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1. Introduction

Let X be a Banach space over F (=R or C) with norm ‖ ·‖, and let L(X) denote
the set of all bounded linear operators on X. For each 0 < T0 ≤ ∞ and each injection
C ∈ L(X), a family C(·)(= {C(t) | 0 ≤ t < T0}) in L(X) is called a local C-cosine
function on X if it is strongly continuous, C(0) = C on X and satisfies

(1.1) 2C(t)C(s) = C(t+ s)C + C(|t− s|)C on X for all 0 ≤ t, s, t+ s < T0

(see [7], [10], [14], [20], [22], [24], [26]). In this case, the generator of C(·) is a linear
operator A in X defined by

D(A) = {x ∈ X | lim
h→0+

2(C(h)x− Cx)/h2 ∈ R(C)}

and Ax = C−1 lim
h→0+

2(C(h)x− Cx)/h2 for x ∈ D(A). Moreover, we say that C(·) is

(1.2) locally Lipschitz continuous, if for each 0 < t0 < T0 there exists a Kt0 > 0 such
that ‖C(t+ h)− C(t)‖ ≤ Kt0h for all 0 ≤ t, h, t+ h ≤ t0;

(1.3) exponentially bounded, if T0 =∞ and there exist K,ω ≥ 0 such that
‖C(t)‖ ≤ Keωt for all t ≥ 0;

(1.4) exponentially Lipschitz continuous, if T0 = ∞ and there exist K,ω ≥ 0 such
that ‖C(t+ h)− C(t)‖ ≤ Kheω(t+h) for all t, h ≥ 0.
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In general, a local C-cosine function is also called a C-cosine function if T0 =∞ (see
[17], [6], [4], [13]), a C-cosine function may not be exponentially bounded (see [13]),
and the generator of a local C-cosine function may not be densely defined (see [17], [6]).
Moreover, a local C-cosine function is not necessarily extendable to the half line [0,∞)
(see [22]) except for C = I (identity operator on X). Perturbations of local C-cosine
functions with or without the exponential boundedness have been extensively studied
by many authors appearing in [2,6,8-17,19,23,25]. Some interesting applications of this
topic are also illustrated there. In particular, Li has obtained some right-multiplicative
perturbation theorems for local C-cosine functions in which the operator C may not
commute with the bounded perturbation operator B on X, which satisfies an estima-
tion that is similar to the condition (2.6) below. In this case, C−1A(I+B)C generates
a local C-cosine function on X when CA(I +B) ⊂ A(I +B)C (see [18]). Along this
line, Li and Liu also establish some left-multiplicative perturbation theorems for lo-
cal C-cosine functions on X with densely defined generators. In this case, (I + B)A
generates a local C-cosine function on X when C−1(I +B)AC = (I +B)A (see [20]).
Just as continuous work of this topic, Kuo shows that A + B generates a local C-
cosine function on X when either B is a bounded linear operator from [D(A)] into
R(C) such that R(C−1B) ⊂ D(A) (see [14]) or B is a bounded linear operator on X
which commutes with C(·) on X (see [15] or Theorem 2.13 below). The purpose of
this paper is to establish some left and right multiplicative perturbation theorems for
local C-cosine functions just as results in [18,20] when the generator A of a perturbed
local C-cosine function C(·) may not be densely defined, the perturbation operator

B is only a bounded linear operator from D(A) into R(C), and the assumption of
C−1(I + B)AC = (I + B)A is not necessary, which together with Theorem 2.13 can
be applied to obtain some new Miyadera type additive perturbation theorems just as
results in [15] for local C-cosine functions (see Theorems 2.14 and 2.16 below). An
illustrative example concerning these results is also presented in the final part of this
paper.

2. Perturbation theorems

In this section, we first note some basic properties of a local C-cosine function and
known results about connections between the generator of a local C-cosine function
and strong solutions of the following abstract Cauchy problem:

ACP(A, f, x, y)

{
u′′(t) = Au(t) + f(t) for t ∈ (0, T0)

u(0) = x, u′(0) = y,

where x, y ∈ X and f is an X-valued function defined on a subset of [0, T0).

Proposition 2.1. (see [4], [11], [13], [22]). Let A be the generator of a local C-cosine
function C(·) on X. Then

(2.1) A is closed and C−1AC = A;
(2.2) C(t)x ∈ D(A) and C(t)Ax = AC(t)x for all x ∈ D(A) and 0 ≤ t < T0;
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(2.3)

∫ t

0

∫ s

0

C(r)xdrds ∈ D(A) and A

∫ t

0

∫ s

0

C(r)xdrds = C(t)x− Cx for all

x ∈ D(A) and 0 ≤ t < T0;

(2.4) D(A) = {x ∈ X|C(t)x − Cx =

∫ t

0

∫ s

0

C(r)yxdrds for all 0 ≤ t < T0 and for

some yx ∈ X} and Ax = yx for each x ∈ D(A);

(2.5) R(C(t)) ⊂ D(A) for 0 ≤ t < T0.

