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Optimal decay rates for the acoustic wave
motions with boundary memory damping
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Abstract. A linear wave equation with acoustic boundary conditions (ABC) on
a portion of the boundary and Dirichlet conditions on the rest of the boundary
is considered. The (ABC) contain a memory damping with respect to the normal
displacement of the boundary point. In this paper, we establish polynomial energy
decay rates for the wave equation by using resolvent estimates.
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1. Introduction

In this paper we investigate the existence and decay properties of solutions for
the initial boundary value problem of the wave equation of the type

ytt(x, t)− yxx(x, t) = 0 in (0, L)× (0,+∞),
y(0, t) = 0 in (0,+∞),
yx(L, t) = zt(t) in (0,+∞),
yt(L, t) +mz(t) + γ∂α,ηt z(t) = 0 in (0,+∞),
y(x, 0) = y0(x), yt(x, 0) = y1(x) in (0, L),

(P )

where (x, t) ∈ (0, L) × (0,+∞),m > 0, γ > 0, η ≥ 0 and the initial data are taken
in suitable spaces. The notation ∂α,ηt stands for the generalized Caputo’s fractional
derivative of order α, 0 < α < 1, with respect to the time variable (see Choi and
MacCamy [9]). It is defined as follows

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αe−η(t−s) dw

ds
(s) ds, η ≥ 0.

The problem (P ) describes sound wave propagation in a domain which is full of some
kind of medium and with a portion of boundary made of light-weight viscoelastic
material.
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Acoustic model was proposed by Morse and Ingard [15], and improved in a
rigorous mathematical way by Beale and Rosencrans [5]. Under the assumption that
each local-reacting boundary point acts as a spring, the author analyzed the model
in both bounded and exterior domains in [3], [4]. Uniform energy decay rates were
studied in [7], [16] for acoustic wave systems with both internal and boundary memory
damping terms. To our knowledge, there has been few work about the decay rates
of acoustic wave energies when only one memory damping acting on the acoustic
boundary.

Recently, In [11], the authors considered the following initial boundary value
problem with memory type acoustic boundary conditions,

ytt(x, t)−∆y(x, t) = 0 in Ω× (0,+∞),
y(x, t) = 0 in Γ0 × (0,+∞),
∂y
∂ν (x, t) = zt(x, t) in Γ1 × (0,+∞),

yt(x, t) +mz(x, t) + γ∂α,0t z(x, t) = 0 in Γ1 × (0,+∞),
y(x, 0) = y0(x), yt(x, 0) = y1(x) in (0, L).

(P )

They proved well-posedness and strong stability of the system (P ) without giving
an energy decay rate. Very Recently, in [12] the authors proved that the energy is
polynomially stable but without obtaining the precise exponent.

The aim of the present paper is to obtain more precise rates of decay. This can
be achieved via some theorems about operator semigroups. We provide a standard
method of going from resolvent estimates for a suitable PDE to rates of decay of
classical (strong) solutions.

We should mention here that the approach in [11] and [12], which is based on
Laplace transform is different from ours. By redescribing the fractional derivative term
by means of a suitable diffusion equation as in [14], the original model is transformed
into an augmented system which can be more easily tackled by the energy method.

2. Augmented model

This section is concerned with the reformulation of the model (P ) into an aug-
mented system. For that, we need the following claims.

Theorem 2.1 (see [14]). Let µ be the function:

µ(ξ) = |ξ|(2α−1)/2, −∞ < ξ < +∞, 0 < α < 1. (2.1)

Then the relationship between the ’input’ U and the ’output’ O of the system

∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− U(t)µ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0, (2.2)

φ(ξ, 0) = 0, (2.3)

O(t) = (π)−1 sin(απ)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ (2.4)

is given by

O = I1−α,ηU = Dα,ηU, (2.5)
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where

[Iα,ηf ](t) =
1

Γ(α)

∫ t

0

(t− τ)α−1e−η(t−τ)f(τ) dτ.

Lemma 2.2 (see [1]). If λ ∈ Dη = C\]−∞,−η] then∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

π

sinαπ
(λ+ η)α−1.

We are now in a position to reformulate system (P ). Indeed, by using Theorem 2.1,
system (P ) may be recast into the augmented model:

ytt(x, t)− yxx(x, t) = 0 in (0, L)× (0,+∞),
∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− zt(t)µ(ξ) = 0 in (−∞,+∞)× (0,+∞),
y(0, t) = 0 in (0,+∞),
yx(L, t) = zt(t) in (0,+∞),

yt(L, t) +mz(t) + ζ

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ = 0 in (0,+∞),

y(x, 0) = y0(x), yt(x, 0) = y1(x) in (0, L),
φ(ξ, 0) = 0 in (−∞,+∞).

