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A smooth approximation for non-linear second
order boundary value problems using composite
non-polynomial spline functions
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Abstract. A different amalgamation of non-polynomial splines is used to find the
approximate solution of linear and non-linear second order boundary value prob-
lems. Cubic spline functions are assembled with exponential and trigonometric
functions to develop the different orders of numerical schemes. Free parameter k
of the non-polynomial part is also used to form a new scheme, which elevates the
accuracy of the solution. Numerical illustrations are given to validate the appli-
cability and feasibility of the present methods and also depicted in the graphs.
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1. Introduction

To demonstrate the basic concept and idea of our technique, we consider the
following general non-linear second order two point boundary value problems (BVPs),
which arise in a wide variety of engineering applications

u(2)(x) = f(x, u), −∞ 6 a 6 x 6 b 6∞ (1.1)

with the boundary conditions (BCs)

u(a) = A1, u(b) = A2, (1.2)

where Ai, i=1, 2 are arbitrary finite real constants and −∞ < u < ∞. The function
f(x, u(x)) is a continuous function of two variables with fu > 0 on [a, b]. DE (1.1)
with BC (1.2) has a unique solution, whose existence and uniqueness can be studied
in [24]. For the linear case, f(x, u) = p(x)u + g(x) with p(x) and g(x) continuous
functions on the interval [a, b].
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It is well acknowledged that numerous real-life phenomena in physics and engi-
neering sciences often convert to boundary value problems for second order differential
equations such as in heat transfer, optimal control, deflection in cables and plates,
vibration of springs, electric circuits and in a number of other scientific applications
[19]. Most of the BVPs are essentially solved using numerical approaches as those
are not explained enough using existing analytical approaches. Consequently, some
useful numerical schemes were being promoted, most notably spline-based’ schemes.
Spline functions were applied by many authors to establish the accurate and efficient
numerical schemes for the solution of boundary value problems [4]. An exploration
of the literature on a number of polynomial and non-polynomial spline techniques to
solve the second order BVPs can be comprehended as quadratic spline method [8, 26,
32, 42, 49], cubic spline method [2-3, 5, 9-12, 15, 20-23, 27-28, 30-34, 36-38, 40-41, 50],
quartic spline method [6, 13-14, 29, 47], quintic spline method [7, 16, 43, 48] and oth-
ers [39, 46]. Voluminous research work have been contributed to this field but we are
mainly concerned on those papers which have implemented non-polynomial splines
for the solution of second order BVPs with various types of boundary conditions.

For instance, Rashidinia et al. [40] built up a technique based on cubic non-
polynomial spline functions of the form

Tn = Span{1, x, sin(τx), cos(τx)}, (1.3)

They applied their scheme to acquire the numerical solution of the following form of
second order two point BVPs

− d

dx

[
p(x)

du

dx

]
= g(x); u(a) = u(b) = 0. (1.4)

Here, authors employed direct method to simplify the obtained system and facilitated
the smooth approximations to linear second order BVPs. Similar approach was ex-
ercised by Islam and Tirmizi [27] to find the approximate solution of the system of
two-point second order BVPs with Dirichlet BCs (1.2). They established the consis-
tency equations to attain the desired results and solved linear second order equations
to show the feasibility of their method. Khan and Aziz [34] proposed the parametric
cubic spline functions with a parameter for attaining approximations to the solutions
of the system of BVP. They presented improved results while comparing with some
existing methods. Former approach [35] was yet again instituted by Khan in [33] to
solve the following second order linear BVPs

y(2)(x) = f(x)y(x) + g(x); a 6 x 6 b (1.5)

with Dirichlet BCs (1.2). Here, the author developed the method of order four for
specific values of parameters, or else his method was of order two. Over again, Zahra
et al. [50] used cubic non-polynomial spline function space (1.3) to compute approx-
imation to the solution of above linear BVPs (1.5) but with Neumann BCs. Kalyani
and Rao [31] also adopted similar approach demonstrated by [27, 40, 50] to solve the
following BVP of second order

− d

dx

[
p(x)

du

dx

]
+ v(x)u(x) = g(x); u(a) = u(b) = 0. (1.6)
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They solved many linear and non-linear examples to study the performance of their
method. Cubic non-polynomial spline scheme was once more deliberated by Justine
and Sulaiman [30] to solve the general linear second order BVPs subject to Dirich-
let BCs. To solve the obtained linear system, they used successive over relaxation
in conjunction with Gauss-Seidel method. However, to establish the result, here au-
thors considered the total number of iterations, execution times along with maximum
absolute error (MAE).