Definition 2.2. Let A : D(A) ⊂ X → X be a closed linear operator in a Banach space
X with domain D(A) and range R(A). A function u : [0, T0)→ X is called a (strong)
solution of ACP(A, f, x, y), if u ∈ C2((0, T0), X) ∩ C1([0, T0), X) ∩ C((0, T0), [D(A)])
and satisfies ACP(A, f, x, y). Here [D(A)] denotes the Banach space D(A) with norm
| · | defined by |x| = ‖x‖+ ‖Ax‖ for x ∈ D(A).

Theorem 2.3. (see [11], [13]) A generates a local C-cosine function C(·) on X if and
only if C−1AC = A and for each x ∈ X, ACP(A,Cx, 0, 0) has a unique (strong)
solution u(·, x) in C2([0, T0), X). In this case, we have

u(t, x) = j1 ∗ C(t)x

(
=

∫ t

0

j1(t− s)C(s)xds

)
for all x ∈ X and 0 ≤ t < T0. Here jk(t) = tk/k! for all t ∈ R and k ∈ N ∪ {0}.

Proposition 2.4. (see [11], [13]) Let A be the generator of a local C-cosine function C(·)
on X, x, y ∈ X and f ∈ L1

loc([0, T0), X) ∩ C((0, T0), X). Then ACP(A,Cf,Cx,Cy)
has a (strong) solution u in C2([0, T0), X) if and only if

v(·) = C(·)x+ S(·)y + S ∗ f(·) ∈ C2([0, T0), X).

In this case, u = v on [0, T0). Here S(·) = j0 ∗C(·) and S ∗ f(·) =

∫ ·
0

S(· − s)f(s)ds.

We next establish a new right-multiplicative perturbation theorem for locally
Lipschitz continuous and exponentially Lipschitz continuous local C-cosine functions
in which B is only a bounded linear operator from D(A) into R(C).

Theorem 2.5. Let C(·) be a locally Lipschitz continuous local C-cosine function on X

with generator A. Assume that B is a bounded linear operator from D(A) into R(C)

such that CB = BC on D(A), and for each 0 < t0 < T0 there exists an Mt0 > 0 such
that (S ∗ C−1Bf)(t) ∈ D(A) and

‖A(S ∗ C−1B)[f(t)− f(s)]‖ ≤Mt0

∫ t

s

‖f(r)‖dr (2.6)

for all f ∈ C([0, t0], D(A)) and 0 ≤ s < t ≤ t0. Then A(I + C−1BC) generates a
locally Lipschitz continuous local C-cosine function T (·) on X satisfying

T (·)x = C(·)x+A(S ∗ C−1BT )(·)x on [0, T0) (2.7)

for all x ∈ X.
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Proof. Let x ∈ X and 0 < t0 < T0 be fixed.
We define U : C([0, t0], D(A))→ C([0, t0], D(A)) by

U(f)(·) = C(·)x+A(S ∗ C−1Bf)(·)

on [0, t0] for all f ∈ C([0, t0], D(A)). Then U is well-defined. By induction, we obtain
from (2.6) that

‖Unf(t)− Ung(t)‖ = ‖U(Un−1f)(t)− U(Un−1g)(t)‖
= ‖AS ∗ C−1B(Un−1f − Un−1g)(t)‖

≤Mn
t0

∫ t

0

jn−1(t− s)‖f(s)− g(s)‖ds

≤Mn
t0jn(t0)‖f − g‖

for all f, g ∈ C([0, t0], D(A)), 0 ≤ t ≤ t0 and n ∈ N. Here

‖f − g‖ = max
0≤s≤t0

‖f(s)− g(s)‖.

It follows from the contraction mapping theorem that there exists a unique function
wx,t0 in C([0, t0], D(A)) such that

wx,t0(·) = C(·)x+AS ∗ C−1Bwx,t0(·)

on [0, t0]. In this case, we set wx(t) = wx,t0(t) for all 0 ≤ t ≤ t0 < T0, then wx(·) is a

unique function in C([0, T0), D(A)) such that

wx(·) = C(·)x+AS ∗ C−1Bwx(·)

on [0, T0). Since

j1 ∗ wx(·) = j1 ∗ C(·)x+Aj1 ∗ S ∗ C−1Bwx(·)
= j0 ∗ S(·)x+ S ∗ C−1Bwx(·)−Bj1 ∗ wx(·)

on [0, T0), we have

(I +B)j1 ∗ wx(t) = j0 ∗ S(t)x+ S ∗ C−1Bwx(t) ∈ D(A)

for all 0 ≤ t < T0. Clearly, j1 ∗ wx is the unique function ux in C2([0, T0), X) such
that

ux(·) = j0 ∗ S(·)x+AS ∗ C−1Bux(·)
on [0, T0). Since j0∗S(·)x+S∗C−1Bwx(·) ∈ C2([0, T0), X), we obtain from Proposition
2.4 that

j0 ∗ S(·)x+ S ∗ C−1Bwx(·) = (I +B)j1 ∗ wx(·)
is the unique solution of ACP(A,Cx+Bwx, 0, 0) in C2([0, T0), X). This implies that