(P ′)

We define the energy associated to the solution of the problem (P ′) by the following
formula:

E(t) =
1

2
‖yt‖22 +

1

2
‖yx‖22 +

m

2
|z(t)|2 +

ζ

2

∫ +∞

−∞
|φ(ξ, t)|2 dξ. (2.6)

Lemma 2.3. Let (y, φ) be a solution of the problem (P ′). Then, the energy functional
defined by (2.6) satisfies

E′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ ≤ 0. (2.7)

Proof. Multiplying the first equation in (P ′) by yt, integrating over (0, L) and using
integration by parts, we get

1

2

d

dt
‖yt‖22 −<

∫ L

0

yxxytdx = 0.

Then

d

dt

(
1

2
‖yt‖22 +

1

2
‖yx‖22

)
+ <zt(t)

(
mz(t) + ζ

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ

)
= 0. (2.8)

Multiplying the second equation in (P ′) by ζφt and integrating over (−∞,+∞), to
obtain:

ζ

2

d

dt
‖φ‖22 + ζ

∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ − ζ<zt(t)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ = 0. (2.9)

From (2.6), (2.8) and (2.9) we get

E′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ.

This completes the proof of the lemma. �
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3. Well-posedness

The energy space associated to system (P ) is

H = H1
L(0, L)×L2(0, L)×L2(−∞,+∞)×C, H1

L(0, L) = {y ∈ H1(0, L), y(0) = 0}
equipped with the inner product

< U, Ũ >H=

∫
Ω

(
vṽ + yxỹx

)
dx+mzz̃ + ζ

∫ +∞

−∞
φφ̃dξ,

where U = (y, v, φ, z)T , Ũ = (ỹ, ṽ, φ̃, z̃)T ∈ H.
Let U = (y, yt, φ, z)

T and rewrite (P ′) as{
U ′ = AU,
U(0) = (y0, y1, φ0, z0),

(3.1)

where the operator A is defined by

A


y
v
φ
z

 =


v
yxx

−(ξ2 + η)φ+ yx(L)µ(ξ)
yx(L)

 (3.2)

with domain

D(A) =



(y, v, φ, z)T in H : y ∈ H2(0, L) ∩H1
L(0, L),

v ∈ H1
L(0, L), z ∈ C,

−(ξ2 + η)φ+ yx(L)µ(ξ) ∈ L2(−∞,+∞),

v(L) +mz + ζ

∫ ∞
−∞

µ(ξ)φ(ξ) dξ = 0,

|ξ|φ ∈ L2(−∞,+∞)


. (3.3)

Now, we will give well-posedness results for problem (P ) using semigroup theory. We
show that the operator A generates a C0- semigroup in H. We prove that A is a
maximal dissipative operator (see [8]). For this purpose we need the following two
lemmas.

Lemma 3.1. The operator A is dissipative and satisfies, for any U ∈ D(A),

<〈AU,U〉H = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ. (3.4)

Proof. For any U = (y, v, φ, z)T ∈ D(A), Using (3.1) and the fact that

‖(y, yt, φ, z)‖2H = ‖U‖2H, (3.5)

estimate (3.4) easily follows. �

Lemma 3.2. The operator λI −A is surjective for all λ > 0.

Proof. We need to show that for all F = (f1, f2, f3, f4)T ∈ H, there exists

U = (y, u, φ, v)T ∈ D(A)

such that
λU −AU = F, (3.6)
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that is 
λy − v = f1,
λv − yxx = f2,
λφ+ (ξ2 + η)φ− yx(L)µ(ξ) = f3,
λz − yx(L) = f4.

(3.7)

Suppose that we have found y. Therefore, the first equation in (3.7) gives

v = λy − f1. (3.8)

It is clear that u ∈ H1
L(0, L). Furthermore, by (3.7) we can find φ as

φ =
f3(ξ) + µ(ξ)yx(L)

ξ2 + η + λ
. (3.9)

By using (3.7) and (3.8) the function y satisfying the following system

λ2y − yxx = f2 + λf1. (3.10)

Solving system (3.10) is equivalent to finding y ∈ H2 ∩H1
L(0, L) such that∫ L

0

(λ2yw − yxxw) dx =

∫ L

0

(f2 + λf1)w dx, (3.11)

for all w ∈ H1
L(0, L). By using (3.11) and (3.9) the function y satisfying the following

system

∫ L

0

(λ2yw + yxwx) dx+
λ2

m+ γλ(λ+ η)α−1
y(L)w(L)

=

∫ L

0

(f2 + λf1)w dx+
1

m+ γλ(λ+ η)α−1
(λf1(L)

−ζλ
∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξ −mf4w(L).

