppose σ = 0. Then C̃ is the cycle:

C̃ : (ku− l)2 +
β

α
n2 = 0 (2.6)

with the matrix:

C̃sσ̆ =

(
kl −(l2 + β

αn
2)

k2 −kl

)
. (2.7)

The degenerate case of an initial line i.e. k = 0 is possible if and only if αl2 +βn2 = 0
which is relation (2.19) below. If k 6= 0 then, due to the projective character of the
coefficients of a cycle, we get the matrix:

C̃sσ̆ =

(
l − 1

k (l2 + β
αn

2)
k −l

)
. (2.8)

If β
α > 0 then C̃ is a void set for n 6= 0 while n = 0 gives the deformation:

C : ku2 − 2lu+m = 0→ C̃ : ku = l (line : k 6= 0). (2.9)

If β
α < 0 then we have the lines:

C̃ : ku− l = ±
√
−β
α
n. (2.10)

Cm is a cycle if and only if k = 0 which means that we have the mixed deformation:

C : 2lu+ 2nv −m = 0 (line)→ Cm : (βn)u+ (αl)v = 0 (line). (2.11)

If β = −α then these two lines are Euclidean orthogonal. From the matrix point of
view the deformation (2.11) means:

Csσ̆ =

(
l + ı̆sn −m

0 −l + ı̆sn

)
→ Cm,sσ̆ =

(
−βn+ ı̆s(−αl) 0

0 βn+ ı̆s(−αl)

)
.

(2.12)

ii) For σ 6= 0 we have that C̃ is a cycle only for β = −ασ = −σα and then:

C̃ :
[
k(u+ iv)− l +

n

i

] [
k(u− iv)− l − n

i

]
= 0. (2.13)
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Hence, if k 6= 0 then C̃ consists in a single point: M = ( lk ,−
n
kσ ). Let us point out that

for σ 6= 0 we have 1
σ = σ and hence M = ( lk ,−σ

n
k ) which is exactly the e/h-center

of the initial cycle C, as it is introduced in formula (7) of [6, p. 1460] or [7, p. 7]. In
conclusion, for σ · k 6= 0 we have the deformation:

C → C̃ = its center. (2.14)

The matrix corresponding to C̃ is:

C̃sσ̆ =

(
k(l + ı̆sn) n2σ − l2

k2 k(−l + ı̆sn)

)
(2.15)

which for k = 0 becomes:

C̃sσ̆ =

(
0 n2σ − l2
0 0

)
(2.16)

while for k 6= 0, due to the projective character of the parameters of a cycle:

C̃sσ̆ =

(
l + ı̆sn 1

k (n2σ − l2)
k −l + ı̆sn

)
. (2.17)

The same case σ · k 6= 0 for ii) of proposition above gives β = α
σ = σα and Cm is the

line:
Cm : nu+ (σl)v = 0. (2.18)

For elliptic geometry the condition β = −ασ = −σα becomes the equality α = β
discussed in [2, p. 89] and [3, p. 62]; it can be called the diagonal case. Remark that

the elliptic center C̃ of (2.14) is obtained in [6, p. 1461] or [7, p. 8] from the vanishing
condition detCs−1 = 0.

Remark 2.5. The cycle Cm contains the origin (u, v) = (0, 0) = O. This fact holds for

C̃ if and only if:
αl2 + βn2 = 0. (2.19)

With the discussion of above particular cases it results:
i) for σ = 0 the only available case is β

α < 0 yielding:

l± = ±
√
−β
α
n. (2.20)

ii) for σ 6= 0 since β = −ασ = −σα we get that for the elliptic geometry the only
possible case is O = M the center of C while for the hyperbolic geometry:

l± = ±n. (2.21)

The gradient-type deformation of a standard (i.e. Euclidean) ellipse is discussed in
example 2.2i) of [2, p. 87]. Let us point out that (2.20) and (2.21) coincide for β = −α
which for the case ii) correspond to the hyperbolic geometry. Hence the above cases

i) and ii) are completely different, both from σ and the sign of β
α points of view.

Returning to the general case of α and β we treat the considered deformations
within A(σ) following the model of [3] and [5]. More precisely, with the usual notation
z = u+ iv ∈ A(σ) we derive the expression of C:

C : F (z, z̄) := kzz̄ +Bz + B̄z̄ +m = 0, B := −l − n

σ
i ∈ A(σ) (σ 6= 0). (2.22)
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For σ = 0 we have: B = −l − n
i . The inverse relationship between f and F is:

l = −<B, n = −σ=B (2.23)

with < and = respectively the real and imaginary part. By replacing in (2.5) the usual
relations:

u =
1

2
(z + z̄), v =

1

2i
(z − z̄) (2.24)

we get:{
C̃ : α[k(z + z̄)− 2l]2 + β[ki(z − z̄) + 2n]2 = 0,
Cm : α(z − z̄)[k(z + z̄)− 2l]− β(z + z̄)[kσ(z − z̄) + 2ni] = 0.

