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A note on a transmission problem for
the Brinkman system and the generalized
Darcy-Forchheimer-Brinkman system in
Lipschitz domains in R3

Andrei-Florin Albişoru

Abstract. The purpose of this paper is to treat a nonlinear transmission-type
problem for a generalized version of the Darcy-Forchheimer-Brinkman system
and the classical Brinkman system in complementary Lipschitz domains in R3.
First of all, we define the required spaces in which we seek our solution. Next,
we describe the generalized Brinkman and the generalized Darcy-Forchheimer-
Brinkman systems. Further, we give important lemmas that allow us to intro-
duce the trace and conormal derivative operators that appear in the formulation
of our transmission problem. We invoke a result regarding the well-posedness
of the (linear) transmission problem for the generalized and classical Brinkman
systems in complementary Lipschitz domains in R3. The above mentioned well-
posedness result in the linear case combined with Banach’s fixed point theorem
will allow us to establish the main result of the paper, the well-posedness of the
transmission problem for the Brinkman system and the nonlinear generalized
Darcy-Forchheimer-Brinkman system in Lipschitz domains in R3.
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1. Introduction

Transmission problems that appear in the field of fluid mechanics are important
to researchers nowadays, due to their practical applications, such as environmental
problems with free air flow interacting with evaporation from soils or transvascular
exchange between blood flow in vessel and the surrounding tissue as porous material.
Another relevant example is the geophysical model of flow of water or other viscous
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fluids, which pass through porous rocks or porous soil (see [8], [14] and the references
therein, and see also [21], [5]). We also mention the important role of the partial dif-
ferential equations that model different types of flow, such as the Brinkman equations
or the Darcy-Forchheimer-Brinkman equations (for additional details, see [21]).

Escauriaza and Mitrea in [4] have established the well-posedness of the trans-
mission problem for the Laplace operator across a Lipschitz interface, for data in
Lebesgue and Hardy spaces on the boundary.

Medkova in [17] has studied the transmission problem for the Stokes system with
constant coefficients in R3 using the integral equation method.

Mitrea and Wright in [20] have given well-posedness results for transmission
problems for the Stokes systems in arbitrary Lipschitz domains in Euclidean setting
and in Lp, Sobolev and Besov spaces.

Groşan, Kohr and Wendland in [6] have studied the Dirichlet problem for the
generalized Brinkman system in a bounded Lipschitz domain in Rn, n ≥ 2 and
the Dirichlet problem for the generalized Darcy-Forchheimer-Brinkman system in a
bounded Lipschitz domain in Rn, n = 2, 3.

Kohr, Lanza de Cristoforis and Wendland in [13] have treated Poisson problems
for a semilinear and a generalized Brinkman system on a bounded Lipschitz domain
in Rn, n ≥ 2, with Dirichlet or Robin boundary conditions and data given in L2-based
Sobolev spaces.

Kohr, Lanza de Cristoforis and Wendland in [10] have used a layer potential
method and a fixed point theorem to show the existence of a solution of the Robin
problem for the standard Darcy-Forchheimer-Brinkman system in a bounded Lips-
chitz domain in Rn, n = 2, 3.

Kohr, Lanza de Cristoforis and Wendland in [9] have studied the Robin prob-
lem for the Brinkman and the Darcy-Forchheimer-Brinkman systems with constant
coefficients. They also proceeded to study mixed boundary value problems for the
Brinkman system and Darcy-Forchheimer-Brinkman system. respectively. Moreover,
they have proved a well-posedness result for a boundary problem of mixed Dirichlet-
Robin and transmission type for two Brinkman systems.

Medkova in [16] has tackled the transmission problem for the Brinkman sys-
tem and also the Robin-transmission and the Dirichlet-transmission problems for the
Brinkman system in the setting of a bounded Lipschitz domain in Rn, n > 2. In each
of these problems, the systems have constant coefficients.

Kohr, Lanza de Cristoforis and Wendland in [11] have studied nonlinear
Neumann-Transmission problems for the (linear) Stokes and Brinkman systems with
a nonlinear Neumann condition.