(3.12)

Consequently, problem (3.12) is equivalent to the problem

a(y, w) = L(w), (3.13)

where the sesquilinear form a : H1
L(0, L) × H1

L(0, L) → C and the antilinear form
L : H1

L(0, L)→ C are defined by

a(y, w) =

∫ L

0

(λ2yw + yxwx) dx+
λ2

m+ γλ(λ+ η)α−1
y(L)w(L)

and

L(w) =

∫ L

0

(f2 + λf1)w dx+
1

m+ γλ(λ+ η)α−1
(λf1(L)

−ζλ
∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξ −mf4w(L).

It is easy to verify that a is continuous and coercive, and L is continuous. So applying
the Lax-Milgram theorem, we deduce that for all w ∈ H1

L(0, L) problem (3.13) admits
a unique solution y ∈ H1

L(0, L). Applying the classical elliptic regularity, it follows
from (3.12) that y ∈ H2(0, L). Therefore, the operator λI − A is surjective for any
λ > 0. �
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Consequently, using Hille-Yosida Theorem, we have the following well-posedness
result:

Theorem 3.3 (Existence and uniqueness).

(1) If U0 ∈ D(A), then system (3.1) has a unique strong solution

U ∈ C0(R+, D(A)) ∩ C1(R+,H).

(1) If U0 ∈ H, then system (3.1) has a unique weak solution

U ∈ C0(R+,H).

4. Lack of exponential stability

In order to state and prove our stability results, we need the following well known
theorems.

Theorem 4.1 ([17]-[10]). Let S(t) = eAt be a C0-semigroup of contractions on Hilbert
space H. Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ R} ≡ iR
and

lim
|β|→∞

‖(iβI −A)−1‖L(H) <∞.

Theorem 4.2 ([6]). Let S(t) = eAt be a C0-semigroup on a Hilbert space H. If

iR ⊂ ρ(A) and sup
|β|≥1

1

βδ
‖(iβI −A)−1‖L(H) < M

for some δ > 0, then there exist c such that

‖eAtU0‖2 ≤
c

t
2
δ

‖U0‖2D(A).

Theorem 4.3 ([2]-[13]). Let A be the generator of a uniformly bounded C0- semigroup
{S(t)}t≥0 on a Hilbert space H. If:

(i) A does not have eigenvalues on iR.
(ii) The intersection of the spectrum σ(A) with iR is at most a countable set,

then the semigroup {S(t)}t≥0 is asymptotically stable, i.e, ‖S(t)z‖H → 0 as t → ∞
for any z ∈ H.

Our main first result is

Theorem 4.4. The semigroup generated by the operator A is not exponentially stable.

Proof. We will examine two cases.
• Case 1. η = 0: We shall show that iλ = 0 is not in the resolvent set of the operator
A. Indeed, noting that (0, 0, 0, cosL)T ∈ H, and denoting by (y, v, φ, z)T the image of

(0, 0, 0, cosL)T by A−1, we see that φ(ξ) = |ξ| 2α−5
2 cosL. But, then φ 6∈ L2(−∞,+∞),

since α ∈]0, 1[. Hence (y, v, φ, z)T 6∈ D(A).
• Case 2. η 6= 0: We aim to show that an infinite number of eigenvalues of A approach
the imaginary axis which prevents the wave system (P ) from being exponentially
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stable. Indeed we first compute the characteristic equation that gives the eigenvalues
of A. Let λ be an eigenvalue of A with associated eigenvector U = (y, v, φ, z)T . Then
AU = λU is equivalent to

λy − v = 0,
λv − yxx = 0,
λφ+ (ξ2 + η)φ− yx(L)µ(ξ) = 0,
λz − yx(L) = 0,

v(L) +mz + ζ

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0.

(4.1)

From (4.1)1 − (4.1)2 for such λ, we find

λ2y − yxx = 0. (4.2)

Since v = λy(L), using (4.1)3 and (4.1)4, we get{
y(0) = 0,
λ2y(L) + (m+ γλ(λ+ η)α−1)yx(L) = 0.

(4.3)

The solution y is given by

y(x) =

2∑
i=1

cie
tix, (4.4)

where
t1(λ) = λ, t2(λ) = −λ.

Thus the boundary conditions may be written as the following system:

M(λ)C(λ) =

(
1 1

h(t1)et1L h(t2)et2L

)(
c1
c2

)
=

(
0
0

)
(4.5)

where we have set
h(r) = (m+ γλ(λ+ η)α−1)r + λ2.