A(I +B)j1 ∗ wx + Cx+Bwx = (I +B)wx

on [0, T0), and so A(I +B)j1 ∗ wx + Cx = wx on [0, T0). Hence, j1 ∗ wx is a solution
of ACP(A(I +B), Cx, 0, 0) in C2([0, T0), X). To prove the uniqueness of solutions of



Multiplicative perturbations of local C-cosine functions 579

ACP(A(I +B), Cx, 0, 0).
Suppose that u ∈ C([0, T0), X) and satisfies A(I +B)j1 ∗u+Cx = u on [0, T0). Then

j1 ∗ (S ∗ u− S ∗ j0Cx) =j1 ∗ S ∗A(I +B)j1 ∗ u
=Aj1 ∗ S ∗ (I +B)j1 ∗ u
=S ∗ (I +B)j1 ∗ u− Cj1 ∗ (I +B)j1 ∗ u
=S ∗ j1 ∗ u+ S ∗Bj1 ∗ u− Cj1 ∗ (I +B)j1 ∗ u

on [0, T0), and so −S ∗ j2(·)Cx = S ∗ Bj1 ∗ u(·) − Cj1 ∗ (I + B)j1 ∗ u(·) on [0, T0).
Hence,

−S ∗ j0(·)x =(S ∗ C−1Bj1 ∗ u)′′(·)− (I +B)j1 ∗ u(·)
=AS ∗ C−1Bj1 ∗ u(·) +Bj1 ∗ u(·)− (I +B)j1 ∗ u(·)
=AS ∗ C−1Bj1 ∗ u(·)− j1 ∗ u(·)

on [0, T0), which implies that j1 ∗ u(·) = S ∗ j0(·)x + AS ∗ C−1Bj1 ∗ u(·) on [0, T0).
Consequently, j1 ∗ u = j1 ∗ wx on [0, T0) or equivalently, u = wx on [0, T0). Clearly,
A(I + B) is closed and A(I + B)C = CA(I + B) on D(A(I + B)). It follows from
Proposition 2.4 that C−1A(I + B)C generates a local C-cosine function T (·) on X
satisfying (2.7) for all x ∈ X. Just as in the proof of [27, Theorem 2.5], we have
C−1A(I +B)C = A(I +C−1BC). By (2.6), T (·) is also locally Lipschitz continuous.

�

Since the condition (2.6) in the proof of Theorem 2.5 is only used to show that
T (·) is locally Lipschitz continuous. By slightly modifying the proof of Theorem 2.5,
we can obtain the next right-multiplicative perturbation theorem for local C-cosine
functions without the local Lipschitz continuity.

Theorem 2.6. Let C(·) be a local C-cosine function on X with generator A. Assume

that B is a bounded linear operator from D(A) into R(C) such that CB = BC on

D(A), and for each 0 < t0 < T0 there exists an Mt0 > 0 such that (S ∗ C−1Bf)(t) ∈
D(A) and

‖A(S ∗ C−1Bf)(t)‖ ≤Mt0

∫ t

0

‖f(s)‖ds (2.8)

for all f ∈ C([0, t0], D(A)) and 0 ≤ t ≤ t0. Then A(I + C−1BC) generates a local
C-cosine function T (·) on X satisfying (2.7)

Corollary 2.7. Let C(·) be a locally Lipschitz continuous local C-cosine function on

X with generator A. Assume that B is a bounded linear operator from D(A) into

R(C) such that CB = BC on D(A) and C−1Bx ∈ D(A) for all x ∈ D(A). Then
A(I+C−1BC) generates a locally Lipschitz continuous local C-cosine function T (·) on
X satisfying (2.7) for all x ∈ X. Moreover, T (·) is exponentially Lipschitz continuous
if C(·) is.