Kohr, Lanza de Cristoforis, Mikhailov and Wendland in [8] have treated trans-
mission problems for the nonlinear Darcy-Forchheimer-Brinkman system and the lin-
ear Stokes system in complementary Lipschitz domains in R3.

Kohr, Lanza de Cristoforis and Wendland in [12] have obtained a well-posendess
result for the nonlinear Robin-transmission problem for the nonlinear Navier-Stokes
and Darcy-Forchheimer-Brinkman systems in the setting of bounded Lipschitz do-
mains in Rn, n = 2, 3.
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Kohr, Mikhailov and Wendland in [14] have obtained well-posedness results for
transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman sys-
tems in Lipschitz domains on compact Riemannian manifolds of dimension m = 2, 3.
The coefficients of these systems of partial differential equations are smooth due to
the smoothness of the Riemannian metric tensor.

Mitrea, Mitrea and Shi in [19] have studied variable coefficient transmission
problems and singular integral operators on non-smooth manifolds.

Transmission problems for Stokes and Navier-Stokes systems with nonsmooth
coefficients (L∞-coefficients) on compact Riemannian manifolds have been recently
treated by Kohr and Wendland in [15].

The paper is structured as follows. In the second section, we define the Sobolev
spaces in which we seek our solutions. There, we describe the generalized versions of
the Brinkman system and of the Darcy-Forchheimer-Brinkman system. These systems
of PDEs contain L∞ coefficients. We give a result that allows us to consider the trace
operator in the setting of Sobolev spaces (Lemma 2.5). In addition, we mention a
result that allows us to consider the conormal derivative operator for the generalized
Brinkman system (Lemma 2.6). We end this section with two results. The first of
them is related to the growth conditions at infinity of a pair (w, r) that satisfy the
homogeneous Brinkman equation with constant coefficients in an exterior Lipschitz
domain in R3 (Lemma 2.7). The second result gives mapping properties of a nonlinear
operator related with our nonlinear transmission problem (Lemma 2.8). In the third
section, we state the well-posedness result for the linear transmission problem for the
classical and generalized Brinkman systems in complementary Lipschitz domains in R3

(Theorem 3.1). Using this well-posedness result and the Banach fixed point theorem,
we obtain the well-posedness result for the main nonlinear problem considered in this
paper, which is the transmission problem for the Brinkman and the generalized Darcy-
Forchheimer-Brinkman systems in complementary Lipschitz domains in R3, namely
Theorem 3.2.

2. Preliminaries

In this paper, by the superscript ′ we refer to the topological dual of a given
space. Also, we use the notation 〈·, ·〉A to denote the duality pairing of two dual
Sobolev spaces defined on A, where A is either an open set or a surface in R3. Also,
denote by E(w) the symmetric part of ∇w (where w is a given field),

E(w) :=
1

2
(∇w +∇wt),

and the superscript t refers to the transpose. Also, by E̊, we denote the operator of
extension by zero outside our considered bounded Lipschitz domain Ω ⊂ R3.

Next, we introduce the Sobolev spaces in which we seek the solution of our trans-
mission problem. Also, we describe the generalized version of the Darcy-Forchheimer-
Brinkman system and we give the results that allow us to introduce the trace and
conormal derivative operators, operators that appear in the boundary conditions of
our problem.
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To this end, let Ω+ := Ω ⊂ R3 be a bounded Lipschitz domain (an open,
connected set, whose boundary is locally the graph of a Lipschitz function) with con-
nected boundary (denoted by ∂Ω) and by Ω− := R3 \Ω, we denote the corresponding
complementary Lipschitz set.

In the latter Ω0 denotes either one of the following sets: Ω+, Ω− or R3.
Recall that D(Ω0) is the space of compactly supported smooth functions C∞0 (Ω0)

and by D′(Ω0) we denote its dual, the space of distributions on Ω0. Note that D(Ω0) is
endowed with the inductive limit topology and D′(Ω0) is endowed with the weak-star
topology.

Definition 2.1. Let p ∈ [1,∞). Then, the Lebesgue space Lp(R3) is the space of all
(equivalence classes of) measurable functions f : R3 → R with the property that:∫

R3

|f(x)|pdx <∞.

We also denote by F the Fourier transform and by F−1 its inverse acting on
functions from L1(R3). We shall consider their generalization to the space of tempered
distributions.