Hence a non-trivial solution y exists if and only if the determinant of M(λ) vanishes.
Set f(λ) = detM(λ), thus the characteristic equation is f(λ) = 0.

Our purpose is to prove, thanks to Rouché’s Theorem, that there is a subsequence
of eigenvalues for which their real part tends to 0. �

In the sequel, since A is dissipative, we study the asymptotic behavior of the
large eigenvalues λ of A in the strip −α0 ≤ R(λ) ≤ 0, for some α0 > 0 large enough
and for such λ, we remark that eti , i = 1, 2 remains bounded.

Lemma 4.5. There exists N ∈ N such that

{λk}k∈Z∗,|k|≥N ⊂ σ(A) (4.6)

where

λk = i
kπ

L
+

α̃

k1−α +
β

k1−α + o

(
1

k1−α

)
, k ≥ N, α̃ ∈ iR, β ∈ R, β < 0,

λk = λ−k if k ≤ −N.
Moreover for all |k| ≥ N , the eigenvalues λk are simple.
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Proof. Step 1.

f(λ) = et2h(t2)− et1h(t1)

= −e−λL((m+ γλ(λ+ η)α−1) + λ)

(
e2λL − λ− (m+ γλ(λ+ η)α−1)

λ+ (m+ γλ(λ+ η)α−1)

)
= −e−λL((m+ γλ(λ+ η)α−1) + λ)

(
e2λL − 1 + 2

m+ γλ(λ+ η)α−1

m+ λ+ γλ(λ+ η)α−1

)
.

(4.7)
We set

f̃(λ) = e2λL − 1 + 2
m+ γλ(λ+ η)α−1

m+ λ+ γλ(λ+ η)α−1

= f0(λ) + f1(λ)
λ1−α + o

(
1

λ1−α

) (4.8)

where

f0(λ) = e2λL − 1, (4.9)

f1(λ) = 2γ. (4.10)

Note that f0 and f1 remain bounded in the strip −α0 ≤ R(λ) ≤ 0.

Step 2. We look at the roots of f0. From (4.9), f0 has one familie of roots that we
denote λ0

k.

f0(λ) = 0⇔ e2λL = 1.

Hence

2λL = i2kπ, k ∈ Z,
i.e.,

λ0
k =

ikπ

L
, k ∈ Z.

Now with the help of Rouché’s Theorem, we will show that the roots of f̃ are close
to those of f0. Changing in (4.8) the unknown λ by u = 2λL then (4.8) becomes

f̃(u) = (eu − 1) +O

(
1

u

)
= f0(u) +O

(
1

u

)
.

The roots of f0 are uk = ik
L π, k ∈ Z, and setting u = uk+reit, t ∈ [0, 2π], we can easily

check that there exists a constant C > 0 independent of k such that |eu− 1| ≥ Cr for
r small enough. This allows to apply Rouché’s Theorem. Consequently, there exists
a subsequence of roots of f̃ which tends to the roots uk of f0. Equivalently, it means
that there exists N ∈ N and a subsequence {λk}|k|≥N of roots of f(λ), such that

λk = λ0
k + o(1) which tends to the roots ik

L π of f0. Finally for |k| ≥ N,λk is simple

since λ0
k is.

Step 3. From Step 2, we can write

λk = i
1

L
kπ + εk. (4.11)

Using (4.11), we get

e2λkL = 1 + 2Lεk + 2L2ε2
k + o(ε2

k). (4.12)
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Substituting (4.12) into (4.8), using that f̃(λk) = 0, we get:

f̃(λk) = 2Lεk +
2γ

(kπiL + εk)(1−α)
+ o(εk) + o(1/k)

= 2Lεk +
2γ

(kπL i)
(1−α)

+ o

(
1

k

)
= 0

(4.13)

and hence

εk = − γ

Lα
1

(kπ)(1−α)

(
cos(1− α)

π

2
− i sin(1− α)

π

2

)
+ o

(
1

k1−α

)
for k � 0.

From (4.13) we have in that case |k|1−αRλk ∼ β, with

β = − γ

Lαπ1−α cos(1− α)
π

2
.

The operator A has a non exponential decaying branch of eigenvalues. Thus the proof
is complete. �

5. Polynomial stability and optimality (for η 6= 0)

In the previous section,we have shown that the transmission wave system is not
exponentially stable. In this section, we prove that it is polynomially stable with an
optimal rate of decay when η > 0. To achieve this, we use a recent result by Borichev
and Tomilov [6]. Accordingly, if we consider a bounded C0-semigroup S(t) = eAt on
a Hilbert space. If

iR ⊂ ρ(A) and lim|β|→∞
1

βδ
‖(iβI −A)−1‖L(H) <∞

for some δ > 0, then there exist c such that

‖eAtU0‖2 ≤
c

t
2
δ

‖U0‖2D(A).

