Stud. Univ. Babes-Bolyai Math. 66(2021), No. 2, 329-338

DOI: 10.24193/subbmath.2021.2.09

Complex left Caputo fractional inequalities

George A. Anastassiou

Abstract. Here we present several complex left Caputo type fractional inequalities of well known kinds, such as of Ostrowski, Poincare, Sobolev, Opial and Hilbert-Pachpatte.

Mathematics Subject Classification (2010): 26D10, 26D15, 30A10.

Keywords: Complex inequalities, fractional inequalities, Caputo fractional derivative.

1. Introduction

We are motivated by the following result for functions of complex variable: Complex Ostrowski type inequality

Theorem 1.1. (see [3]) Let f be holomorphic in G, an open domain and suppose $\gamma \subset G$ is a smooth path from z(a) = u to z(b) = w. If v = z(x) with $x \in (a,b)$, then $\gamma_{u,w} = \gamma_{u,v} \cup \gamma_{v,w}$,

$$\left| f(v)(w - u) - \int_{\gamma} f(z) dz \right| \leq \|f'\|_{\gamma_{u,v};\infty} \int_{\gamma_{u,v}} |z - u| |dz|
+ \|f'\|_{\gamma_{v,w};\infty} \int_{\gamma_{v,w}} |z - w| |dz|
\leq \left[\int_{\gamma_{u,v}} |z - u| |dz| + \int_{\gamma_{v,w}} |z - w| |dz| \right] \|f'\|_{\gamma_{u,w};\infty},$$

and

$$\left| f(v)(w-u) - \int_{\gamma} f(z) dz \right| \leq \max_{z \in \gamma_{u,v}} |z-u| \|f'\|_{\gamma_{u,v};1} + \max_{z \in \gamma_{v,w}} |z-w| \|f'\|_{\gamma_{v,w};1}$$

$$\leq \max \left\{ \max_{z \in \gamma_{u,v}} |z-u|, \max_{z \in \gamma_{v,w}} |z-w| \right\} \|f'\|_{\gamma_{u,w};1}.$$

If p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\left| f(v)(w-u) - \int_{\gamma} f(z) dz \right| \leq \left(\int_{\gamma_{u,v}} |z-u|^{q} |dz| \right)^{\frac{1}{q}} ||f'||_{\gamma_{u,v};p}
+ \left(\int_{\gamma_{v,w}} |z-w|^{q} |dz| \right)^{\frac{1}{q}} ||f'||_{\gamma_{v,w};p}
\leq \left(\int_{\gamma_{u,v}} |z-u|^{q} |dz| + \int_{\gamma_{v,w}} |z-w|^{q} |dz| \right)^{\frac{1}{q}} ||f'||_{\gamma_{u,w};p}.$$

Above $|\cdot|$ is the complex absolute value.

We are also motivated by the next complex Opial type inequality:

Theorem 1.2. (see [2]) Let $f: D \subseteq \mathbb{C} \to \mathbb{C}$ be an analytic function on the domain D and let $x, y, w \in D$. Suppose γ is a smooth path parametrized by z(t), $t \in [a, b]$ with z(a) = x, z(c) = y, and z(b) = w, where $c \in [a, b]$ is floating. Assume that $f^{(k)}(x) = 0$, k = 0, 1, ..., n, $n \in \mathbb{Z}_+$, and $p, q > 1: \frac{1}{p} + \frac{1}{q} = 1$. Then

$$\left| \int_{a}^{b} f(z(t)) f^{(n+1)}(z(t)) z'(t) dt \right|$$

$$\leq \int_{a}^{b} |f(z(t))| \left| f^{(n+1)}(z(t)) \right| |z'(t)| dt$$

$$\leq \frac{1}{2^{\frac{1}{q}} n!} \left[\int_{a}^{b} \left(\int_{a}^{c} |z(c) - z(t)|^{pn} |z'(t)| dt \right) |z'(c)| dc \right]^{\frac{1}{p}}$$

$$\cdot \left(\int_{a}^{b} \left| f^{(n+1)}(z(t)) \right|^{q} |z'(t)| dt \right)^{\frac{2}{q}},$$

equivalently it holds

$$\left| \int_{\gamma_{x,w}} f(z) f^{(n+1)}(z) dz \right| \leq \int_{\gamma_{x,w}} |f(z)| \left| f^{(n+1)}(z) \right| |dz|$$

$$\leq \frac{1}{2^{\frac{1}{q}} n!} \left[\int_{a}^{b} \left(\int_{\gamma_{x,y}} |z(c) - z|^{pn} |dz| \right) |z'(c)| dc \right]^{\frac{1}{p}} \left(\int_{\gamma_{x,w}} \left| f^{(n+1)}(z) \right|^{q} |dz| \right)^{\frac{2}{q}}.$$

