Stud. Univ. Babes-Bolyai Math. 65(2020), No. 3, 325-332
DOLI: 10.24193/subbmath.2020.3.01

A refinement of an inequality due to Ankeny
and Rivlin

Dinesh Tripathi

n
Abstract. Let p(z) = Z a,z” be a polynomial of degree n,

v=0

M(p,R) := max |p(z)|, and M(p,1) := M(p).

|z|=R>0
Then by well-known result due to Ankeny and Rivlin [1], we have

R"+1
2

M(p.R) < ( ) M(p), R>1,

In this paper, we sharpen and generalizes the above inequality by using a result
due to Govil [5].
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1. Introduction

Let P, = {p(z);p(z) = Za,,z”} be a class of polynomial of degree n. Let
0

lrrllg}é [p(2)] = M(p, R) and M(p,_l) = M (p).Then from maximum modulus principle,

M(p, R) is a strictly increasing function and for 0 < R < oo. Also, it is a simple
deduction from the maximum modulus principle (see [10, p. 158, Problem 269]) that
for R > 1,

M(p,R) < R"M(p). (1.1)

The result is best possible and equality holds if and only if p(z) = Az", where A being
a complex number.

For p € P,, not vanishing in the interior of unit circle, Ankeny and Rivlin [1] sharpened
inequality (1.1), by proving following result.
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Theorem 1.1. If p € P, and p(z) # 0 for |z| < 1, then for R > 1,
R"+1

M(p,R) < ( )M<p>, R>1 (12)

The above inequality is sharp and equality holds for polynomial
p(z) = a+ 82", |al =Bl

Since the equality in (1.2) holds only for p(z) = a + Bz, which satisfy

8= 5M () (13)

therefore it should possible to improve the bound (1.2) for the polynomial not satis-
fying (1.3). Govil [5] solve this problem by proving the following result.

Theorem 1.2. If p € P, and p(z) # 0 for |z| <1, then for R > 1,

R L R e e

- (14 Tt ) (1.4

The result is best possible and the equality holds for p(z) = (A + pz™), A and p being
complex numbers with |A| = |pl.

The other extension and generalization of Theorem 1.1 has been mentioned in
the various article,e.g Aziz [2], Aziz and Mohammad [3], Milovanovié¢, Mitrinovi¢ and
Rassias [8], Govil [6], Govil, Qazi and Rahman [7] and Rahman and Schmeisser [12],
Tripathi [13] etc.

2. Main results

In this paper, we prove the following improved generalization of Theorem 1.2 for
the class of Lacunary type of polynomial

n
p(z) =ao + Z a,z”.
v=p

Theorem 2.1. If p(z) = ag + Z a,z” is a polynomial of degree n and p(z) # 0 for
v=p

la] < k,k > 1, then for R>r > 1,

ey =) (1 W]
eyl < S gy - oo (1- S )

+[{p(re)}l, (2.1)
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where

- (£52)2 B (=2 o () )

k=1
(A B a) (4 ko \" | ROIE) + (14 )
=0 ( M) “)( M) ) ! <r<M<p>>+<1+ku>|an|>
forn>1 and h(0) = 0.

On taking s =0, u =1, r =1 and k = 1, we have the following application of above
Theorem 2.1.

Corollary 2.2. If p € P, and p(z) # 0 for |z| < 1, then for R > 1,

where
= ()« () oo Gl o) (i)

e () () om0 S e
forn > 1 and h(0) = 0.

Remark 2.3. From Lemma 3.7, we get 0 < h(n). Using this in Corollary 2.2, we get
- R™+1) n 2|an| (R"+1)
0y < (7M - =M 1-— hin) < ——2M
[p(Re™)| = — (p) = 5 M(p) M) (n) < — (),

which shows that Corollary 2.2, clearly refines Theorem 1.1 due to Ankeny and
Rivlin [1].

Remark 2.4. From Lemma 3.7, we have h(1) < h(n). Using this inequality in Corollary
2.2, we get,

; (R"+1) n 2|, |
pire) < S ar) - B (1- 25 i)
< WD p) L) (1%'));1@), (2.3
and,
e

Substitute the value of k(1) in (2.3), we get

p(Re)| < (Rn;l) Z(M 4|a |2){§\5<;>1+)A24|2p)|
2)

‘1“(1 M(p >+2|an|>}
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which is Theorem 1.2 due to Govil [5].
By taking 1 = 1 in inequality (2.1), we obtain the following results.
Corollary 2.5. If p € P, and p(z) #0 for |z| < k,k > 1, then for R >r > 1,

|{p(R€w)}s| < (RTLlst;]:m){M(p)}s _ 1ik{M(p)}s (1 — W) h(n)
H{p(re )} 29

e (L E)an] (L+K)lan|\" " (ROL(p)) + (L + k)lan]
+(”< M) *Q( M) ) 1(mwm+u+w%0
forn>1 and h(0) = 0.

Remark 2.6. We also have some other application Theorem 2.1, by taking s = 0,
k=1 and r = 1 respectively.

3. Lemmas

For the proof of theorem, we need the following lemmas. Our first lemma is a
well-known generalization of Schwarz’s lemma (see for example [9, p. 167]).