Our main result is as follows.

Theorem 5.1. The semigroup SA(t)t≥0 is polynomially stable and

E(t) = ‖SA(t)U0‖2H ≤
1

t2/(1−α)
‖U0‖2D(A).

Moreover, the rate of energy decay t−2/(1−α) is optimal for any initial data in D(A).

Proof. We will need to study the resolvent equation (iλ−A)U = F , for λ ∈ R, namely
iλy − v = f1,
iλv − yxx = f2,
iλφ+ (ξ2 + η)φ− yx(L)µ(ξ) = f3,
iλz − yx(L) = f4

(5.1)

with the boundary condition

v(L) +mz + ζ

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0. (5.2)
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We divide the proof into three steps, as follows:
Step 1. Inserting (5.1)1 into (5.1)2, we get

λ2y + yxx = −(f2 + iλf1).

As y(0) = 0, then

y(x) = c1 sinλx− 1

λ

∫ x

0

(f2(σ) + iλf1(σ)) sinλ(x− σ) dσ, (5.3)

and hence

yx(x) = c1λ cosλx−
∫ x

0

(f2(σ) + iλf1(σ)) cosλ(x− σ) dσ. (5.4)

Step 2. With the third equation of (5.1), we get

φ(ξ) =
yx(L)µ(ξ) + f3(ξ)

iλ+ ξ2 + η
. (5.5)

Inserting (5.5) in the boundary condition (5.2), we easy to check that

−λ2y(L) + (m+ γiλ(iλ+ η)α−1)yx(L) = iλf1(L)−mf4 − ζiλ
∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ.

(5.6)
Using (5.3) and (5.4), we can rewrite (5.6) as an equation in the unknown c1,

c1(−λ2 sinλL+ λ(m+ γiλ(iλ+ η)α−1) cosλL)

= iλf1(L)−mf4 − ζiλ
∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ − λ

∫ L

0

(f2(σ) + iλf1(σ)) sinλ(L− σ) dσ

+(m+ γiλ(iλ+ η)α−1)

∫ L

0

(f2(σ) + iλf1(σ)) cosλ(L− σ) dσ. (5.7)

Step 3. We set

g(λ) = −λ sinλL+ (m+ γiλ(iλ+ η)α−1) cosλL. (5.8)

As f1 ∈ H1
L(0, L) and f2 ∈ L1(0, L), we have∣∣∣∣∣
∫ L

0

(f2(σ) + iλf1(σ)) sinλ(L− σ) dσ

∣∣∣∣∣ ≤ c(‖f2‖L2(0,L) + ‖f1‖H1(0,L)).∣∣∣∣∣
∫ L

0

(f2(σ) + iλf1(σ)) cosλ(L− σ) dσ

∣∣∣∣∣ ≤ c(‖f2‖L2(0,L) + ‖f1‖H1(0,L)).

As g(λ) 6= 0 for all λ (if η = 0 then for all λ 6= 0) , then c1 is uniqueley determined by
(5.7). Hence the operator iλ − A is surjective for all λ (if η = 0 then for all λ 6= 0).
Moreover, taking account of Lemma 4.5, the operator iλ − A is injective for all λ.
Then iR ⊂ ρ(A) (if η = 0 then iR∗ ⊂ ρ(A)).

Moreover, we can easily prove that

|g(λ)| ≥ c|λ|α for λ large.

Hence
|c1| ≤ c|λ|−α for λ large.
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Then, we deduce that

‖yx‖L2(0,L) ≤ c|λ|1−α for λ large.

‖v‖L2(0,L) ≤ c|λ|1−α for λ large.

|z| ≤ c|λ|−α for λ large.

Moreover from (3.4), we have

‖φ‖2L2(−∞,∞) ≤
∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ ≤ c‖U‖H‖F‖H.

Thus, we conclude that

‖(iλI −A)−1‖H ≤ c|λ|1−α as |λ| → ∞. (5.9)

The conclusion then follows by applying the Theorem 4.2. Besides, we prove that
the decay rate is optimal. Indeed, the decay rate is consistent with the asymptotic
expansion of eigenvalues which show a behavior of the real part like k−(1−α). �

Remark 5.2. The method developed in this paper is direct and very flexible; it can
be applied to various dissipative problems. In particular, we will consider in the fu-
ture more general acoustic wave motions and also multidimensional cases under some
geometric control conditions.
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