Here we utilize on \mathbb{C} the results of [1] which are for general Banach space valued functions.

Mainly we give different cases of the left fractional \mathbb{C} -Ostrowski type inequality and we continue with the left fractional: \mathbb{C} -Poincaré like and Sobolev like inequalities.

We present an Opial type left \mathbb{C} -fractional inequality, and we finish with the Hilbert-Pachpatte left \mathbb{C} -fractional inequalities.

2. Background

In this section all integrals are of Bochner type.

We need

Definition 2.1. (see [4]) A definition of the Hausdorff measure h_{α} goes as follows: if (T,d) is a metric space, $A \subseteq T$ and $\delta > 0$, let $\Lambda(A,\delta)$ be the set of all arbitrary collections $(C)_i$ of subsets of T, such that $A \subseteq \cup_i C_i$ and $diam(C_i) \le \delta$ (diam =diameter) for every i. Now, for every $\alpha > 0$ define

$$h_{\alpha}^{\delta}\left(A\right) := \inf\left\{\sum \left(diamC_{i}\right)^{\alpha} \left| \left(C_{i}\right)_{i} \in \Lambda\left(A,\delta\right)\right\}\right. \tag{2.1}$$

Then there exists $\lim_{\delta \to 0} h_{\alpha}^{\delta}(A) = \sup_{\delta > 0} h_{\alpha}^{\delta}(A)$, and $h_{\alpha}(A) := \lim_{\delta \to 0} h_{\alpha}^{\delta}(A)$ gives an outer measure on the power set $\mathcal{P}(T)$, which is countably additive on the σ -field of all Borel subsets of T. If $T = \mathbb{R}^n$, then the Hausdorff measure h_n , restricted to the σ -field of the Borel subsets of \mathbb{R}^n , equals the Lebesgue measure on \mathbb{R}^n up to a constant multiple. In particular, $h_1(C) = \mu(C)$ for every Borel set $C \subseteq \mathbb{R}$, where μ is the Lebesgue measure.

Definition 2.2. ([1]) Let $[a,b] \subset \mathbb{R}$, X be a Banach space, $\nu > 0$; $n := \lceil \nu \rceil \in \mathbb{N}$, $\lceil \cdot \rceil$ is the ceiling of the number, $f : [a,b] \to X$. We assume that $f^{(n)} \in L_1([a,b],X)$. We call the Caputo-Bochner left fractional derivative of order ν :

$$(D_{*a}^{\nu}f)(x) := \frac{1}{\Gamma(n-\nu)} \int_{a}^{x} (x-t)^{n-\nu-1} f^{(n)}(t) dt, \quad \forall \ x \in [a,b].$$
 (2.2)

If $\nu \in \mathbb{N}$, we set $D_{*a}^{\nu} f := f^{(\nu)}$ the ordinary X-valued derivative, defined similarly to the numerical one, and also set $D_{*a}^0 f := f$.

By [1] $(D_{*a}^{\nu}f)(x)$ exists almost everywhere in $x \in [a,b]$ and $D_{*a}^{\nu}f \in L_1([a,b],X)$. If $\|f^{(n)}\|_{L_{\infty}([a,b],X)} < \infty$, then by [1] $D_{*a}^{\nu}f \in C([a,b],X)$.

We need the left-fractional Taylor's formula:

Theorem 2.3. ([1]) Let $n \in \mathbb{N}$ and $f \in C^{n-1}([a,b],X)$, where $[a,b] \subset \mathbb{R}$ and X is a Banach space, and let $\nu \geq 0$: $n = \lceil \nu \rceil$. Set

$$F_x(t) := \sum_{i=0}^{n-1} \frac{(x-t)^i}{i!} f^{(i)}(t), \quad \forall \ t \in [a, x],$$
 (2.3)

where $x \in [a, b]$.