Proof. Clearly, it suffices to show that for each 0 < t0 < T0 there exists an Mt0 > 0

such that (2.6) holds for all f ∈ C([0, t0], D(A)) and 0 ≤ s < t ≤ t0. Suppose that
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C1(t) denotes the restriction of C(t) to D(A), C
′

1(t) the strong derivative of C1(t)

on D(A) for all 0 ≤ t < T0, and D2 the second order derivative of a function. Then

C1(t)x = Cx+Aj0 ∗ S(t)x and C
′

1(t)x = AS(t)x for all x ∈ D(A) and 0 ≤ t < T0. In

particular, AS(·) is a strongly continuous family of bounded linear operators on D(A),
which is also exponentially bounded if C(·) is exponentially Lipschitz continuous. Let
0 < t0 < T0 be given, then S ∗C−1Bf(·) is twice continuously differentiable on [0, t0],

D2(S ∗ C−1Bf)(·) = AS ∗ C−1Bf(·) +Bf(·) = C
′

1 ∗ C−1Bf(·) +Bf(·)
on [0, t0] and

‖A(S ∗ C−1B[f(t)− f(s)])‖ =‖C
′

1 ∗ C−1B[f(t)− f(s)]‖

≤ sup
0≤r≤t0

‖AS(r)‖‖C−1B‖
∫ t

s

‖f(r)‖dr

for all f ∈ C([0, t0], D(A)) and 0 ≤ s < t ≤ t0. It follows from Theorem 2.3 that
A(I + C−1BC) generates a locally Lipschitz continuous local C-cosine function T (·)
on X satisfying (2.7) for all x ∈ X. Combining the local Lipschitz continuity of
C−1BT (·) with the exponential boundedness of AS(·), we get that AS ∗ C−1BT )(·)
is exponentially Lipschitz continuous if C(·) is. Consequently, T (·) is exponentially
Lipschitz continuous if C(·) is. �

Corollary 2.8. Let C(·) be a local C-cosine function on X with generator A. Assume

that B is a bounded linear operator from D(A) into R(C) such that CB = BC on

D(A) and C−1Bx ∈ D(A) for all x ∈ D(A). Then A(I + C−1BC) generates a local
C-cosine function T (·) on X satisfying

T (·)x = C(·)x+ S ∗AC−1BT (·)x on [0, T0) (2.9)

for all x ∈ X. Moreover, T (·) is also exponentially bounded (resp., norm continuous)
if C(·) is.

Proof. By the assumption of C−1Bx ∈ D(A) for all x ∈ D(A), we can apply the
following estimation to replace the condition (2.8):

‖(S ∗AC−1Bf(t))‖ ≤ sup
0≤r≤t0

‖S(r)‖‖AC−1B‖
∫ t

0

‖f(r)‖dr

for all f ∈ C([0, t0], D(A)) and 0 ≤ t ≤ t0. Clearly, S(·)AC−1B is also exponentially
bounded (resp., norm continuous) if C(·) is. By (2.9) and the boundedness of AC−1B,
we have

T (·)x = C(·)x+ SAC−1B ∗ T (·)x on [0, T0) (2.10)

for all x ∈ X, which together with Gronwall’s inequality implies that T (·) is expo-
nentially bounded (resp., norm continuous) if C(·) is. �

When ρ((I + C−1BC)A) (resolvent set of (I + C−1BC)A) is nonempty, we
can apply Theorem 2.5 to obtain the next left-multiplicative perturbation theorem
concerning locally Lipschitz continuous local C-cosine functions on X in which the
generator A of a perturbed local C-cosine function may not be densely defined, B is
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only a bounded linear operator from D(A) into R(C), and C−1(I+B)AC and (I+B)A
both may not be equal.

Theorem 2.9. Under the assumptions of Theorem 2.5. Assume that ρ((I+C−1BC)A)
is nonempty. Then (I + C−1BC)A generates a locally Lipschitz continuous local C-
cosine function U(·) on X satisfying

U(·)x
=Cx+ [λ− (I + C−1BC)A](I + C−1BC)j1 ∗ T (·)A[λ− (I + C−1BC)A]−1x

(2.11)

on [0, T0) for all x ∈ X. Here λ ∈ ρ((I + C−1BC)A) is fixed and T (·) is given as in
(2.7).

Proof. Just as in the proof of [27, Theorem 2.9], we have

(I + C−1BC)ACx = C(I + C−1BC)Ax

for all x ∈ D((I + C−1BC)A). We set P = I + C−1BC and

ux(·) = Cx+ (λ− PA)Pj1 ∗ T (·)A(λ− PA)−1x

on [0, T0) for all x ∈ X, then ux ∈ C([0, T0), X) and

A(λ− PA)−1ux(·)
=A(λ− PA)−1Cx+A(Pj1 ∗ T (·))A(λ− PA)−1x

=A(λ− PA)−1Cx+ T (·)A(λ− PA)−1x− CA(λ− PA)−1x

=A(λ− PA)−1Cx+ T (·)A(λ− PA)−1x−A(λ− PA)−1Cx

=T (·)A(λ− PA)−1x

on [0, T0), and so

PA(λ− PA)−1j1 ∗ ux(·) = Pj1 ∗ T (·)A(λ− PA)−1x

on [0, T0). Hence,

−j1 ∗ ux(·) + λ(λ− PA)−1j1 ∗ ux(·) =PA(λ− PA)−1j1 ∗ ux(·)
=Pj1 ∗ T (·)A(λ− PA)−1x