We have the following definition (see, e.g., [8, (2.1)-(2.3)], [1, Ch. 1], [7, Ch. 4]).

Definition 2.2. Let s ∈ R. Introduce the L2-based (Bessel potential) Sobolev spaces
by:

Hs(R3) := {F−1(1 + |ξ|2)−
s
2Fu : u ∈ L2(R3)},

Hs(Ω0) := {u ∈ D′(Ω0) : ∃ U ∈ Hs(R3) such that U |Ω0
= u},

H̃s(Ω0) := D(Ω0)
||·||Hs(R3) ,

hence H̃s(Ω0) is the closure of D(Ω0) in Hs(R3).

One may also introduce the vector-valued spaces component-wise.
We also have the following definition (see also [7, p. 169]).

Definition 2.3. Let s ∈ (0, 1). Then, the boundary Sobolev spaces Hs(∂Ω) is defined
by:

Hs(∂Ω) :=

{
u ∈ L2(∂Ω) :||u||Hs(∂Ω) = ||u||L2(∂Ω)+∫

∂Ω

∫
∂Ω

|u(x)− u(y)|
|x− y|2+2s

dσxdσy <∞
}
.

The following duality

H−s(∂Ω) := (Hs(∂Ω))′,

allows us to introduce the boundary Sobolev space with negative order H−s(∂Ω).
Again, the vector-valued spaces are introduced component-wise. Note that, all these
L2-based Sobolev spaces are Hilbert spaces (see, e.g., [1]).

We also describe here the space M(Ω0) (see [8, p. 23]), i.e., the space in which
we shall seek the unknown pressure field in the exterior Lipschitz domain in our
transmission problem.
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Let us consider the weight function:

ρ(x) := (1 + |x|2)
1
2 , ∀ x ∈ R3.

Then, the weighted Lebesgue space L2(ρ−1; Ω0) is the set of all functions v with
the property that ρ−1u ∈ L2(Ω0).

Moreover, the space M(Ω0) is defined by:

M(Ω0) := {g ∈ L2(ρ−1,Ω0) : ∇g ∈ H−1
curl(Ω0)3},

where, by H−1
curl(Ω0)3 we understand the space:

H−1
curl(Ω0)3 := {h ∈ H−1(Ω0)3 : curl h = ∇× h = 0}.

By denoting M′(Ω0) the dual of M(Ω0), we have the very suggestive chain of
continuous embeddings (cf. [8, (A.24)]):

L2(ρ,Ω0) ⊂M′(Ω0) ⊂ L2(Ω0) ⊂M(Ω0) ⊂ L2(ρ−1,Ω0) ⊂ L2
loc(Ω0).

The generalized version of the Brinkman system of PDEs, is given by (see, e.g.,
[13, Relation (2.14)]):

∆w− Pw−∇p = F in Ω+, div w = 0 in Ω+, (2.1)

where P ∈ L∞(Ω+)3×3 satisfies the condition:

〈Pv, v〉Ω+ ≥ cP ||v||2L2(Ω+)3 , ∀ v ∈ L2(Ω+)3, (2.2)

with some constant cP > 0 is a constant.
The important generalization that we consider in this work is the generalized

version of the Darcy-Forchheimer-Brinkman system:

∆w− Pw− k|w|w− β(w · ∇)w−∇p = F in Ω+, div w = 0 in Ω+, (2.3)

with P ∈ L∞(Ω+)3×3 as above, k, β : Ω+ → R+ are functions such that k, β ∈
L∞(Ω+), i.e., essentially bounded, non-negative functions defined on Ω+.

Remark 2.4. (i) If we let P = αI where α > 0 is a constant in (2.1), we get the
classical Brinkman system.

(ii) If P = 0 in (2.1), we get the well-known Stokes system.
(iii) If P ≡ αI, where α > 0 is a constant and k, β > 0 are also constants in (2.3),

one obtains the classical Darcy-Forchheimer-Brinkman system.
(iv) If P ≡ 0, k = 0 and β > 0 is a constant in (2.3), we recover the Navier-Stokes

system.

Next, we introduce the following result that allows us to define the trace operator
(see, e.g., [18, Theorem 2.3]).

