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A refinement of an inequality due to Ankeny
and Rivlin

Dinesh Tripathi

Abstract. Let p(z) =

n∑
ν=0

aνz
ν be a polynomial of degree n,

M(p,R) := max
|z|=R≥0

|p(z)|, and M(p, 1) := M(p).

Then by well-known result due to Ankeny and Rivlin [1], we have

M(p.R) ≤
(
Rn + 1

2

)
M(p), R ≥ 1.

In this paper, we sharpen and generalizes the above inequality by using a result
due to Govil [5].
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1. Introduction

Let Pn :=

{
p(z); p(z) =

n∑
ν=0

aνz
ν

}
be a class of polynomial of degree n. Let

max
|z|=R

|p(z)| = M(p,R) and M(p, 1) = M(p).Then from maximum modulus principle,

M(p,R) is a strictly increasing function and for 0 ≤ R < ∞. Also, it is a simple
deduction from the maximum modulus principle (see [10, p. 158, Problem 269]) that
for R ≥ 1,

M(p,R) ≤ RnM(p). (1.1)

The result is best possible and equality holds if and only if p(z) = λzn, where λ being
a complex number.
For p ∈ Pn not vanishing in the interior of unit circle, Ankeny and Rivlin [1] sharpened
inequality (1.1), by proving following result.
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Theorem 1.1. If p ∈ Pn and p(z) 6= 0 for |z| < 1, then for R ≥ 1,

M(p,R) ≤
(
Rn + 1

2

)
M(p), R ≥ 1. (1.2)

The above inequality is sharp and equality holds for polynomial

p(z) = α+ βzn, |α| = |β|.

Since the equality in (1.2) holds only for p(z) = α+ βzn, which satisfy

|β| = 1

2
M(p), (1.3)

therefore it should possible to improve the bound (1.2) for the polynomial not satis-
fying (1.3). Govil [5] solve this problem by proving the following result.

Theorem 1.2. If p ∈ Pn and p(z) 6= 0 for |z| < 1, then for R ≥ 1,

M(p,R) ≤
(
Rn + 1

2

)
M(p)− n

2

(
M(p)2 − 4|an|2

M(p)

){
(R− 1)M(p)

M(p) + 2|an|

− ln

(
1 +

(R− 1)M(p)

M(p) + 2|an|

)}
. (1.4)

The result is best possible and the equality holds for p(z) = (λ+ µzn), λ and µ being
complex numbers with |λ| = |µ|.

The other extension and generalization of Theorem 1.1 has been mentioned in
the various article,e.g Aziz [2], Aziz and Mohammad [3], Milovanović, Mitrinović and
Rassias [8], Govil [6], Govil, Qazi and Rahman [7] and Rahman and Schmeisser [12],
Tripathi [13] etc.

2. Main results

In this paper, we prove the following improved generalization of Theorem 1.2 for
the class of Lacunary type of polynomial

p(z) = a0 +

n∑
ν=µ

aνz
ν .

Theorem 2.1. If p(z) = a0 +

n∑
ν=µ

aνz
ν is a polynomial of degree n and p(z) 6= 0 for

|a| < k, k ≥ 1, then for R > r ≥ 1,

|{p(Reiθ)}s| ≤ (Rns − rns)
1 + kµ

{M(p)}s − n

1 + kµ
{M(p)}s

(
1− (1 + kµ)|an|

M(p)

)
h(n)

+ |{p(reiθ)}s|, (2.1)
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where

h(n) =

(
Rn−rn

n

)
+

n−1∑
k=1

(
Rn−k−rn−k

n− k

)
(−1)k

(
(1+kµ)|an|
M(p)

+ 1

)(
(1+kµ)|an|
M(p)

)k−1
+ (−1)n

(
(1 + kµ)|an|

M(p)
+ 1

)(
(1 + kµ)|an|

M(p)

)n−1
ln

(
R(M(p)) + (1 + kµ)|an|
r(M(p)) + (1 + kµ)|an|

)
for n ≥ 1 and h(0) = 0.

On taking s = 0, µ = 1, r = 1 and k = 1, we have the following application of above
Theorem 2.1.

Corollary 2.2. If p ∈ Pn and p(z) 6= 0 for |z| < 1, then for R ≥ 1,

|p(Reiθ)| ≤ (Rn + 1)

2
M(p)− n

2
M(p)

(
1− 2|an|

M(p)

)
h(n), (2.2)

where

h(n) =

(
Rn − 1

n

)
+

n−1∑
k=1

(
Rn−k − 1

n− k

)
(−1)k

(
2|an|
M(p)

+ 1

)(
2|an|
M(p)

)k−1
+ (−1)n

(
2|an|
M(p)

+ 1

)(
2|an|
M(p)

)n−1
ln

(
1 +

(R− 1)M(p)

M(p) + 2|an|

)
for n ≥ 1 and h(0) = 0.