=(λ− PA)−1ux(·)− (λ− PA)−1Cx

on [0, T0), which implies that j1 ∗ ux(t) ∈ D(PA) for all 0 ≤ t < T0. Consequently,

PA(λ− PA)−1j1 ∗ ux(t) ∈ D(PA)

for all 0 ≤ t < T0 and PAj1 ∗ ux = ux − Cx on [0, T0). This shows that j1 ∗ ux is
a solution of ACP(PA,Cx, 0, 0) in C2([0, T0), X). In order to show the uniqueness.
Suppose that v ∈ C([0, T0), X) and v = PAj1 ∗v on [0, T0). We set u = A(λ−PA)−1v
on [0, T0), then

Pj1 ∗ u =PA(λ− PA)−1j1 ∗ v
=(λ− PA)−1PAj1 ∗ v
=(λ− PA)−1v
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on [0, T0), and so APj1 ∗ u = A(λ− PA)−1v = u on [0, T0). Hence, u = 0 on [0, T0),
which implies that (λ − PA)−1v = 0 on [0, T0) or equivalently, v = 0 on [0, T0). We
conclude from Theorem 2.3 that (I + C−1BC)A generates a local C-cosine function
U(·) on X satisfying (2.11) for all x ∈ X. Clearly, for each y ∈ X,

(PA)Pj1 ∗ T (·)y = P (AP )j1 ∗ T (·)y = PT (·)y − PCy
on [0, T0). It follows from the right-hand side of (2.11) that U(·) is also locally Lipschitz
continuous. �

By slightly modifying the proof of Theorem 2.9, we can obtain the next left-
multiplicative perturbation theorem for local C-cosine functions in which the gene-
rator A of a perturbed local C-cosine function may not be densely defined, B is only
a bounded linear operator from D(A) into R(C), and C−1(I + B)AC and (I + B)A
both may not be equal.

Theorem 2.10. Under the assumptions of Theorem 2.6. Assume that ρ((I+C−1BC)A)
is nonempty. Then (I + C−1BC)A generates a local C-cosine function U(·) on X
satisfying (2.11) for all x ∈ X. Moreover, U(·) is exponentially bounded (resp., norm
continuous, locally Lipschitz continuous, or exponentially Lipschitz continuous) if T (·)
is. Here T (·) is given as in (2.7).

Corollary 2.11. Under the assumptions of Corollary 2.7.
Assume that ρ((I+C−1BC)A) is nonempty. Then (I+C−1BC)A generates a locally
Lipschitz continuous local C-cosine function U(·) on X satisfying (2.11) for all x ∈ X.
Moreover, U(·) is exponentially Lipschitz continuous if C(·) is.

Corollary 2.12. Under the assumptions of Corollary 2.8.
Assume that ρ((I + C−1BC)A) is nonempty. Then (I + C−1BC)A generates a local
C-cosine function U(·) on X satisfying (2.11) for all x ∈ X. Moreover, U(·) is also
exponentially bounded (resp., norm continuous) if C(·) is.

Theorem 2.13. (see [15]) Let A be the generator of a local C-cosine function C(·) on
X. Assume that B is a bounded linear operator on X which commutes with C(·) on
X. Then A+B is the generator of a local C-cosine function TB(·) on X satisfying

TB(t)x =

∞∑
n=0

∫ t

0

jn−1(s)jn(t− s)C(|t− 2s|)Bnxds

for all x ∈ X and 0 ≤ t < T0.

Combining Theorem 2.10 with Theorem 2.13, the next new result concerning
the additive perturbations of a local C-cosine function on X is also attained in which
the generator of a perturbed local C-cosine function may not be densely defined.

Theorem 2.14. Let C(·) be a local C-cosine function on X with generator A, and let B
be a bounded linear operator from [D(A)] into R(C2) such that CB = BC on D(A).
Assume that ρC(A) and ρ(A+B) both are nonempty, and for each 0 < t0 < T0 there
exists an Mt0 > 0 such that

|S ∗ C−2Bf(t)| ≤Mt0

∫ t

0

|f(s)|ds (2.12)
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for all f ∈ C([0, t0], [D(A)]) and 0 ≤ t ≤ t0. Then A + B generates a local C-cosine
function V (·) on X.

Proof. Let λ ∈ ρC(A) be fixed. We set B̃ = C−1B(A− λ)
−1
C and C(−t) = C(t)

for all 0 ≤ t < T0. Then B̃ is a bounded linear operator from X into R(C) such

that CB̃ = B̃C, A − λ is the generator of the local C-cosine function T−λ(·) on X
satisfying

j0 ∗ T−λ(t)x =

∞∑
n=0

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)(−λ)nxds

for all x ∈ X and 0 ≤ t < T0, and (A− λ)−1C2 = C(A− λ)−1C. Here∫ t

0

j−1(s)j0(t− s)S(t− 2s)xds = S(t)x.