Lemma 3.1. If f(z) is analytic inside and on the circle |z| = 1, f(0) = a, where
la| < f, then
M(f)|2|+|a>
M . 3.1

Lemma 3.2. If p(z) = Zavz” is a polynomial of degree n, then for |z] = R > 1,
v=0

o)l < (SR O) ayme (3:2)

The proof follows easily on applying Lemma 3.1 to the function T'(z) = 2"p(1/z) and
noting that M (T) = M (p) (for details see [12, Lemma 2]).

From Lemma 3.2, one immediately gets:
Lemma 3.3. If p(z) = Z%ZU is a polynomial of degree n, then for |z| = R > 1,
v=0

)< (1- B0 Rl =Y ary) e (3

The following result is due to Chan and Malik [4].
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Lemma 3.4. If p(z) = ap + Z a,z"” is a polynomial of degree n, and p(z) # 0 for

|z| < k,k > 1, then
n

< M (p). 4
max[p' ()] < 7 M (7) (3.9
Lemma 3.5. If p(z Zav Y is a polynomial of degree n, and let r > 1, then
v=0
— lan -1
re + nja|

is an increasing function of x, for x > 0.

The proof of above lemma is straight forward using derivative test, so we omit the
detail proof.

Lemma 3.6. Let

I N (e V[
h(n) —/T t—l—iadt forn > 1.

Then

h(n) = (R ) ;(Rn fore k) (—1)*(a + 1)a" !
+(=1)"(a+ Da""'In (R+“) .

r+a
Proof. We define the function f(n) = fr &= "t for n > 0. Tt is casy to see that
h(n) = f(n) — f(n—1) for n > 1.

We can obtain

R 4n n—1
Fn) + af(n—1) :/ %dt
R yn—1 n o n.n
:/T t tﬁ:a)dt: R - ! =g(n), (say)
Then
f(n) =g(n) —af(n—1). (3.6)
Solving the recurrence relation (3.6), we get
n—1
fn) =Y g(n—k)(=1)*a" + (=1)"a" f(0) 3.7)
k=0

where
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Now, Substituting the value of f(0) in (3.7), we get

fn) = S (n— k) (=1)Fa* + (=1)"a"In [ Z22) > 0. (3.8)
,;;f’ (r+a>

Using h(n) = f(n) — f(n — 1) and value of g(n), we have Lemma 3.6 forn > 1. O

Lemma 3.7. Let

_ [fa-peh
h(n) —/T H—iadt forn > 1.

Then h(n) is a non-negative increasing function of n for n > 1.

Proof. Let

R n
f(n):/ ! dr for n > 0.

r+a
It is easy to see that h(n) = f(n) — f(n — 1) for n > 1. For n > 1,
R _ n—1 R _ n—2
f0) = =)= [ EENE g PO Dy 1) pa-2)
as r"~1 > r?=2 for r > 1. Therefore,
h(n) = f(n) = fln=1) = f(n = 1) = f(n—2) = h(n - 1).

Therefore, h(n) is an increasing function of n for n > 1.
Also, h(n) = f(n) — f(n—1) >0for n >0 as

[HeEen s,

t+a

for n > 1 and h(0) = 0. Therefore, h(n) > 0 and is an increasing function of n for
n > 0. O

4. Proof of the Theorem
Proof of Theorem 2.1. For each 0, 0 < 0 < 27, we have

R R
(R )) = (plre ) = | [ oty at] < [ sitptoe®)) /e,

R
s{M@r*/QW“%W@%wt

[{p(Re)}* — {p(re”)}’|

r [ e [y (IO e =Y
<y oot {o - BRSO D g, )

by using Lemma 3.3 for the polynomial p’(z), which is of degree n — 1. We can see,
from Lemma 3.5, the integrand in (4.1) is an increasing function of M (p’).




A refinement of an inequality due to Ankeny and Rivlin 331

Now, applying Lemma 3.4 to inequality (4.1), we get for 0 < 6 < 27,
{p(Re™)}* — {p(re”)}|

R 2 M(p) —nlay|)(t —1 .
- {M(p)}#l/r s {1 - (1+1;:an(i) tHvLLABEL) )} T M)t
e —rne n Ry _ n—1
= B M)y - M) (- a) / e Y
by taking a = W_

Using Lemma 3.6 in inequality (4.2), and substituting the value of a, we get

Ryl < T gy - )y (1‘(1+M)W>h<n>

1+ ke I M (p)
+{p(re®))), (4.3)
where
I A S i e WA ey 0 | B VACED 0 7 N
o = (5 e () e (M ) ()
o (R (L+k)an \" " (ROLE) + (L4 k)an|
o 1)( M) “)( M) ) 1<r(M<p>>+<1+ku>|an|>
for n > 1 and h(0) = 0. O

5. Computation

For the polynomial p(z) = (z — 2)?, p(z) # 0 for |2| < 1 and M(p) = 9. Then,
for R = 3, exact value of M(p, R) is 25. Using Theorem 1.2,

M(p,R) <45 —T7Tx%(2—11/91og(29/11)) = 39.29 (5.1)
Using Corollary 2.2 of Theorem 2.1,
M(p,R) <45 —7x(4—22/9+ 22/8110og(29/11)) = 32.26 (5.2)
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