Above, we have summarized numerous contributions that are made to deal with
the solution of various types of second order BVPs choosing non-polynomial splines.
The present research could contribute remarkably to this field as it includes some
novel methods to solve non-linear second order BVPs with significant results. Our
method is based on distinctive exponential and trigonometric spline function space
given as

T3 = Span
{

1, x, ekx, sin(kx)
}

= Span

{
1, x, (

2

k2
)
(
ekx − kx− 1

)
, (

6

k3
) (kx− sin(kx))

}
, (1.7)

where k is the frequency of trigonometric and exponential part of the spline func-
tion, which can be real or pure imaginary. It follows that if k → 0, T3 reduces to
Span

(
1, x, x2, x3

)
. In this paper, we have developed different order methods along

with a modified k-dependent method based on the angular frequency of the non-
polynomial part for smooth approximation of the second order linear and non-linear
BVPs. We have solved several examples using our developed methods and also shown
comparisons of our results with some known methods like collocation, finite difference,
Galerkin, Adomian decomposition and other spline methods. Our spline method solu-
tion and comparisons demonstrate that our algorithm performs comparatively better
with more precise results.

Now, the paper is organized as follows: section 2 shows the formulation of our
schemes and section 3 describes the solution of BVPs using the developed scheme.
Section 4 deliberates the convergence of the schemes, while in section 5 some examples
are solved using our developed spline methods. Paper is concluded in section 6.

2. Derivation of the method

In this section, we develop a numerical method to approximate the solution of
second order BVP (1.1)-(1.2). To do that, we first set a framework of N + 1 equally
spaced points xi of an interval [a, b] and divide them into N equal sections such that

xi = a+ ih, i = 0, 1, 2, . . . , N where x0 = a, xN = b and h = (b−a)
N . Then, our spline

function Pi(x) holds the following structure in every section of the interval

Pi(x) = ai sin k(x− xi) + bie
k(x−xi) + ci(x− xi) + di; i = 0, 1, 2 . . . , N, (2.1)

where ai, bi, ci and di are constants and k is free parameter, which can be real or
purely imaginary and will be used to raise the accuracy of the method. The function
Pi(x), which interpolates S(x) at the mesh points xi and reduces to cubic spline as
k → 0, where S(x) is the approximate solution of (1.1). Let u(x) be the exact solution
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and Si be an approximation to ui = u(xi) obtained by the segment Pi(x) of the spline
function passing through the points (xi, Si) and (xi+1, Si+1). Then the mixed spline
defined by the function S(x) = Pi(x).

Now, we assume

Pi(xi) = Si, Pi(xi+1) = Si+1, P
(2)
i (xi) = Mi, P

(2)
i (xi+1) = Mi+1,

to get the following value of coefficients

ai =
1

k2 sin(θ)
[eθMi −Mi+1], bi =

1

k2
[Mi],

ci =
Si+1 − Si

h
+
Mi+1 +Mi

k2h
− 2eθMi

k2h
, di = Si −

1

k2
[Mi],

whereby θ = kh and i = 0, 1, 2, ....., N .

Next, use the continuity condition of the first derivative and substitute the value
of coefficients ai, bi, ci and di. After some algebraic manipulations, we can obtain the
following main relation

Si−1 − 2Si + Si+1 = h2[αMi−1 + βMi + γMi+1]; i = 1, 2, ...N − 1, (2.2)

where,

α =
θeθ {sin(θ) + cos(θ)}+ sin(θ)(1− 2eθ)

θ2 sin(θ)
,

β =
2eθ sin(θ)− θeθ − θ {sin(θ) + cos(θ)}

θ2 sin(θ)
,

γ =
θ − sin(θ)

θ2 sin(θ)

and Mi = S(2)(xi) = f(x, u), by discretizing the considered DE (1.1) at the nodal
point xi. As k → 0, α = 1/6, β = 4/6 and γ = 1/6, our scheme (2.2) reduces to
ordinary cubic spline scheme [5] and then, it is evidently second order convergent.

