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Complex left Caputo fractional inequalities
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Abstract. Here we present several complex left Caputo type fractional inequalities
of well known kinds, such as of Ostrowski, Poincare, Sobolev, Opial and Hilbert-
Pachpatte.
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1. Introduction

We are motivated by the following result for functions of complex variable:
Complex Ostrowski type inequality

Theorem 1.1. (see [3]) Let f be holomorphic in G, an open domain and suppose
v C G is a smooth path from z (a) = u to z (b) = w. If v =z (z) with x € (a,b), then
"Yu,w = Yu,v U "Yv,wy
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Ifp,g>1 wz’th%Jr%:l, then

row-u- [ 1@< < [l |dz|> 17 s
vy u,v
+ ( / |z—w‘Z|dz> I
< </ |Z—U|q|dz|+/ |z —wl |dz|> Hle'yu,w;p'

Above || is the compler absolute value.

Yv,wiP

We are also motivated by the next complex Opial type inequality:

Theorem 1.2. (sec [2]) Let f: D C C — C be an analytic function on the domain
D and let z,y,w € D. Suppose v is a smooth path parametrized by z (t), t € [a,b]
with z(a) = z, z(c) = y, and z(b) = w, where ¢ € [a,b] is floating. Assume that
f®(2)=0,k=0,1,...,n,n €%y, and p,qg > 1: %—i— % =1. Then

1)

FY () 2 (1) dt

S/abf |‘f"+1) ’|z )| dt
2% n! V (/ |2 () =2 (O |2 ()Idt) B )Idc]
. (/ab FOHD (2 ‘ 2 |dt>§’

equivalently it holds

2)

<

/ £ (2) £ (2) d

x,w

< [ / b ( JECEE |dz|> 1 c) dc] ; ( [ el |dz|> q

Here we utilize on C the results of [1] which are for general Banach space valued
functions.

Mainly we give different cases of the left fractional C-Ostrowski type inequality
and we continue with the left fractional: C-Poincaré like and Sobolev like inequalities.

We present an Opial type left C-fractional inequality, and we finish with the
Hilbert-Pachpatte left C-fractional inequalities.
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2. Background

In this section all integrals are of Bochner type.
We need

Definition 2.1. (see [4]) A definition of the Hausdorff measure h, goes as follows: if
(T,d) is a metric space, A C T and 6 > 0, let A (A, §) be the set of all arbitrary collec-
tions (C'), of subsets of T', such that A C U;C; and diam (C;) < 6 (diam =diameter)
for every i. Now, for every o > 0 define

1 (A) := inf {Z (diamC;)* | (C), € A (A,(S)} . (2.1)
Then there exists limhd (A) = suph? (A), and h, (A) := limh? (A) gives an outer
6—0 §>0 6—0

measure on the power set P (T'), which is countably additive on the o-field of all Borel
subsets of T'. If ' = R™, then the Hausdorff measure h.,, restricted to the o-field of the
Borel subsets of R™, equals the Lebesgue measure on R™ up to a constant multiple.
In particular, hy (C') = u(C) for every Borel set C C R, where p is the Lebesgue
measure.

Definition 2.2. ([1]) Let [a,b] C R, X be a Banach space, v > 0; n:= [v] € N, [-] is
the ceiling of the number, f : [a,b] — X. We assume that (™) € L, ([a,b],X). We
call the Caputo-Bochner left fractional derivative of order v:

1 r 1
DY — —Hnr (n) ) 2.2
(D) @)= gy | =" W Vaclal. @2)
IfveN weset DY, f = f (*) the ordinary X-valued derivative, defined similarly to
the numerical one, and also set D, f := f.

By [1] (D%, f) (z) exists almost everywhere in z € [a,b] and DY, f € L; ([a,b] , X).

I [ f ) (ax) < 0 then by [1] DY, f € C ([a, ], X).

We need the left-fractional Taylor’s formula:

Theorem 2.3. ([1]) Let n € N and f € C" ! ([a,b], X), where [a,b] C R and X is a
Banach space, and let v > 0:n = [v]. Set

-S

=0

f<> (t), Ytelaa], (2.3)

where x € [a,b].
Assume that f") exists outside a p-null Borel set B, C [a,x], such that

hi (Fy (Bg)) =0,V z € [a,b]. (2.4)
We also assume that f™ € Ly ([a,b],X). Then
n—1 g T
@)= 20 @+ ﬁ / (x =27 (Duf) (2)dz, (25
i=0 : a
vV z € [a,b].
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Next we mention an Ostrowski type inequality at left fractional level for Banach
valued functions.