Assume that $f^{(n)}$ exists outside a μ -null Borel set $B_x \subseteq [a, x]$, such that

$$h_1(F_x(B_x)) = 0, \ \forall \ x \in [a, b].$$
 (2.4)

We also assume that $f^{(n)} \in L_1([a,b],X)$. Then

$$f(x) = \sum_{i=0}^{n-1} \frac{(x-a)^i}{i!} f^{(i)}(a) + \frac{1}{\Gamma(\nu)} \int_a^x (x-z)^{\nu-1} (D_{*a}^{\nu} f)(z) dz, \qquad (2.5)$$

 $\forall x \in [a, b]$.

Next we mention an Ostrowski type inequality at left fractional level for Banach valued functions.

Theorem 2.4. ([1]) Let $\nu \geq 0$, $n = \lceil \nu \rceil$. Here all as in Theorem 2.3. Assume that $f^{(i)}(a) = 0$, i = 1, ..., n - 1, and that $D^{\nu}_{*a} f \in L_{\infty}([a, b], X)$. Then

$$\left\| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f(a) \right\| \le \frac{\|D_{*a}^{\nu} f\|_{L_{\infty}([a,b],X)}}{\Gamma(\nu+2)} (b-a)^{\nu}. \tag{2.6}$$

We mention an Ostrowski type L_p fractional inequality:

Theorem 2.5. ([1]) Let p, q > 1: $\frac{1}{p} + \frac{1}{q} = 1$, and $\nu > \frac{1}{q}$, $n = \lceil \nu \rceil$. Here all as in Theorem 2.3. Assume that $f^{(k)}(a) = 0$, k = 1, ..., n - 1, and $D^{\nu}_{*a} f \in L_q([a, b], X)$, where X is a Banach space. Then

$$\left\| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f(a) \right\| \leq \frac{\|D_{*a}^{\nu} f\|_{L_{q}([a,b],X)}}{\Gamma(\nu) \left(p(\nu-1)+1\right)^{\frac{1}{p}} \left(\nu+\frac{1}{p}\right)} (b-a)^{\nu-\frac{1}{q}}. \tag{2.7}$$

It follows

Corollary 2.6. ([1]) (to Theorem 2.5, case of p = q = 2). Let $\nu > \frac{1}{2}$, $n = \lceil \nu \rceil$. Here all as in Theorem 2.3. Assume that $f^{(k)}(a) = 0$, k = 1, ..., n - 1, and $D_{*a}^{\nu} f \in L_2([a,b],X)$. Then

$$\left\| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f(a) \right\| \le \frac{\|D_{*a}^{\nu} f\|_{L_{2}([a,b],X)}}{\Gamma(\nu) \left(\sqrt{2\nu - 1}\right) \left(\nu + \frac{1}{2}\right)} (b-a)^{\nu - \frac{1}{2}}. \tag{2.8}$$

Next comes the L_1 case of fractional Ostrowski inequality:

Theorem 2.7. ([1]) Let $\nu \geq 1$, $n = \lceil \nu \rceil$, and all as in Theorem 2.3. Assume that $f^{(k)}(a) = 0$, k = 1, ..., n - 1, and $D^{\nu}_{*a} f \in L_1([a, b], X)$. Then

$$\left\| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f(a) \right\| \le \frac{\|D_{*a}^{\nu} f\|_{L_{1}([a,b],X)}}{\Gamma(\nu+1)} (b-a)^{\nu-1}.$$
 (2.9)

We continue with a Poincaré like fractional inequality:

Theorem 2.8. ([1]) Let p, q > 1: $\frac{1}{p} + \frac{1}{q} = 1$, and $\nu > \frac{1}{q}$, $n = \lceil \nu \rceil$. Here all as in Theorem 2.3. Assume that $f^{(k)}(a) = 0$, k = 0, 1, ..., n - 1, and $D^{\nu}_{*a} f \in L_q([a, b], X)$, where X is a Banach space. Then

$$||f||_{L_q([a,b],X)} \le \frac{(b-a)^{\nu}}{\Gamma(\nu) \left(p(\nu-1)+1\right)^{\frac{1}{p}} \left(q\nu\right)^{\frac{1}{q}}} ||D_{*a}^{\nu}f||_{L_q([a,b],X)}. \tag{2.10}$$

Next comes a Sobolev like fractional inequality.