Since the norm |·|A−λ on D(A) defined by |x|A−λ = ‖x‖+‖(A−λ)x‖ for all x ∈ D(A),
is equivalent to | · |, we may assume that (2.12) holds under | · |A−λ. Since

(I + C−1B̃C)(A− λ) = A− λ+B

and ρ(A + B) is nonempty we have ρ((I + C−1B̃C)(A − λ)) is also nonempty. It is
not difficult to see that∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xds

=

n∑
k=0

(n− 1 + k)!

(n− 1)!k!
(−1)

k 1

2n+k
[jn−k(jn−1+k ∗ S)](t)x

+
n−1∑
k=0

(n+ k)!

n!k!
(−1)

k 1

2n+k+1
[jn−1−k(jn+k ∗ S)](t)x (2.13)

for each n ∈ N, x ∈ X and 0 ≤ t < T0. Let 0 < t0 < T0 and f ∈ C([0, t0], X) be fixed.
Then

[jn−k(jn−1+k ∗ S)] ∗ C−1B̃f(t)

=

∫ t

0

jn−k(t− s)(jn−1+k ∗ S)(t− s)C−1B̃f(s)ds

=
1

(n− k)!

n−k∑
m=0

( n−km ) (−1)
m
tn−k−m

∫ t

0

jn−1+k ∗ S(t− s)C−1B̃smf(s)ds

=

n−k∑
m=0

(−1)
m
jn−k−m(t)jn−1+k ∗ S ∗ C−1B̃jmf)(t)

=

n−k∑
m=0

(−1)
m
jn−k−m(t)S ∗ C−1B̃[jn−1+k ∗ (jmf)](t) (2.14)
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and

[jn−1−k(jn+k ∗ S)] ∗ C−1B̃f(t)

=

∫ t

0

jn−1−k(t− s)(jn+k ∗ S)(t− s)C−1B̃f(s)ds

=
1

(n− 1− k)!

n−1−k∑
m=0

( n−1−km ) (−1)
m
tn−1−k−m

∫ t

0

jn+k ∗ S(t− s)C−1B̃smf(s)ds

=

n−1−k∑
m=0

(−1)
m
jn−1−k−m(t)jn+k ∗ S ∗ (C−1B̃jmf)(t)

=

n−1−k∑
m=0

(−1)
m
jn−1−k−m(t)S ∗ C−1B̃[jn+k ∗ (jmf)](t) (2.15)

for all 0 ≤ t ≤ t0. By (2.12), we have

‖(A− λ)jn−k−m(t)S ∗ C−1B̃[jn−1+k ∗ (jmf)](t)‖

≤jn−k−m(t0)‖(A− λ)S ∗ C−1B̃[jn−1+k ∗ (jmf)](t)‖

=jn−k−m(t0)‖(A− λ)S ∗ C−2B(A− λ)
−1
C[jn−1+k ∗ (jmf)](t)‖

≤jn−k−m(t0)Mt0

∫ t

0

|(A− λ)
−1
C[jn−1+k ∗ (jmf)](s)|A−λds

≤jn−k−m(t0)Mt0(‖(A− λ)
−1
C‖+ ‖C‖)

∫ t

0

‖[jn−1+k ∗ (jmf)](s)‖ds (2.16)

for all 0 ≤ t ≤ t0. Since∫ t

0

‖[jn−1+k ∗ (jmf)](s)‖ds

≤
∫ t

0

jn−1+k(s)jm(s)

∫ s

0

‖f(s)‖ds

=
(n+ k − 1 +m)!

(n− 1 + k)!m!
[jn+k+m(t)

∫ t

0

‖f(r)‖dr −
∫ t

0

‖f(s)‖ds]

≤ (n+ k − 1 +m)!

(n− 1 + k)!m!
jn+k+m(t)

∫ t

0

‖f(r)‖dr (2.17)

for all 0 ≤ t ≤ t0, we have

‖(A− λ)jn−k−m(t)S ∗ (C−1B̃[jn−1+k ∗ (jmf)](t)‖ (2.18)

≤jn−k−m(t0)Mt0(‖(A− λ)
−1
C‖+ ‖C‖) (n+ k − 1 +m)!

(n− 1 + k)!m!
jn+k+m(t)

∫ t

0

‖f(r)‖dr
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for all 0 ≤ t ≤ t0. Similarly, we can apply (2.12) and (2.15) to obtain

‖(A− λ)jn−1−k−m(t)S ∗ (C−1B̃[jn+k ∗ (jmf)](t)‖ (2.19)

≤jn−1−k−m(t0)Mt0(‖(A− λ)
−1
C‖+ ‖C‖)

∫ t

0

‖[jn+k ∗ (jmf)](s)‖ds

≤jn−1−k−m(t0)Mt0(‖(A− λ)
−1
C‖+ ‖C‖) (n+ k +m)!