Lemma 2.5. (Gagliardo Trace Lemma) Let Ω+ := Ω ⊂ R3 be a bounded Lipschitz
domain with connected boundary ∂Ω and denote by Ω− := R3 \Ω the complementary
Lipschitz set. Then, there exist linear, continuous trace operators Tr± : H1(Ω±) →
H

1
2 (∂Ω), such that

Tr±u = u|∂Ω, ∀v ∈ C∞(Ω±). (2.4)

Moreover, these operators are surjective, having (non-unique) linear and continuous

right inverse operators Z± : H
1
2 (∂Ω)→ H1(Ω±).
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We have the following result that allows us to consider the conormal derivative
for the generalized Brinkman system (see, e.g., [13, Lemma 2.3]).

Lemma 2.6. Let Ω+ := Ω ⊂ R3, be a bounded Lipschitz domain with connected bound-
ary ∂Ω. Let P ∈ L∞(Ω+)3×3. Consider the following space:

H1(Ω+,BP) :={(w, p,F) ∈ H1(Ω+)3 × L2(Ω+)× H̃−1(Ω+)3 :

BP(w, p) := ∆w − Pw−∇p = F|Ω+

and div w = 0 in Ω+}.

Define the conormal derivative operator for the generalized Brinkman system,

t+
P,ν : H1(Ω+,BP)→ H−

1
2 (∂Ω)3, (2.5)

by the following relation:

〈t+
P,ν(w, p,F),φ〉∂Ω :=2〈E(w),E(Z+φ)〉Ω+

+ 〈Pw, Z+φ〉Ω+

− 〈p,div (Z+φ)〉Ω+

+ 〈F, Z+φ〉Ω+
, ∀φ ∈ H− 1

2 (∂Ω)3,

(2.6)

where Z+ is a right inverse of the trace operator Tr+ : H1(Ω+)3 → H
1
2 (∂Ω)3. The

operator t+
P,ν is linear, bounded and does not depend on the choice of the right inverse

Z+ of the trace operator Tr+.

Moreover, the following Green formula holds:

〈t+
P,ν(w, p,F), T r+ψ〉∂Ω =2〈E(w),E(ψ)〉Ω+ + 〈Pw,ψ〉Ω+

− 〈p, div ψ〉Ω+
+ 〈F,ψ〉Ω+

,
(2.7)

for all (w, p,F) ∈H1(Ω+,BP) and for any ψ ∈ H1(Ω+)3.

Similarly, one may introduce the conormal derivative operator for the classical
Brinkman system which is denoted by t±α,ν where α > 0 is a constant. The statement
of the lemma for the introduction of the above described operator is omitted for the
sake of brevity, but we refer the reader to [8, Lemma 2.5].

Next, we are concerned with the behavior at infinity of a solution of the classical
homogeneous Brinkman system in the unbounded domain Ω−. We have the following
lemma (cf. [2, Lemma A.2]).

Lemma 2.7. Let α > 0 be a constant. Let Ω+ := Ω ⊂ R3 be a bounded Lipschitz domain
with connected boundary and let Ω− := R3 \Ω. If the pair (w, r) ∈ H1(Ω−)3×M(Ω−)
satisfy the Brinkman equations:

∆w− αw−∇r = 0, div w = 0, in Ω−, (2.8)

then

w(x) = O(|x|−2), ∇w(x) = O(|x|−1), r(x) = O(|x|−1), as |x| → ∞. (2.9)

The proof of this lemma can be consulted in [2].
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Finally, we mention a lemma that gives an important characterization of the
following nonlinear operator that appears in the nonlinear transmission problem:

Jk,β,Ω+
(v) := E̊(k|v|v + β(v · ∇)v).

The mapping and other properties of this operator are provided below (see, e.g.,
[3, Lemma 3.1] and [8, Lemma 5.1] in the case P = αI, where α > 0 is a constant and
k, β > 0 are constants).