Remark 2.3. From Lemma 3.7, we get 0 ≤ h(n). Using this in Corollary 2.2, we get

|p(Reiθ)| ≤ (Rn + 1)

2
M(p)− n

2
M(p)

(
1− 2|an|

M(p)

)
h(n) ≤ (Rn + 1)

2
M(p),

which shows that Corollary 2.2, clearly refines Theorem 1.1 due to Ankeny and
Rivlin [1].

Remark 2.4. From Lemma 3.7, we have h(1) ≤ h(n). Using this inequality in Corollary
2.2, we get

|p(Reiθ)| ≤ (Rn + 1)

2
M(p)− n

2
M(p)

(
1− 2|an|

M(p)

)
h(n)

≤ (Rn + 1)

2
M(p)− n

2
M(p)

(
1− 2|an|

M(p)

)
h(1), (2.3)

and,

h(1) = (R− 1)−
(

1 +
2|an|
M(p)

)
ln

(
1 +

(R− 1)M(p)

M(p) + 2|an|

)
. (2.4)

Substitute the value of h(1) in (2.3), we get

|p(Reiθ)| ≤
(
Rn + 1

2

)
M(p)− n

2

(
M(p)2 − 4|an|2

M(p)

){
(R− 1)M(p)

M(p) + 2|an|

− ln

(
1 +

(R− 1)M(p)

M(p) + 2|an|

)}
,



328 Dinesh Tripathi

which is Theorem 1.2 due to Govil [5].

By taking µ = 1 in inequality (2.1), we obtain the following results.

Corollary 2.5. If p ∈ Pn and p(z) 6= 0 for |z| < k, k ≥ 1, then for R > r ≥ 1,

|{p(Reiθ)}s| ≤ (Rns − rns)
1 + k

{M(p)}s − n

1 + k
{M(p)}s

(
1− (1 + k)|an|

M(p)

)
h(n)

+|{p(reiθ)}s|, (2.5)

where

h(n) =

(
Rn−rn

n

)
+

n−1∑
k=1

(
Rn−k−rn−k

n− k

)
(−1)k

(
(1 + k)|an|
M(p)

+ 1

)(
(1 + k)|an|
M(p)

)k−1
+ (−1)n

(
(1 + k)|an|
M(p)

+ 1

)(
(1 + k)|an|
M(p)

)n−1
ln

(
R(M(p)) + (1 + k)|an|
r(M(p)) + (1 + k)|an|

)
for n ≥ 1 and h(0) = 0.

Remark 2.6. We also have some other application Theorem 2.1, by taking s = 0,
k = 1 and r = 1 respectively.

3. Lemmas

For the proof of theorem, we need the following lemmas. Our first lemma is a
well-known generalization of Schwarz’s lemma (see for example [9, p. 167]).

Lemma 3.1. If f(z) is analytic inside and on the circle |z| = 1, f(0) = a, where
|a| < f , then

|f(z)| ≤M(f)

(
M(f)|z|+ |a|
|a||z|+M(f)

)
. (3.1)

Lemma 3.2. If p(z) =

n∑
v=0

avz
v is a polynomial of degree n, then for |z| = R ≥ 1,

|p(z)| ≤
(
|an|R+M(p)

M(p)R+ |an|

)
M(p)Rn. (3.2)

The proof follows easily on applying Lemma 3.1 to the function T (z) = znp(1/z) and
noting that M(T ) = M(p) (for details see [12, Lemma 2]).

From Lemma 3.2, one immediately gets:

Lemma 3.3. If p(z) =

n∑
v=0

avz
v is a polynomial of degree n, then for |z| = R ≥ 1,

|p(z)| ≤
(

1− (M(p)− |an|)(R− 1)

M(p)R+ |an|

)
M(p)Rn. (3.3)

The following result is due to Chan and Malik [4].
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Lemma 3.4. If p(z) = a0 +

n∑
v=µ

avz
v is a polynomial of degree n, and p(z) 6= 0 for

|z| < k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n

1 + kµ
M(p). (3.4)

Lemma 3.5. If p(z) =
n∑
v=0

avz
v is a polynomial of degree n, and let r ≥ 1, then

(
1− (x− |an|)(r − 1)

rx+ n|an|

)
x (3.5)

is an increasing function of x, for x > 0.

The proof of above lemma is straight forward using derivative test, so we omit the
detail proof.

Lemma 3.6. Let

h(n) =

∫ R

r

(t− 1)(tn−1)

t+ a
dt for n ≥ 1.

Then

h(n) =

(
Rn − rn

n

)
+

n−1∑
k=1

(
Rn−k − rn−k

n− k

)
(−1)k(a+ 1)ak−1

+ (−1)n(a+ 1)an−1 ln

(
R+ a

r + a

)
.

Proof. We define the function f(n) =
∫ R
r

tn

t+adt for n ≥ 0. It is easy to see that

h(n) = f(n)− f(n− 1) for n ≥ 1.

We can obtain

f(n) + af(n− 1) =

∫ R

r

tn + atn−1

t+ a
dt

=

∫ R

r

tn−1(t+ a)

t+ a
dt =

Rn − rn

n
= g(n), (say).