(2.25)

For the case σ 6= 0 we follow the discussion of Example 2.4ii and then:{
C̃ : [k(z + z̄)− 2l]2 − σ[ki(z − z̄) + 2n]2 = 0,
Cm : (z − z̄)[k(z + z̄)− 2l]− σ(z + z̄)[kσ(z − z̄) + 2ni] = 0.

(2.26)

The second equation (2.26) reduces to:

Cm : Bz − B̄z̄ = 0↔ Bz ∈ R (2.27)

and hence, for B 6= 0 we have the line: z = B̄ · R.
We finish this section by applying to the cycle C (not containing the origin, hence
m 6= 0) the inversion J : z ∈ A(σ)∗ → 1

z = w. We get a new cycle, expressed in w:

J(C) : mww̄ + B̄w +Bw̄ + k = 0 (2.28)

which means J : (k, l, n,m)→ (m, l,−n, k). With (2.26)-(2.27) its gradient deforma-
tions for σ 6= 0 are:{

J̃(C) : [m(w + w̄)− 2l]2 − σ[mi(w − w̄)− 2n]2 = 0,

J(C)m : Bw̄ − B̄w = 0↔ B̄w ∈ R.
(2.29)

Again, if B 6= 0 then the second cycle from from above is the line: w = B · R.

3. Orthogonality in the geometry of cycles

In [6, p. 1462] or [7, p. 2] a Möbius-invariant (indefinite) inner product (depend-
ing on σ̆) is defined on the set of cycles through:

< Csσ̆, Ĉ
s
σ̆ >:= Tr(Csσ̆ · Ĉsσ̆) (3.1)

which yields an associated σ̆-orthogonality. Here, the bar means the conjugation with
respect to ı̆.

For our setting we derive firstly the norms of a cycle and its gradient-type de-
formations for kσ 6= 0:{

‖Csσ̆‖2 = 2(l2 − km− σ̆n2) = ‖J(C)sσ̆‖2,
‖C̃sσ̆‖2 = 2(σ − σ̆)n2, ‖Cm,sσ̆ ‖2 = 1

2 (n2 − σ̆l2).
(3.2)

Let us remark that:

det Csσ̆ = km+ σ̆n2 − l2 → ‖Csσ̆‖2 = ‖J(C)sσ̆‖2 = −2det Csσ̆. (3.3)

Secondly, we study all the possible cases of orthogonality for our setting:
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Theorem 3.1. Let σ 6= 0 and the cycle C with k 6= 0. Then:
1) C is σ̆-orthogonal to its gradient deformation C̃ if and only if:

l2 − km+ (σ − 2σ̆)n2 = 0. (3.4)

2) C is σ̆-orthogonal to its mixed-gradient deformation Cm if and only if:

(1− σσ̆)nl = 0. (3.5)

3) C̃ is σ̆-orthogonal to Cm if and only if (3.4) holds.
4) Suppose also m 6= 0. Then C is σ̆-orthogonal to J(C) if and only if:

2(l2 + σ̆n2)− k2 −m2 = 0. (3.6)

Proof. 1) A straightforward computation gives:

< Csσ̆, C̃
s
σ̆ >= l2 − km+ (σ − 2σ̆)n2. (3.7)

2) The matrix of Cm from (2.18) is:

Cm,sσ̆ =
1

2

(
n+ ı̆sσl 0

0 −n+ ı̆sσl

)
(3.8)

and then:

< Csσ̆, C
m,s
σ̆ >= (1− σσ̆)nl. (3.9)

3) The same computation as above.
4) The matrix of J(C) is:

J(C)sσ̆ :=

(
l − ı̆sn −k
m −l − ı̆sn

)
(3.10)

and:

< Csσ̆, JC
s
σ̆ >= 2(l2 + σ̆n2)−m2 − k2. (3.11)

which gives the conclusion. �

Example 3.2. Suppose σ = σ̆. Then 1 − σσ̆ = 0 since σ2 = 1 and then Cm is
both orthogonally on C and C̃. In this case C is orthogonally to C̃ if and only if
l2 − km − σ̆n2 = 0 but from the first equation (3.2) this means that ‖C‖ = 0 i.e. C
is also self-orthogonal.

Returning to the Möbius-type study of cycles we continue this section considering
some transformation of cycles. The first one is inspired by [1, p. 2706]. Let α ∈ A(σ)
with module |α| 6= 1 and consider the map Tα : A(σ)→ A(σ):

Tα(z) = z + αz̄ := w. (3.12)

It follows directly that Tα is a bijective map with the inverse:

z := T−1
α (w) =

1

1− |α|2
(w − αw̄). (3.13)

Replacing this expression of z in (2.22) we find the image of cycle C through Tα:

Tα(C) : k|w− αw̄|2 + (1− |α|2)[(B − ᾱB̄)w + (B̄ − αB)w̄ + (1− |α|2)m] = 0 (3.14)

but this curve is not a cycle for α · k 6= 0.
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The second transformation is a Blaschke factor Ba defined by a ∈ A(σ) with
module |a| < 1:

w := Ba(z) =
z − a
1− āz

, (3.15)

having the inverse:

z = B−a(w) =
w + a

1 + āw
. (3.16)

The Blaschke transformation of the cycle (2.22) is again a cycle:

Ba(C) : ba(k)ww̄ + ba(B)w + ba(B)w̄ + ba(m) = 0 (3.17)

with:  ba(k) = k +m|a|2 + 2<(Ba),
ba(B) = (k +m)ā+B + B̄ā2,
ba(m) = m+ k|a|2 + 2<(Ba).