Lemma 2.8. Let Ω+ := Ω ⊂ R3 be a bounded Lipschitz domain with connected bound-
ary. Let k, β : Ω+ → R+ such that k, β ∈ L∞(Ω+) and let

Jk,β,Ω+
(v) := E̊(k|v|v + β(v · ∇)v). (2.10)

Then, the nonlinear operator Jk,β,Ω+
: H1

div(Ω+)3 → H̃−1(Ω+)3 is continuous, pos-
itively homogeneous of order 2, and bounded, in the sense that there is a constant
c0 = c0(Ω+, k, β) > 0 such that

||Jk,β,Ω+(v)||H̃−1(Ω+)3 ≤ c0||v||
2
H1(Ω+)3 . (2.11)

Moreover, the following Lipschitz-like relation holds:

||Jk,β,Ω+
(v)− Jk,β,Ω+

(w)||H̃−1(Ω+)3

≤ c0(||v||H1(Ω+)3 + ||w||H1(Ω+)3)||v− w||H1(Ω+)3 ,
(2.12)

with c0 = c0(Ω+, k, β) > 0 is the same constant as in relation (2.11).

Proof. We provide here the main ideas that lead to the statement of the lemma (for
additional details, see the proof of Lemma 5.1 in [8]).

First, we have the following continuous embeddings, due to the Sobolev embed-
ding theorem (see, e.g., [7, Theorem 4.1.5, Theorem 4.1.6]):

H1(Ω+)3 ↪→ Lq(Ω+)3, Lq
′
(Ω+)3 ↪→ H̃−1(Ω+)3, (2.13)

where 2 ≤ q ≤ 6, and 1
q + 1

q′ = 1.

Using relations (2.13) and Hölder’s inequality, one may show that |v|w ∈
L2(Ω+)3 and (v · ∇)w ∈ L 3

2 (Ω+)3, for all v,w ∈ H1(Ω+)3.
Let us now consider the operators

b1 : H1(Ω+)3 ×H1(Ω+)3 → H̃−1(Ω+)3,

b2 : H1(Ω+)3 ×H1(Ω+)3 → H̃−1(Ω+)3,
(2.14)

given by

b1(v,w) := E̊(k|v|w),

b2(v,w) := E̊(β(v · ∇)w).
(2.15)

Using the embeddings (2.13) and again Hölder’s inequality, one may show that
there are two constants c∗ = c∗(Ω+, k) > 0 and c∗ = c∗(Ω+, β) > 0 such that the
following relations hold:

||b1(v,w)||H̃−1(Ω+)3 ≤ c∗||v||H1(Ω+)3 ||w||H1(Ω+)3 ,

||b2(v,w)||H̃−1(Ω+)3 ≤ c
∗||v||H1(Ω+)3 ||w||H1(Ω+)3 ,

(2.16)
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which show the continuity of the operators b1 and b2.
Note that, the operator Jk,β,Ω+ can be written as:

Jk,β,Ω+
(v) = b1(v, v) + b2(v, v), (2.17)

and by employing the relations (2.16), we have that Jk,β,Ω+
satisfies (2.11) with

c0 = c∗ + c∗, as asserted.
Also, by using similar arguments to those in the proof of [8, Lemma 5.1] and

again relations (2.16), one shows that the operator Jk,β,Ω+
satisfies the Lipschitz-like

condition (2.12).
The full argument is omitted for the sake of brevity. �

3. The main result

We introduce the following spaces:

H1
div(Ω+)3 := {w ∈ H1(Ω+)3 : div w = 0 in Ω+},

H1
div(Ω−)3 := {w ∈ H1(Ω−)3 : div w = 0 in Ω−},

X := H1
div(Ω+)3 × L2(Ω+)×H1

div(Ω−)3 × L2(Ω−),

Y := H̃−1(Ω+)3 × H̃−1(Ω−)3 ×H 1
2 (∂Ω)3 ×H− 1

2 (∂Ω)3.

Let L ∈ L∞(∂Ω)3×3 be a symmetric matrix-valued function, which satisfies the
following positivity condition:

〈Lv, v〉∂Ω ≥ 0, ∀ v ∈ L2(∂Ω)3. (3.1)

Before we state the main result of this paper, we invoke an auxiliary property
which refers to the well-posedness result of the Poisson problem of transmission-type
for the generalized Brinkman system and classical Brinkman system in complemen-
tary Lipschitz domains in R3 and in the space X. Such a result is useful to obtain
the existence of a solution (and its uniqueness) in the space X for the nonlinear
transmission problem concerning the classical Brinkman and the generalized Darcy-
Forchheimer-Brinkman systems in complementary Lipschitz domains in R3.