Then

f(n) = g(n)− af(n− 1). (3.6)

Solving the recurrence relation (3.6), we get

f(n) =

n−1∑
k=0

g(n− k)(−1)kak + (−1)nanf(0), (3.7)

where

f(0) =

∫ R

1

1

r + a
dr = ln

(
R+ a

r + a

)
.
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Now, Substituting the value of f(0) in (3.7), we get

f(n) =

n−1∑
k=0

g(n− k)(−1)kak + (−1)nan ln

(
R+ a

r + a

)
, n ≥ 0. (3.8)

Using h(n) = f(n)− f(n− 1) and value of g(n), we have Lemma 3.6 for n ≥ 1. �

Lemma 3.7. Let

h(n) =

∫ R

r

(t− 1)(tn−1)

t+ a
dt for n ≥ 1.

Then h(n) is a non-negative increasing function of n for n ≥ 1.

Proof. Let

f(n) =

∫ R

r

rn

r + a
dr for n ≥ 0.

It is easy to see that h(n) = f(n)− f(n− 1) for n ≥ 1. For n ≥ 1,

f(n)− f(n− 1) =

∫ R

1

(r − 1)(rn−1)

r + a
dr ≥

∫ R

1

(r − 1)(rn−2)

r + a
dr = f(n− 1)− f(n− 2)

as rn−1 ≥ rn−2 for r ≥ 1. Therefore,

h(n) = f(n)− f(n− 1) ≥ f(n− 1)− f(n− 2) = h(n− 1).

Therefore, h(n) is an increasing function of n for n ≥ 1.
Also, h(n) = f(n)− f(n− 1) ≥ 0 for n ≥ 0 as∫ R

r

(t− 1)(tn−1)

t+ a
dr ≥ 0

for n ≥ 1 and h(0) = 0. Therefore, h(n) ≥ 0 and is an increasing function of n for
n ≥ 0. �

4. Proof of the Theorem

Proof of Theorem 2.1. For each θ, 0 ≤ θ < 2π, we have

|{p(Reiθ)}s − {p(reiθ)}s| =

∣∣∣∣∣
∫ R

r

d

dt
{p(teiθ)}sdt

∣∣∣∣∣ ≤
∫ R

r

s|{p(teiθ)}s−1||p′(teiθ)|dt,

≤ {M(p)}s−1
∫ R

r

tns−ns|p′(teiθ)|dt

|{p(Reiθ)}s − {p(reiθ)}s|

≤ {M(p)}s−1
∫ R

r

stns−1
{

1− (M(p′)− n|an|)(t− 1)

n|an|+ tM(p′)

}
M(p′)dt, (4.1)

by using Lemma 3.3 for the polynomial p′(z), which is of degree n − 1. We can see,
from Lemma 3.5, the integrand in (4.1) is an increasing function of M(p′).
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Now, applying Lemma 3.4 to inequality (4.1), we get for 0 ≤ θ < 2π,

|{p(Reiθ)}s − {p(reiθ)}s|

≤ {M(p)}s−1
∫ R

r

stsn−1

{
1−

( n
1+kµM(p)− n|an|)(t− 1)

n|an|+ t n
1+kµM(p)

}
n

1 + kµ
M(p)dt

=
(Rns − rns)

1 + kµ
{M(p)}s − n

1 + kµ
{M(p)}s(1− a)

∫ R

r

(t− 1)(tn−1)

t+ a
dt, (4.2)

by taking a =
(1 + kµ)|an|

M(p)
.

Using Lemma 3.6 in inequality (4.2), and substituting the value of a, we get

|{p(Reiθ)}s| ≤ (Rns − rns)
1 + kµ

{M(p)}s − n

1 + kµ
{M(p)}s

(
1− (1 + kµ)|an|

M(p)

)
h(n)

+|{p(reiθ)}s|, (4.3)

where

h(n) =

(
Rn−rn

n

)
+

n−1∑
k=1

(
Rn−k−rn−k

n− k

)
(−1)k

(
(1 + kµ)|an|

M(p)
+1

)(
(1+kµ)|an|
M(p)

)k−1
+ (−1)n

(
(1 + kµ)|an|

M(p)
+ 1

)(
(1 + kµ)|an|

M(p)

)n−1
ln

(
R(M(p)) + (1 + kµ)|an|
r(M(p)) + (1 + kµ)|an|

)
for n ≥ 1 and h(0) = 0. �

5. Computation

For the polynomial p(z) = (z − 2)2, p(z) 6= 0 for |z| < 1 and M(p) = 9. Then,
for R = 3, exact value of M(p,R) is 25. Using Theorem 1.2,

M(p,R) ≤ 45− 7 ∗ (2− 11/9 log(29/11)) = 39.29 (5.1)

Using Corollary 2.2 of Theorem 2.1,

M(p,R) ≤ 45− 7 ∗ (4− 22/9 + 22/81 log(29/11)) = 32.26 (5.2)
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