Theorem 2.9. ([1]) All as in the last Theorem 2.8. Let r > 0. Then

$$||f||_{L_{r}([a,b],X)} \leq \frac{(b-a)^{\nu-\frac{1}{q}+\frac{1}{r}}}{\Gamma(\nu)\left(p(\nu-1)+1\right)^{\frac{1}{p}}\left(r\left(\nu-\frac{1}{q}\right)+1\right)^{\frac{1}{r}}} ||D_{*a}^{\nu}f||_{L_{q}([a,b],X)}. \quad (2.11)$$

We mention the following Opial type fractional inequality:

Theorem 2.10. ([1]) Let p, q > 1: $\frac{1}{p} + \frac{1}{q} = 1$, and $\nu > \frac{1}{q}$, $n := \lceil \nu \rceil$. Let $[a, b] \subset \mathbb{R}$, X a Banach space, and $f \in C^{n-1}([a, b], X)$. Set

$$F_{x}(t) := \sum_{i=0}^{n-1} \frac{(x-t)^{i}}{i!} f^{(i)}(t), \quad \forall \ t \in [a,x], \ where \ x \in [a,b].$$
 (2.12)

Assume that $f^{(n)}$ exists outside a μ -null Borel set $B_x \subseteq [a, x]$, such that

$$h_1(F_x(B_x)) = 0, \ \forall \ x \in [a, b].$$
 (2.13)

We also assume that $f^{(n)} \in L_{\infty}([a, b], X)$. Assume also that $f^{(k)}(a) = 0, k = 0, 1, ..., n - 1$. Then

$$\int_{a}^{x}\left\Vert f\left(w\right) \right\Vert \left\Vert \left(D_{\ast a}^{\nu}f\right) \left(w\right) \right\Vert dw$$

$$\leq \frac{(x-a)^{\nu-1+\frac{2}{p}}}{2^{\frac{1}{q}}\Gamma(\nu)\left((p(\nu-1)+1)\left(p(\nu-1)+2\right)\right)^{\frac{1}{p}}} \left(\int_{a}^{x} \|(D_{*a}^{\nu}f)(z)\|^{q} dz\right)^{\frac{2}{q}}, \qquad (2.14)$$

 $\forall x \in [a, b].$

We finish this section with a Hilbert-Pachpatte left fractional inequality:

Theorem 2.11. ([1]) Let p, q > 1: $\frac{1}{p} + \frac{1}{q} = 1$, and $\nu_1 > \frac{1}{q}$, $\nu_2 > \frac{1}{p}$, $n_i := \lceil \nu_i \rceil$, i = 1, 2. Here $[a_i, b_i] \subset \mathbb{R}$, i = 1, 2; X is a Banach space. Let $f_i \in C^{n_i - 1}([a_i, b_i], X)$, i = 1, 2. Set

$$F_{x_i}(t_i) := \sum_{j_i=0}^{n_i-1} \frac{(x_i - t_i)^{j_i}}{j_i!} f_i^{(j_i)}(t_i), \qquad (2.15)$$

 $\forall t_i \in [a_i, x_i], \text{ where } x_i \in [a_i, b_i]; i = 1, 2. \text{ Assume that } f_i^{(n_i)} \text{ exists outside a } \mu\text{-null Borel set } B_{x_i} \subseteq [a_i, x_i], \text{ such that}$

$$h_1(F_{x_i}(B_{x_i})) = 0, \ \forall \ x_i \in [a_i, b_i]; \ i = 1, 2.$$
 (2.16)

We also assume that $f_i^{(n_i)} \in L_1([a_i, b_i], X)$, and

$$f_i^{(k_i)}(a_i) = 0, \quad k_i = 0, 1, ..., n_i - 1; \quad i = 1, 2,$$
 (2.17)

and

$$(D_{*a_1}^{\nu_1} f_1) \in L_q([a_1, b_1], X), \quad (D_{*a_2}^{\nu_2} f_2) \in L_p([a_2, b_2], X).$$