The result is as follows (cf. [2, Theorem 3.3]).

Theorem 3.1. Let α > 0 be a given constant. Let Ω+ := Ω ⊂ R3 be a bounded Lipschitz
domain with connected boundary and let Ω− := R3 \ Ω the complementary Lipschitz
set. Let P ∈ L∞(Ω+)3×3 be such that condition (2.2) holds. Let L ∈ L∞(∂Ω)3×3

be a symmetric matrix-valued function that satisfied condition (3.1). Then, for given
data (F+,F−,G0,H0) ∈ Y, the Poisson problem of transmission-type for the classical
Brinkman and the generalized Brinkman systems:

∆w+ − Pw+ −∇p+ = F|Ω+
in Ω+,

∆w− − αw− −∇p− = F|Ω− in Ω−,

T r+w+ − Tr−w− = G0 on ∂Ω,

t+
P,ν(w+, p+,F+)− t−α,ν(w−, p−,F−) +LTr+w+ = H0 on ∂Ω,

(3.2)
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has a unique solution (w+, p+,w−, p−) ∈ X. In addition, the ’solution’ operator:

T : Y→ X, (3.3)

that maps the given data (F+,F−,G0,H0) ∈ Y to the solution (w+, p+,w−, p−) ∈ X
of the transmission problem (3.2), is well-defined, linear and continuous.

Hence, there is a constant C ≡ C(Ω+,Ω−,P,L) > 0 such that:

||(w+, p+,w−, p−)||X ≤ C||(F+,F−,G0,H0)||Y. (3.4)

The proof of this result can be consulted in [2].

The main result of this paper which is the well-posedness result for the transmis-
sion problem for the generalized Darcy-Forchheimer-Brinkman system and classical
Brinkman system in complementary Lipschitz domains in R3. We aim to determine
the unknown fields (w+, p+,w−, p−) ∈ X such that:

∆w+ − Pw+ − k|w+|w+ − β(w+ · ∇)w+

−∇p+ = F|Ω+ in Ω+,

∆w− − αw− −∇p− = F|Ω− in Ω−,

T r+w+ − Tr−w− = G0 on ∂Ω,

t+
P,ν(w+, p+,F+ + E̊(k|w+|w+ + β(w+ · ∇)w+))

− t−α,ν(w−, p−,F−) +LTr+w+ = H0 on ∂Ω,

(3.5)

where α > 0 is a given constant.

The main result of the paper reads as follows (see e.g., [3, Theorem 3.2], and [8,
Theorem 5.2] in the case P = αI, where α, k, β > 0 are constants).

Theorem 3.2. Let α > 0 be a given constant. Let Ω+ := Ω ⊂ R3 be a bounded Lipschitz
domain with connected boundary and let Ω− := R3 \ Ω the complementary Lipschitz
set. Let P ∈ L∞(Ω+)3×3 be such that condition (2.2) holds. Let L ∈ L∞(∂Ω)3×3 be a
symmetric matrix-valued function that satisfies condition (3.1). Then, there exist two
constants ξ = ξ(Ω+,Ω−,P, k, β,L) > 0 and λ = λ(Ω+,Ω−,P, k, β,L) > 0, such that
for all given data (F+,F−,G0,H0) ∈ Y that satisfy the condition

||(F+,F−,G0,H0)||Y ≤ ξ, (3.6)

the transmission problem (3.5) has a unique solution (w+, p+,w−, p−) ∈ X such that

||w+||H1
div(Ω+)3 ≤ λ. (3.7)

In addition, the solution depends continuously on the given data, which means that
there exists a given constant C0 = C0(Ω+,Ω−,P,L) > 0 such that:

||(w+, p+,w−, p−)||X ≤ C0||(F+,F−,G0,H0)||Y. (3.8)

Proof. We provide here only the main ideas of the proof (for additional details, see
[8, Theorem 5.2]).