Theorem 2.4. ([1]) Let v > 0, n = [v]. Here all as in Theorem 2.3. Assume that
f@(a)=0,i=1,...n—1, and that DY, f € Lo ([a,], X). Then

(b—a)”. (2.6)

D:a a
‘ D5l oy

1 b
ﬁ/a flz)dr—f(a) T(v+2)

We mention an Ostrowski type L,, fractional inequality:

Theorem 2.5. ([1]) Let p,q > 1 : %—l—% =1, and v > %, n = [v]. Here all as in
Theorem 2.3. Assume that f*) (a) =0, k = 1,....,n — 1, and DY, f € L, ([a,}],X),
where X is a Banach space. Then

HD:afHLq([a,b],X)
L) (v —-1)+1)7 (v+1)

< (b—a)’"7. (27)

b
7 [ f@d- @

It follows

Corollary 2.6. ([1]) (to Theorem 2.5, case of p = q¢ = 2). Let v > 3, n = [v].

Here all as in Theorem 2.3. Assume that f*) (a) =0, k = 1,...,n — 1, and D', f €
Ly ([a,b], X). Then

- 1D f 2, (fat), x)
T D) (V2r—1) (v+1)

Next comes the L; case of fractional Ostrowski inequality:

b 1
ﬁ / f (@) dz — f (a) b-a"t. (28

Theorem 2.7. ([1]) Let v > 1, n = [v], and all as in Theorem 2.3. Assume that
f®(a)=0,k=1,..,n—1, and DY, f € Ly ([a,b], X). Then

< ||D5:af||L1([a,b],X)

< T+ 1) (b—a)" . (2.9)

b
e [ T @

We continue with a Poincaré like fractional inequality:

Theorem 2.8. ([1]) Let p,q > 1 : %—i—% =1, and v > %, n = [v]. Here all as in
Theorem 2.3. Assume that f*) (a) =0, k=0,1,....,n — 1, and D%, f € L, ([a, ], X),
where X is a Banach space. Then

(b—a)"
; 1 D%, (o), x) - (2.10)
L) (p(v—1)+1)7 (qu)* a([a.b],)

Next comes a Sobolev like fractional inequality.

Theorem 2.9. ([1]) All as in the last Theorem 2.8. Let r > 0. Then

1 1
(b—a) it .
£ o) < 1Dy - (211)

I‘(z/)(p(u—l)—&—l)% (r (V—%) —l—l)

110, a0y <
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We mention the following Opial type fractional inequality:

Theorem 2.10. ([1]) Let p,q > 1: 11) + ==1, and v > 7, n:= [v]. Let [a,b] CR, X

a Banach space, and f € C"1 ([a, b] ,X) Set
e

- D), Vtela,z], wherex € [a,b]. (2.12)

Assume that f") exists outside a p-null Borel set B, C [a,x], such that

hi (Fy (Bg)) =0, Yz €la,b]. (2.13)
We also assume that f™ € Ly ([a,b], X).
Assume also that f*) (a) =0, k=0,1,....,n — 1. Then

[ 17 @) ) s

1

T2 (W) (P -1+ 1) (p(v—1)+2))”
vV €la,b.

(—a) !> ( (D 2)|| dz) : . (214)

We finish this section with a Hilbert-Pachpatte left fractional inequality:

Theorem 2.11. ([1]) Let p,q > 1: %—&—% =1, and vy > %, vy > %, n; = [v;],i=1,2.
Here [a;,b;] C R, i =1,2; X is a Banach space. Let f; € C" 7! ([a;,b;],X), i =1,2.
Set

n;—1 ( o t)ji .
o (t) =y S (09 (1), (2.15)

Ji

Y t; € |a;,x;], where z; € [a;,b;]; i = 1,2. Assume that fi("i) exists outside a p-null
Borel set B, C [a;, 2;], such that

hy (F  (Bz,)) =0, Y €la;,b]; i=1,2. (2.16)
We also assume that f e L, ([ai, bi], X), and
FE) (a) =0, ki=0,1,.m;—1; i =12, (2.17)
and
(D%, ) € Lo ([, 0], X) (D22, f2) € Lp (laz, ba] , X)) .
Then

bt [ f1 (@]l ]| fo (@2) ] dwydao
(z1—ap)PP1—D+1 (z2—ap)9(v2—1+1
PP DTN T a(@e—D)F1) )

(b1 —a1) (b2 —az) | v y
= F(Vl)F(VZ) HD*‘I‘Iflqu([al,blLX)HD*izfQHLp([aa,bﬂ,X)' (2.18)
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3. Main results
We need a special case of Definition 2.2 over C.