(3.18)

Example 3.3. Suppose that |B| < 1 and let a = B̄. Then the Blaschke transformation
of the coefficients is:  bB̄(k) = k + (m+ 2)|B|2,

bB̄(B) = (k +m+ 1 + |B|2)B,
bB̄(m) = m+ (k + 2)|B|2.

(3.19)

The last transformation is a similarity defined by a, b ∈ A(σ) with a 6= 0:

w := Sa,b(z) = az + b, (3.20)

having the inverse:

z =
1

a
(w − b) = S 1

a ,
−b
a

(w). (3.21)

The similarity transformation of the cycle (2.22) is again a cycle:

Sa,b(C) : kww̄ + (Bā− kb̄)w + (B̄a− kb)w̄ +m|a|2 + k|b|2 − 2<(Bbā) = 0. (3.22)

If the initial cycle C is non-degenerate then we restrict to the case k = 1 due to
the projective character of the coefficients of C. Then a non-degenerate C is called
decomposable if it is a product of lines:

C : (z −B)(z̄ − B̄) = 0 (3.23)

which means that m = |B|2 = l2− σn2. A similarity preserves the class of decompos-
able cycles since its image is:

Sa,b(C) : (w − b+ aB̄)(w̄ − b̄+ āB). (3.24)

From (3.3) it follows that a decomposable cycle has:

det Csσ̆ = (σ̆ − σ)n2. (3.25)
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4. The rotation of a cycle

In this section we suppose that σ 6= 0. In A(σ) we introduce the rotation map
R : (u, v) → i · (u, v) = (σv, u); then its square is: R2 = σI. It follows that a given
cycle C has an associated rotation cycle R(C) with equation:

R(C) : k(σ2v2 − σu2)− 2lσv − 2nu+m = 0. (4.1)

A short computation gives a more simple form:

R(C) : k(u2 − σv2) + 2(σn)u+ 2lv − σm = 0 (4.2)

and then we have the deformation:

C = (k, l, n,m)→ R(C) = (k,−σn,−l,−σm). (4.3)

The general rotation of conics is treated in [4].

Remark 4.1. Concerning the compositions J ◦R and R ◦ J we have:

J ◦R(C) = (−σm,−σn, l, k), R ◦ J(C) = (m,σn,−l,−σk) (4.4)

and then J and R anti-commutes in the hyperbolic setting respectively J and R
commutes if and only if l = 0 in the complex setting: σ = −1.

In terms of associated matrix we have:

R(C)sσ̆ =

(
−σn− ı̆sl σm

k σn− ı̆sl

)
, ‖R(C)sσ̆‖2 = 2(n2 + σ̆l2 + σkm). (4.5)

Then R preserves the norm of C if and only if:

(σ + 1)km+ (σ̆ − 1)l2 + (1− σ̆)n2 = 0. (4.6)

Also, recall from section 2 that the e/h-center of C is M( lk ,−σ
n
k ) and hence its

rotation is R(M) = (−nk ,
l
k ). But the center of R(C) is M̄ = (−σnk ,

σl
k ) and then

M̄ = σR(M); these points coincide for σ = 1.
Concerning the orthogonality of this new cycle with the previous three cycles we

have:

Proposition 4.2. Let C be a cycle with k 6= 0. Then:
i) C is σ̆-orthogonal to its rotated cycle R(C) if and only if:

(σ̆ − σ)nl + (σ − 1)km = 0. (4.7)

ii) C̃ is σ̆-orthogonal to R(C) if and only if:

2(σ̆ − σ)nl + σ(n2 + km)− l2 = 0. (4.8)

iii) Cm is σ̆-orthogonal to R(C) if and only if:

σ̆l2 = n2. (4.9)

Proof. A straightforward computation gives:

< Csσ̆, R(C)sσ̆ >= 2[(σ̆ − σ)nl + (σ − 1)km], (4.10)

< C̃sσ̆, R(C)sσ̆ >= 2(σ̆ − σ)nl + σ(n2 + km)− l2, (4.11)

< Cm,sσ̆ , R(C)sσ̆ >= 2σ(σ̆l2 − n2] (4.12)

which yields the conclusion. �
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Example 4.3. Suppose that σ = σ̆ = 1. Then R(C) is orthogonal to C and:

a) is orthogonal to C̃ if and only if: l2 = n2 + km; for k = 1 this means that C is
decomposable,
b) is orthogonal to Cm if and only if: l± = ±n, which is exactly the relation (2.21).
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