We start with the existence part of the proof.
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Let us write the problem (3.5) in the equivalent form:

∆w+ − Pw+ −∇p+ = F|Ω+
+ Jk,β,Ω+

(w+) in Ω+,

∆w− − αw− −∇p− = F|Ω− in Ω−,

T r+w+ − Tr−w− = G0 on ∂Ω,

t+
P,ν(w+, p+,F+ + Jk,β,Ω+

(w+))

− t−α,ν(w−, p−,F−) +LTr+w+ = H0 on ∂Ω,

(3.9)

where Jk,β,Ω+
(w+) ∈ H̃−1(Ω+)3 is given by Lemma 2.8.

Now, we fix w+ ∈ H1
div(Ω+)3 and consider the following linear transmission

problem for the generalized and classical Brinkman systems with the unknowns
(w0

+, p
0
+,w

0
−, p

0
−):

∆w0
+ − Pw0

+ −∇p0
+ = F|Ω+ + Jk,β,Ω+(w+) in Ω+,

∆w0
− − αw0

− −∇p0
− = F|Ω− in Ω−,

T r+w0
+ − Tr−w0

− = G0 on ∂Ω,

t+
P,ν(w0

+, p
0
+,F+ + Jk,β,Ω+(w+))

− t−α,ν(w0
−, p

0
−,F−) +LTr+w0

+ = H0 on ∂Ω.

(3.10)

By applying Theorem 3.1 we deduce that the problem (3.10) has a unique solu-
tion (w0

+, p
0
+,w

0
−, p

0
−) in X given by

(w0
+, p

0
+,w

0
−, p

0
−) = (W+(w+),P+(w+),W−(w+),P−(w+))

:= T (F+|Ω+
+ Jk,β,Ω+

(w+)|Ω+
,F−|Ω− ,G0,H0) ∈ X,

(3.11)

where T is the solution operator introduced in Theorem 3.1.
Note that, for fixed given data F±,G0,H0, the nonlinear operators

W±,P± : H1
div(Ω+)3 → X, (3.12)

are bounded, in the sense that there exists a constant d ≡ d(Ω+,Ω−,P,L) > 0, a
constant, such that

||(W+(w+),P+(w+),W−(w+),P−(w+))||X
≤ d||(F+|Ω+

+ Jk,β,Ω+
(u+)|Ω+

,F−|Ω− ,G0,H0)||Y
≤ d||(F+|Ω+

,F−|Ω− ,G0,H0)||Y + dc0||w+||2H1(Ω+)3 ,

(3.13)

for all w+ ∈ H1
div(Ω+)3. Indeed, such an inequality is provided by Lemma 2.8 and

c0 > 0 is the constant involved in Lemma 2.8.
Next, we rewrite the problem (3.10) in terms of the operators W±,P±, as

∆W+(w+)− PW+(w+)−∇P+(w+) =

F|Ω+
+ Jk,β,Ω+

(w+) in Ω+,

∆W−(w+)− αW−(w+)−∇P+(w+) = F|Ω− in Ω−,

T r+W+(w+)− Tr−W−(w+) = G0 on ∂Ω,

t+
P,ν(W+(w+),P+(w+),F+ + Jk,β,Ω+

(w+))

− t−α,ν(W−(w+),P−(w+),F−) +LTr+W+(w+) = H0 on ∂Ω.

(3.14)
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The next step is to show that the nonlinear operator W+ has a unique fixed
point. If we are able to show this property, then the fixed point w+ ∈ H1

div(Ω+)3,
together with the fields w− = W−(w+) and with p± = P±(w+) will give a solution
of our nonlinear problem (3.9).

Now, we use similar ideas to those in the proof of Theorem 5.2 in [8], to show
that W+ maps a closed ball Bλ to the same closed ball in H1

div(Ω+)3 and that W+ is
a contraction on that ball.