Definition 3.1. Let [a,b0] C R, v > 0; n := [v] € N, [-] is the ceiling of the number
and f € C™ ([a,b],C). We call Caputo-Complex left fractional derivative of order v:

D) @)= s [0 O @ Vet @)

where the derivatives f’,...f(" are defined as the numerical derivative.
If v eN, weset DY, f = f@) the ordinary C-valued derivative and also set

DY.f = f.
Notice here (by [1]) that D%, f € C (Ja,b],C).
We make

Remark 3.2. Suppose v is a smooth path parametrized by z (t), t € [a,b] (i.e. there
exists 2’ (t) and is continuous) and from now on f is a complex function which is
continuous on 7.

Put z(a) = v and z(b) = w with u,w € C. We define the integral of f on

Yuw =Y 88
/yf(z)dz:/wf(z)dz - /abf(z(t))z’ (t)dt:/abh(t)dt, (3.2)

where h(t) := f (2 (t)) 2’ (t), t € [a,b].

We notice that the actual choice of parametrization of 7 does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
~ is parametrized by z (t), ¢t € [a, b], which is differentiable on the intervals [a, ¢] and
[c, b], then assuming that f is continuous on v we define

(2)dz := (2)dz + f(2)dz,

Yu,w Yu,v Yo, w
where v := z (¢). This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
f(2)|dz] == / F (= (017 (1) dt

and the length of the curve v is then

L) = / GE / 1wl

We mention also the triangle inequality for the complex integral, namely

[r@a| < [5G <l (). (53)

where 7], 1= sup f (2)]

We give the following left-fractional C-Taylor’s formula:
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Theorem 3.3. Let h € C" ([a,b],C), n = [v], v > 0. Then

><a>+ﬁ / (= N"HDLR) (VL (3.4)

=0

Y t € [a,b], in particular it holds,

e =3 (F @) 2 @)
=0
1 t v—1 v /
*Iwuyl(t NTHDLFEO)Z ()N (35)
VteEla,b.
Proof. By Theorem 2.3. 0

It follows a left fractional C-Ostroswski type inequality

Theorem 3.4. Let n € N and h € C™ ([a,b],C), where [a,b] CR, and letv >0:n =
[V]. Assume that h) (a) =0, i =1,...,n — 1. Then

||D k@ || (L b]

S A (3.6)

in particular when h (t) := f (2 (t)) 2’ (t) and (f (2 (¢)) 2/ (t))(i) lt=a =0,i=1,..n—1,
we get

1
el G LR ORAC

u,w

=’/f (t)dt — f (=(a)) ' (a)

D% f (2 (1)) 2" (Dl o
- I'(v+2)

bl gy gyv. (3.7)
Proof. By Theorem 2.4. O

The corresponding C-Ostrowski type L, inequality follows:

Theorem 3.5. Let p,q > 1: 2 é:l, andv>é,n:[1/].HereheC’”([a,b],(C).

Assume that h¥) (a) =0,i=1,...,n — 1. Then

hS] \

1

b DY.h
. / h(t)dt — h(a) I I 4([a,b],C
—a,

)
P (p@—1)+1)7 (v+1)

< (b—a) "7,  (38)
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in particular when h (t) .= f (2 (t)) 2’ (¢t) and (f (2 (1)) 2’ (t))(i) lt=e =0,i=1,..n—1,
we get:

1 I
[t -t @] = [ e Od - E@)
—aly, ., b—a /,
Dy (f(z(t) 2 (¢ “ N
A0 0 I ya—
Frv)(p(v—1)4+1)7 (1/—1- %)
(3.9)
Proof. By Theorem 2.5. g
It follows
Corollary 3.6. (to Theorem 3.5, case of p = q =2). We have that
1 D% (f (= (@) 2" ) 1, (jap.0) _1
2)dz — f(u) 2 (a)] < 2 (h—a)’ 2,
bal, (2) (u) 2’ (a) T ) Var—T(v+ 1) (b—a)
(3.10)
We continue with an L; fractional C-Ostrowski type inequality:
Theorem 3.7. Let v > 1, n = [v]. Assume that h € C™ ([a,b],C), where
h(t):=f(z()7 @),
and such that h) (a) =0, i =1,....n — 1. Then
1 , D% (f (2 () 2" ) 2, (ja01,0) -1
- < L (b—a)”
] 1@ s @) < T (b~ a)
(3.11)
Proof. By Theorem 2.7. O

It follows a Poincaré like C-fractional inequality:
Theorem 3.8. Let p,q > 1: %—i—% =1, and v > %, n = [v]. Let h € C™([a,b],C).
Assume that h) (a) =0, i =1,...n — 1. Then

(b—a)" [DLhllg, (ap).c)
D) (v = 1) +1)7 ()7

in particular when h (t) := f (2 (t)) 2’ (t) and (f (2 (¢)) 2/ (t))(i) lt=a =0,i=1,..n—1,
we get:

120l L, (fa,p),0) < ) (3.12)

£ (®) % Ol o0

(b_a)u /
< DL O Ol (313
W) (= 1)+1)7 () B

Proof. By Theorem 2.8. O

The corresponding Sobolev like inequality follows:
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Theorem 3.9. All as in Theorem 3.8. Let r > 0. Then
I1f (z (@) 2" Ol 1, (an.c)

gyt

0o D5 (F G 0)2 )y oy (314)
Frw)(pv—1)+1)7 (r (1/— %) + 1)

Proof. By Theorem 2.9. g

<

We continue with an Opial type C-fractional inequality
Theorem 3.10. Let p,g > 1 : %—&—% =1, and v > %, n:= [v], h € C"([a,b],C).
Assume h®) (a) =0, k =0,1,....,.n — 1. Then

/ "I ) 1(Dh) (1) di

(¢ —a) 15 o .
< ; dt) 3.15
20 (v) (p(v =)+ 1) (p(v—1)+2))7 </ It @ ) | (3.1
Yz € [a,b], in particular when h(t) := f (2 ( )) 2 (t) and (f (2 (1)) 2 ()7 |y=a = 0,
1 =1,..n — 1, we get:

/I [f (@)D, (f (2 (1) 2" @) |2 (£)] dt

< (x—a)" 1> 1 < z D% (7 () # (t))|th> H |
22T (W) (p(v -1 +1)(p(r—1)+2))* -

Vz € la,b]. :
Proof. By Theorem 2.10. 0

We finish with Hilbert-Pachpatte left C-fractional inequalities:
Theorem 3.11. Let p,g > 1: Z%—i— % =1, and vy > %, vy > %, n; = [v;], i =1,2. Let
h; € C™ ([a;,b;],C), i = 1,2. Assume hgki) (a;) =0, ki =0,1,....,n; — 1; 4 = 1,2.

Then -
1o |1 (t1)] [he (t2)| dt1dts
t1 ap)P(v1-D+1 (ta—ag)?(v2—1+1
p(p(r1—1)+1) q(q(v2—1)+1) )
(b1 — a1) (b2 —a2)

T ()T () HD*;Ihlqu([ath] o 1P%:h2ll 1 s (3.17)
in particular when hy (t1) := f1 (21 (t1)) 21 (t1) and ha (t2) 1= f2 (22 (t2)) 25 (t2), with
hgki)( i) =0,k = 0,1,... ;—1;41=1,2, we get:

/b1 /b2 [f1 (21 (81)) 21 (8] |f2 (22 (£2)) 25 (F2)| dadty _ (b1 — an) (b2 — an) |
t1 ap)Pr1i— D+t + (t27a2)q<y2_1)+1) - I (1/1) F(Z/Q)
p(p(r1—1)+1) q(q(r2—1)+1)

D%, (F1 (=1 (tl))zl t))l, o(la1,b1],C) D22, (f2 (22 (t2)) 25 (t2))|, Clasbal,c) - (3:18)



338 George A. Anastassiou

Proof. By Theorem 2.11. O
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