Then

$$\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \frac{\|f_{1}(x_{1})\| \|f_{2}(x_{2})\| dx_{1} dx_{2}}{\left(\frac{(x_{1}-a_{1})^{p(\nu_{1}-1)+1}}{p(p(\nu_{1}-1)+1)} + \frac{(x_{2}-a_{2})^{q(\nu_{2}-1)+1}}{q(q(\nu_{2}-1)+1)}\right)} \leq \frac{(b_{1}-a_{1}) (b_{2}-a_{2})}{\Gamma(\nu_{1}) \Gamma(\nu_{2})} \|D_{*a_{1}}^{\nu_{1}} f_{1}\|_{L_{q}([a_{1},b_{1}],X)} \|D_{*a_{2}}^{\nu_{2}} f_{2}\|_{L_{p}([a_{2},b_{2}],X)}. \tag{2.18}$$

3. Main results

We need a special case of Definition 2.2 over \mathbb{C} .

Definition 3.1. Let $[a,b] \subset \mathbb{R}$, $\nu > 0$; $n := \lceil \nu \rceil \in \mathbb{N}$, $\lceil \cdot \rceil$ is the ceiling of the number and $f \in C^n$ ($[a,b],\mathbb{C}$). We call Caputo-Complex left fractional derivative of order ν :

$$(D_{*a}^{\nu}f)(x) := \frac{1}{\Gamma(n-\nu)} \int_{a}^{x} (x-t)^{n-\nu-1} f^{(n)}(t) dt, \quad \forall \ x \in [a,b],$$
 (3.1)

where the derivatives $f', ... f^{(n)}$ are defined as the numerical derivative.

If $\nu \in \mathbb{N}$, we set $D^{\nu}_{*a}f := f^{(\nu)}$ the ordinary \mathbb{C} -valued derivative and also set $D^0_{*a}f := f$.

Notice here (by [1]) that $D_{*a}^{\nu}f\in C\left(\left[a,b\right],\mathbb{C}\right)$. We make

Remark 3.2. Suppose γ is a smooth path parametrized by z(t), $t \in [a, b]$ (i.e. there exists z'(t) and is continuous) and from now on f is a complex function which is continuous on γ .

Put z(a) = u and z(b) = w with $u, w \in \mathbb{C}$. We define the integral of f on $\gamma_{u,w} = \gamma$ as

$$\int_{\gamma} f(z) dz = \int_{\gamma_{u,w}} f(z) dz := \int_{a}^{b} f(z(t)) z'(t) dt = \int_{a}^{b} h(t) dt, \quad (3.2)$$

where $h(t) := f(z(t)) z'(t), t \in [a, b]$.

We notice that the actual choice of parametrization of γ does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose γ is parametrized by z(t), $t \in [a, b]$, which is differentiable on the intervals [a, c] and [c, b], then assuming that f is continuous on γ we define

$$\int_{\gamma_{u,w}} f(z) dz := \int_{\gamma_{u,w}} f(z) dz + \int_{\gamma_{u,w}} f(z) dz,$$

where v := z(c). This can be extended for a finite number of intervals.

We also define the integral with respect to arc-length

$$\int_{\gamma_{u,w}} f(z) |dz| := \int_{a}^{b} f(z(t)) |z'(t)| dt$$

and the length of the curve γ is then

$$l\left(\gamma\right) = \int_{\gamma_{u,w}} |dz| := \int_{a}^{b} |z'\left(t\right)| dt.$$

We mention also the triangle inequality for the complex integral, namely

$$\left| \int_{\gamma} f(z) dz \right| \le \int_{\gamma} |f(z)| |dz| \le ||f||_{\gamma,\infty} l(\gamma), \tag{3.3}$$

where $\|f\|_{\gamma,\infty} := \sup_{z \in \gamma} |f(z)|$.