We make the following choice of constants

ξ :=
3

16c0d2
> 0, λ :=

1

4c0d
> 0, (3.15)

and we introduce the closed ball

Bλ := {v+ ∈ H1
div(Ω+)3 : ||v+||H1(Ω+)3 ≤ λ}. (3.16)

We impose the following condition on the given data:

||(F+|Ω+ ,F−|Ω− ,G0,H0)||Y ≤ ξ. (3.17)

Then, by using relations (3.13), (3.15), (3.16), (3.17), one may show that

||(W+(w+),P+(w+),W−(w+),P−(w+))||X ≤ λ, (3.18)

for all w+ ∈ Bλ and hence ||W+(w+)||H1(Ω+)3 ≤ λ for all w+ ∈ Bλ, that is, W+ maps
the ball Bλ to itself.

In order to show that W+ is Lipschitz continuous on Bλ, we fix the given data
(F+|Ω+ ,F−|Ω− ,G0,H0) and we consider two arbitrary functions w+, v+ ∈ Bλ. Then,
we get

||W+(w+)−W+(v+)||H1(Ω+)3

≤ d||Jk,β,Ω+
(w+)− Jk,β,Ω+

(v+)||H̃−1(Ω+)3

≤ dc0(||w+||H1(Ω+)3 + ||v+||H1(Ω+)3)||w+ − v+||H1(Ω+)3

≤ 2dc0||w+ − v+||H1(Ω+)3 =
1

2
||w+ − v+||H1(Ω+)3 ,

(3.19)

for all w+, v+ ∈ Bλ, where we have take into account the continuity of the operator
T and inequality (2.12) and the constants d and c0 are the same constants as in
relation (3.13). Based on the above considerations, we deduce that W+ : Bλ → Bλ is
a 1

2 -contraction.
By applying Banach’s fixed point theorem we deduce that there is a unique

fixed point w+ ∈ Bλ of the operator W+, which, together with the fields given by
w− =W−(w+) and p± = P±(w+), determines a solution of the transmission problem
(3.9).

Now, we use the fact that the field w+ ∈ Bλ in order to deduce that

dc0||w+||H1(Ω+)3 ≤
1

4
,

and by using inequality (3.13), we obtain

||w+||H1(Ω+)3 + ||p+||L2(Ω+) + ||w−||H1(Ω−)3 + ||p−||M(Ω−)

≤ d||(F+|Ω+
,F−|Ω− ,G0,H0)||Y +

1

4
||w+||H1(Ω+)3 ,

(3.20)
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and we obtain that

||w+||H1(Ω+)3 ≤
4

3
d||(F+|Ω+ ,F−|Ω− ,G0,H0)||Y. (3.21)

By substituting relation (3.21) into (3.20) we obtain the desired estimate (3.8) where
C0 = 4

3d.
For other details, we refer to the proof of Theorem 5.2 in [8].
As for the uniqueness part, the ideas are as follows.
Assume that we have two solutions of the transmission problem (3.5), say

(w1
+, p

1
+,w

1
−, p

1
−) and (w2

+, p
2
+,w

2
−, p

2
−). Note that these solutions belong to the space

X and both satisfy inequality (3.7).
We obtain the linear, homogeneous transmission problem for the classical

and generalized Brinkman systems in Lipschitz domains in R3 with the unknowns
(W+(w2

+)−w2
+,P+(w2

+)−p2
+,W−(w2

+)−w2
−,P−(w2

+)−p2
−) and Theorem 3.1 shows

that this problem has only the trivial solution in X. It follows thatW+(w2
+)−w2

+ = 0,
that is, w2

+ is a fixed point of the nonlinear operator W+. Recall that W+ : Bλ → Bλ
is a 1

2 -contractions, and hence, there is a unique fixed point w1
+ in Bλ. Consequently,

w2
+ = w1

+, w2
− = w1

− and p2
± = p1

±.
This concludes the uniqueness argument.
This concludes the proof. �

Remark 3.3. (i) If k = 0 and β : Ω+ → R+ such that β ∈ L∞(Ω+), then we get the
well-posedness result for the nonlinear transmission problem for the generalized
Navier-Stokes and Brinkman systems in complementary Lipschitz domains in
R3.

(ii) If k : Ω+ → R+ such that k ∈ L∞(Ω+) and β = 0, then we get the well-posedness
result for a semilinear transmission problem for a generalized semilinear Darcy-
Forchheimer-Brinkman system and the Brinkman system in complementary Lip-
schitz domains in R3.

All these problems are important for their practical applications (see, e.g., [21], [5]).
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