(n+ k)!m!
jn+k+m−1(t)

∫ t

0

‖f(r)‖dr

for all 0 ≤ t ≤ t0. By (2.13), we have

j0 ∗ T−λ ∗ C−1B̃f(t) = S ∗ C−1B̃f(t)+
∞∑
n=1

(−λ)n
n∑
k=0

(n− 1 + k)!

(n− 1)!k!
(−1)

k 1

2n+k
[jn−k(jn−1+k ∗ S)] ∗ C−1B̃f(t)

+

∞∑
n=1

(−λ)n
n−1∑
k=0

(n+ k)!

n!k!
(−1)

k 1

2n+k+1
[jn−1−k(jn+k ∗ S)] ∗ C−1B̃f(t) (2.20)

for all 0 ≤ t ≤ t0. By (2.14) and (2.18), we have

‖(A− λ)

n∑
k=0

(n− 1 + k)!

(n− 1)!k!
(−1)

k 1

2n+k
[jn−k(jn−1+k ∗ S)] ∗ C−1B̃f(t)‖

=‖(A− λ)

n∑
k=0

n−k∑
m=0

(n− 1 + k)!

(n− 1)!k!
(−1)

k+m 1

2n+k
jn−k−m(t)S

∗ C−1B̃[jn−1+k ∗ (jmf)](t)‖

≤
n∑
k=0

n−k∑
m=0

(n− 1 + k)!

(n− 1)!k!

1

2n+k
(n− 1 + k +m)!

(n− 1 + k)!m!
jn−k−m(t0)Mt0(‖(A− λ)

−1
C‖

+ ‖C‖)jn+k+m(t)

∫ t

0

‖f(r)‖dr

≤
n∑
k=0

t2n0
n!k!2n+k

n−k∑
m=0

1

m!
Mt0(‖(A− λ)

−1
C‖+ ‖C‖)

∫ t

0

‖f(r)‖dr

≤ t2n0
n!2n

e1/2eMt0(‖(A− λ)
−1
C‖+ ‖C‖)

∫ t

0

‖f(r)‖dr. (2.21)
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Similarly, we can apply (2.15) and (2.19) to show that

‖(A− λ)

n−1∑
k=0

(n− 1 + k)!

n!k!
(−1)

k 1

2n+k+1
[jn−1−k(jn+k ∗ S)] ∗ C−1B̃f(t)‖

=‖(A− λ)

n−1∑
k=0

n−1−k∑
m=0

(n+ k)!

n!k!
(−1)

k 1

2n+k+1
(−1)

m
jn−1−k−m(t)S

∗ C−1B̃[jn+k ∗ (jmf)](t)‖

≤
n−1∑
k=0

n−1−k∑
m=0

(n+ k)!

n!k!

1

2n+k+1

(n+ k +m)!

(n+ k)!m!
jn−1−k−m(t0)Mt0(‖(A− λ)

−1
C‖

+ ‖C‖)jn+k+m−1(t)

∫ t

0

‖f(r)‖dr

≤
n−1∑
k=0

t2n0
(n− 1)!k!2n+k

n−1−k∑
m=0

1

m!
Mt0(‖(A− λ)

−1
C‖+ ‖C‖)

∫ t

0

‖f(r)‖dr

≤ t2n0
(n− 1)!2n

e1/2eMt0(‖(A− λ)
−1
C‖+ ‖C‖)

∫ t

0

‖f(r)‖dr. (2.22)

Combining (2.20)-(2.22), we get that there exists an M̃t0 > 0 such that

‖(A− λ)j0 ∗ T−λ ∗ C−1B̃f(t)‖ ≤ M̃t0

∫ t

0

‖f(s)‖ds

for all f ∈ C([0, t0], X) and 0 ≤ t ≤ t0. It follows from Theorem 2.5 that A + B − λ
generates a local C-cosine function U(·) on X, which implies that A+B generates a
local C-cosine function V (·) on X. �

Just as in the proof of Corollary 2.8, we can apply Theorems 2.13 and 2.14 to
obtain the next corollary.

Corollary 2.15. Let C(·) be a local C-cosine function on X with generator A, and
let B be a bounded linear operator from [D(A)] into R(C2) such that CB = BC on
D(A) and C−2Bx ∈ D(A) for all x ∈ D(A). Assume that ρC(A) and ρ(A+ B) both
are nonempty. Then A + B generates a local C-cosine function V (·) on X given as
in the proof of Theorem 2.14. Moreover, V (·) is exponentially bounded (resp., norm
continuous) if C(·) is.