We give the following left-fractional C-Taylor's formula:

Theorem 3.3. Let $h \in C^n([a,b],\mathbb{C}), n = [\nu], \nu \geq 0$. Then

$$h(t) = \sum_{i=0}^{n-1} \frac{(t-a)^i}{i!} h^{(i)}(a) + \frac{1}{\Gamma(\nu)} \int_a^t (t-\lambda)^{\nu-1} (D_{*a}^{\nu} h)(\lambda) d\lambda,$$
 (3.4)

 $\forall t \in [a, b], in particular it holds,$

$$f(z(t)) z'(t) = \sum_{i=0}^{n-1} \frac{(t-a)^{i}}{i!} (f(z(a)) z'(a))^{(i)} + \frac{1}{\Gamma(\nu)} \int_{a}^{t} (t-\lambda)^{\nu-1} (D_{*a}^{\nu} f(z(\cdot)) z'(\cdot)) (\lambda) d\lambda,$$
 (3.5)

 $\forall t \in [a, b]$.

It follows a left fractional C-Ostroswski type inequality

Theorem 3.4. Let $n \in \mathbb{N}$ and $h \in C^n([a,b],\mathbb{C})$, where $[a,b] \subset \mathbb{R}$, and let $\nu \geq 0 : n = \lceil \nu \rceil$. Assume that $h^{(i)}(a) = 0$, i = 1, ..., n - 1. Then

$$\left| \frac{1}{b-a} \int_{a}^{b} h(t) dt - f(a) \right| \leq \frac{\|D_{*a}^{\nu} h\|_{\infty,[a,b]}}{\Gamma(\nu+2)} (b-a)^{\nu},$$
 (3.6)

 $\begin{array}{l} in \; particular \; when \; h\left(t\right) := f\left(z\left(t\right)\right)z'\left(t\right) \; and \; \left(f\left(z\left(t\right)\right)z'\left(t\right)\right)^{(i)}|_{t=a} = 0, \; i=1,...n-1, \\ we \; get \end{array}$

$$\left| \frac{1}{b-a} \int_{\gamma_{u,w}} f(z) dz - f(u) z'(a) \right| = \left| \frac{1}{b-a} \int_{a}^{b} f(z(t)) z'(t) dt - f(z(a)) z'(a) \right|$$

$$\leq \frac{\|D_{*a}^{\nu}f(z(t))z'(t)\|_{\infty,[a,b]}}{\Gamma(\nu+2)}(b-a)^{\nu}.$$
(3.7)

Proof. By Theorem 2.4.

The corresponding C-Ostrowski type L_p inequality follows:

Theorem 3.5. Let $p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1$, and $\nu > \frac{1}{q}$, $n = \lceil \nu \rceil$. Here $h \in C^n([a, b], \mathbb{C})$. Assume that $h^{(i)}(a) = 0$, i = 1, ..., n - 1. Then

$$\left| \frac{1}{b-a} \int_{a}^{b} h(t) dt - h(a) \right| \leq \frac{\|D_{*a}^{\nu}h\|_{L_{q}([a,b],\mathbb{C})}}{\Gamma(\nu) \left(p(\nu-1)+1\right)^{\frac{1}{p}} \left(\nu+\frac{1}{p}\right)} (b-a)^{\nu-\frac{1}{q}}, \quad (3.8)$$

in particular when h(t) := f(z(t)) z'(t) and $(f(z(t)) z'(t))^{(i)}|_{t=a} = 0, i = 1, ...n-1,$ we get:

$$\left| \frac{1}{b-a} \int_{\gamma_{u,w}} f(z) dz - f(u) z'(a) \right| = \left| \frac{1}{b-a} \int_{a}^{b} f(z(t)) z'(t) dt - f(z(a)) z'(a) \right|$$

$$\leq \frac{\left\| D_{*a}^{\nu} \left(f(z(t)) z'(t) \right) \right\|_{L_{q}([a,b],\mathbb{C})}}{\Gamma(\nu) \left(p(\nu-1) + 1 \right)^{\frac{1}{p}} \left(\nu + \frac{1}{p} \right)} (b-a)^{\nu - \frac{1}{q}}.$$

$$(3.9)$$

Proof. By Theorem 2.5.

It follows

Corollary 3.6. (to Theorem 3.5, case of p = q = 2). We have that

$$\left| \frac{1}{b-a} \int_{\gamma_{u,w}} f(z) dz - f(u) z'(a) \right| \leq \frac{\|D_{*a}^{\nu}(f(z(t)) z'(t))\|_{L_{2}([a,b],\mathbb{C})}}{\Gamma(\nu) \sqrt{2\nu - 1} \left(\nu + \frac{1}{2}\right)} (b-a)^{\nu - \frac{1}{2}}.$$
(3.10)

We continue with an L_1 fractional \mathbb{C} -Ostrowski type inequality:

Theorem 3.7. Let $\nu \geq 1$, $n = \lceil \nu \rceil$. Assume that $h \in C^n([a, b], \mathbb{C})$, where

$$h\left(t\right):=f\left(z\left(t\right)\right)z'\left(t\right),$$

and such that $h^{(i)}(a) = 0$, i = 1, ..., n - 1. Then

$$\left| \frac{1}{b-a} \int_{\gamma_{u,w}} f(z) dz - f(u) z'(a) \right| \leq \frac{\|D_{*a}^{\nu} (f(z(t)) z'(t))\|_{L_{1}([a,b],\mathbb{C})}}{\Gamma(\nu+1)} (b-a)^{\nu-1}.$$
(3.11)

Proof. By Theorem 2.7.

It follows a Poincaré like C-fractional inequality:

Theorem 3.8. Let $p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1$, and $\nu > \frac{1}{q}$, $n = \lceil \nu \rceil$. Let $h \in C^n([a, b], \mathbb{C})$. Assume that $h^{(i)}(a) = 0$, i = 1, ..., n - 1. Then

$$||h||_{L_q([a,b],\mathbb{C})} \le \frac{(b-a)^{\nu} ||D_{*a}^{\nu}h||_{L_q([a,b],\mathbb{C})}}{\Gamma(\nu) (p(\nu-1)+1)^{\frac{1}{p}} (q\nu)^{\frac{1}{q}}},$$
(3.12)

in particular when h(t) := f(z(t)) z'(t) and $(f(z(t)) z'(t))^{(i)}|_{t=a} = 0, i = 1, ...n-1,$ we get:

$$\|f(z(t))z'(t)\|_{L_{q}([a,b],\mathbb{C})} \le \frac{(b-a)^{\nu}}{\Gamma(\nu)(p(\nu-1)+1)^{\frac{1}{p}}(q\nu)^{\frac{1}{q}}} \|D_{*a}^{\nu}(f(z(t))z'(t))\|_{L_{q}([a,b],\mathbb{C})}.$$
(3.13)

Proof. By Theorem 2.8.

The corresponding Sobolev like inequality follows:

Theorem 3.9. All as in Theorem 3.8. Let r > 0. Then

$$||f(z(t))z'(t)||_{L_r([a,b],\mathbb{C})}$$

$$\leq \frac{(b-a)^{\nu-\frac{1}{q}+\frac{1}{r}}}{\Gamma(\nu)\left(p(\nu-1)+1\right)^{\frac{1}{p}}\left(r\left(\nu-\frac{1}{q}\right)+1\right)^{\frac{1}{r}}} \|D_{*a}^{\nu}\left(f(z(t))z'(t)\right)\|_{L_{q}([a,b],\mathbb{C})}. \tag{3.14}$$

Proof. By Theorem 2.9.

We continue with an Opial type C-fractional inequality

Theorem 3.10. Let $p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1$, and $\nu > \frac{1}{q}$, $n := \lceil \nu \rceil$, $h \in C^n([a, b], \mathbb{C})$. Assume $h^{(k)}(a) = 0$, k = 0, 1, ..., n - 1. Then

$$\int_{a}^{x} |h(t)| |(D_{*a}^{\nu}h)(t)| dt$$

$$\leq \frac{(x-a)^{\nu-1+\frac{2}{p}}}{2^{\frac{1}{q}}\Gamma(\nu)((p(\nu-1)+1)(p(\nu-1)+2))^{\frac{1}{p}}} \left(\int_{a}^{x} |(D_{*a}^{\nu}h)(t)|^{q} dt\right)^{\frac{2}{q}}, \quad (3.15)^{\frac{1}{p}}$$

 $\forall x \in [a, b], \text{ in particular when } h(t) := f(z(t))z'(t) \text{ and } (f(z(t))z'(t))^{(i)}|_{t=a} = 0, i = 1, ... n - 1, \text{ we get:}$

$$\int_{a}^{x} |f(z(t))| |(D_{*a}^{\nu}(f(z(t))z'(t)))| |z'(t)| dt$$

$$\leq \frac{(x-a)^{\nu-1+\frac{2}{p}}}{2^{\frac{1}{q}}\Gamma(\nu)\left((p(\nu-1)+1)\left(p(\nu-1)+2\right)\right)^{\frac{1}{p}}} \left(\int_{a}^{x} |D_{*a}^{\nu}(f(z(t))z'(t))|^{q} dt\right)^{\frac{2}{q}}, \tag{3.16}$$

 $\forall x \in [a, b]$.