By slightly modifying the proof of Theorem 2.14, the following additive per-

turbation results are also attained when B̃ denotes the restriction of B(A− λ)
−1

to

D(A), and the assumptions that B is a bounded linear operator from [D(A)] into
R(C2) and ρC(A) is nonempty are replaced by assuming that B is a bounded linear
operator from [D(A)] into R(C) and ρ(A) is nonempty.

Theorem 2.16. Let C(·) be a local C-cosine function on X with generator A, and let
B be a bounded linear operator from [D(A)] into R(C) such that CB = BC on D(A).
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Assume that ρ(A) and ρ(A + B) both are nonempty, and for each 0 < t0 < T0 there
exists an Mt0 > 0 such that

|S ∗ C−1Bf(t)| ≤Mt0

∫ t

0

|f(s)|ds (2.23)

for all f ∈ C([0, t0], [D(A)]) and 0 ≤ t ≤ t0. Then A + B generates a local C-cosine
function on X.

Corollary 2.17. Let C(·) be a local C-cosine function on X with generator A, and
let B be a bounded linear operator from [D(A)] into R(C) such that CB = BC on
D(A) and C−1Bx ∈ D(A) for all x ∈ D(A). Assume that ρ(A) and ρ(A + B) both
are nonempty. Then A + B generates a local C-cosine function on X, which is also
exponentially bounded (resp., norm continuous) if C(·) is.

Remark 2.18. The conclusions of Corollaries 2.7 and 2.11 are still true when the
assumption that R(C−1B) ⊂ D(A) is replaced by assuming that

R(C−1B) ⊂ {x ∈ X |C(·)x ∈ C1([0, T0), X)}.

We end this paper with a simple illustrative example.

Example 2.19. Let X = L∞(R), and A0 : D(A0) ⊂ X → X be defined by

D(A0) = W 1,∞(R)

and A0f = −f ′
for all f ∈ D(A0), then A = A2

0 generates a locally Lipschitz contin-
uous local C-cosine function C(·)(= {C(t)|0 ≤ t < T0}) on X and

D(A) = W 2,∞(R) = C0(R)

(see [1, Example 3.15.5] and [17, Theorem 18.3]). Here C = (λ−A0)−1 with λ ∈ ρ(A0)
and 0 < T0 ≤ ∞ are fixed. Applying Corollary 2.7, we get that A(I + C−1BC) gen-
erates a locally Lipschitz continuous local C-cosine function T (·) on L∞(R) satisfy-
ing (2.7) when B is a bounded linear operator from C0(R) into W 1,∞(R) such that
(λ−A0)−1B = B(λ−A0)−1 on C0(R) and R((λ−A0)B) ⊂ C0(R).
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Stud. Univ. Babeş-Bolyai Math., 61(2016), 211-237.

[17] deLaubenfels, R., Existence Families, Functional Calculi and Evolution Equations, 1570,
Lecture Notes in Math., Springer-Verlag, Berlin, 1994.

[18] Li, F., Multiplicative perturbations of incomplete second order abstract differential equa-
tions, Kybernetes, 39(2008), 1431-1437.

[19] Li, F., Liang, J., Multiplicative perturbation theorems for regularized cosine functions,
Acta Math. Sinica, 46(2003), 119-130.

[20] Li, F., Liu, J., A perturbation theorem for local C-regularized cosine functions, J. Physics:
Conference Series, 96(2008), 1-5.

[21] Oka, H., Linear Volterra equation and integrated solution families, Semigroup Forum,
53(1996), 278-297.

[22] Shaw, S.-Y., Li, Y.-C., Characterization and generator of local C-cosine and C-sine
functions, Inter. J. Evolution Equations, 1(2005), 373-401.

[23] Takenaka, T., Okazwa, N., A Phillips-Miyadera type perturbation theorem for cosine
functions of operators, Tohoku. Math., 69(1990), 257-288.

[24] Takenaka, T., Piskarev, S., Local C-cosine families and N-times integrated local cosine
families, Taiwanese J. Math., 8(2004), 515-546.

[25] Travis, C.C., Webb, G.F., Perturbation of strongly continuous cosine family generators,
Colleq. Math., 45(1981), 277-285.

[26] Wang, S.-W., Gao, M.-C., Automatic extensions of local regularized semigroups and local
regularized cosine functions, Proc. Amer. Math. Soc., 127(1999), 1651-1663.

[27] Yeh, N.-S., Kuo, C.-C., Multiplicative perturbations of local α-times integrated C-
semigroups, Acta Math. Sci., 37B(2017), 877-888.



Multiplicative perturbations of local C-cosine functions 589

Chung-Cheng Kuo
Fu Jen Catholic University,
Department of Mathematics,
New Taipei City, Taiwan 24205
e-mail: 033800@fju.edu.tw

Nai-Sher Yeh
Fu Jen Catholic University,
Department of Mathematics,
New Taipei City, Taiwan 24205
e-mail: nyeh@math.fju.edu.tw