Proof. By Theorem 2.10.

We finish with Hilbert-Pachpatte left C-fractional inequalities:

Theorem 3.11. Let p, q > 1: $\frac{1}{p} + \frac{1}{q} = 1$, and $\nu_1 > \frac{1}{q}$, $\nu_2 > \frac{1}{p}$, $n_i := \lceil \nu_i \rceil$, i = 1, 2. Let $h_i \in C^{n_i}([a_i, b_i], \mathbb{C})$, i = 1, 2. Assume $h_i^{(k_i)}(a_i) = 0$, $k_i = 0, 1, ..., n_i - 1$; i = 1, 2. Then

$$\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \frac{|h_{1}(t_{1})| |h_{2}(t_{2})| dt_{1} dt_{2}}{\left(\frac{(t_{1}-a_{1})^{p(\nu_{1}-1)+1}}{p(p(\nu_{1}-1)+1)} + \frac{(t_{2}-a_{2})^{q(\nu_{2}-1)+1}}{q(q(\nu_{2}-1)+1)}\right)} \\
\leq \frac{(b_{1}-a_{1}) (b_{2}-a_{2})}{\Gamma(\nu_{1}) \Gamma(\nu_{2})} \|D_{*a_{1}}^{\nu_{1}} h_{1}\|_{L_{q}([a_{1},b_{1}],\mathbb{C})} \|D_{*a_{2}}^{\nu_{2}} h_{2}\|_{L_{p}([a_{2},b_{2}],\mathbb{C})}, \tag{3.17}$$

in particular when $h_1(t_1) := f_1(z_1(t_1)) z'_1(t_1)$ and $h_2(t_2) := f_2(z_2(t_2)) z'_2(t_2)$, with $h_i^{(k_i)}(a_i) = 0$, $k_i = 0, 1, ..., n_i - 1$; i = 1, 2, we get:

$$\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \frac{|f_{1}(z_{1}(t_{1})) z'_{1}(t_{1})| |f_{2}(z_{2}(t_{2})) z'_{2}(t_{2})| dt_{1} dt_{2}}{\left(\frac{(t_{1}-a_{1})^{p(\nu_{1}-1)+1}}{p(p(\nu_{1}-1)+1)} + \frac{(t_{2}-a_{2})^{q(\nu_{2}-1)+1}}{q(q(\nu_{2}-1)+1)}\right)} \leq \frac{(b_{1}-a_{1}) (b_{2}-a_{2})}{\Gamma(\nu_{1}) \Gamma(\nu_{2})} \cdot \|D^{\nu_{1}}_{*a_{1}}(f_{1}(z_{1}(t_{1})) z'_{1}(t_{1}))\|_{L_{\alpha}([a_{1},b_{1}],\mathbb{C})} \|D^{\nu_{2}}_{*a_{2}}(f_{2}(z_{2}(t_{2})) z'_{2}(t_{2}))\|_{L_{\alpha}([a_{2},b_{2}],\mathbb{C})}. (3.18)$$

Proof. By Theorem 2.11.

References

- [1] Anastassiou, G., A strong fractional calculus theory for Banach space valued functions, Nonlinear Functional Analysis and Applications, 22(2017), no. 3, 495-524.
- [2] Anastassiou, G., Complex Opial type inequalities, Romanian J. of Math. & CS, 9(2019), no. 2, 93-97.
- [3] Dragomir, S.S., An extension of Ostrowski inequality to the complex integral, RGMIA Res. Rep. Coll., 21(2018), Art 112, 17 pp.
- [4] Volintiru, C., A proof of the fundamental theorem of Calculus using Hausdorff measures, Real Analysis Exchange, 26(2000/2001), no. 1, 381-390.

George A. Anastassiou Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, U.S.A. e-mail: ganastss@memphis.edu