Accordingly, equation (2.2) provides a system of N − 1 non-linear algebraic
equations in the N − 1 unknowns Si, i = 1, 2, . . . , N − 1, which by discretizing can be
written as(
Si−1 − αh2f(xi−1, Si−1)

)
−
(
2Si + βh2f(xi, Si)

)
+
(
Si+1 − γh2f(xi+1, Si+1)

)
+ti = 0.

(2.3)
Then, the local truncation error ti, i = 1, 2, ...., N − 1, can be written as

ti = {1− (α+ β + γ)}h2u(2)i + (α− γ)h3u
(3)
i +

{
1

12
− 1

2
(α+ γ)

}
h4u

(4)
i

+
1

6
(α− γ)h5u

(5)
i +

{
1

360
− 1

24
(α+ γ)

}
h6u

(6)
i +O(h7).

(2.4)

Thus, our schemes (2.2) and (2.4) give rise to a family of methods of different orders
as follows:
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2.1. Different order of methods

Case (i). First order method
For α+ β + γ = 1, α 6= γ. Here,

ti = (α− γ)h3u
(3)
i +O(h4),

‖T‖ = |(α− γ)|h3M3, M3 = max|u(3)(x)|. (2.5)

Case (ii). Second order method
For α+ β + γ = 1, α = γ and α+ γ 6= 1

6 . Here,

ti =

{
1

12
− 1

2
(α+ γ)

}
h4u

(4)
i +O(h5),

‖T‖ =

∣∣∣∣ 1

12
− 1

2
(α+ γ)

∣∣∣∣h4M4, M4 = max|u(4)(x)|. (2.6)

Case (iii). Fourth order method
For α+ β + γ = 1, α = γ and α+ γ = 1

6 . Here,

ti =

{
1

360
− 1

24
(α+ γ)

}
h6u

(6)
i +O(h7),

‖T‖ =

∣∣∣∣ 1

360
− 1

24
(α+ γ)

∣∣∣∣h6M6, M6 = max|u(6)(x)|. (2.7)

where ‖ · ‖ represents the ∞ norm in matrix vector.

2.2. Modified k-dependent method

In this section, we will use the parameter k to raise the order of accuracy of the
obtained scheme (2.2). To do this, we first rearrange the terms in equation (2.4) in
the following manner

ti =h4

[
1

θ2
+

(eθ − 1)(1 − cos(θ)) + sin(θ)(1 + eθ)

θ3 sin(θ)

]
(k2u

(2)
i − u

(4)
i )

+h5

[
eθ(sin(θ) + cos(θ)) − 1

θ3 sin(θ)
+

2(1 − eθ)

θ4

]
k2u

(3)
i

+h6

[
1

12θ2
− 1 + eθ(sin(θ) + cos(θ))

2θ3 sin(θ)
+

(1 + eθ)

θ4

]
k2u

(4)
i

+h6

[
(sin(θ) + cos(θ)) + 1 + eθ(sin(θ) − cos(θ) − 1)

θ5 sin(θ)

]
k2u

(4)
i

+h6

[{
1

360
+
−eθ(sin(θ) + cos(θ))

24θ sin(θ)
+

(2eθ − 1)

24θ2

}
u
(6)
i (η1) +

{
1

24θ2
− 1

24θ sin(θ)

}
u
(6)
i (η2)

]
+h7

[
eθ(sin(θ) + cos(θ) − 1)

6θ3 sin(θ)
+

(1 − eθ)

3θ4

]
k2u

(5)
i + · · ·

Equating the coefficient of the leading term in the above equation to zero, we can
get the equation in ki as

k2i =
u
(4)
i

u
(2)
i

=
f ′′(xi, ui)

f(xi, ui)
(2.8)
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For the linear case, f(xi, ui) = piui + gi. Then,

k2i =
(p′′i + p2i )ui + 2p′iu

′
i + pigi + g′′i

piui + gi
(2.9)

Thus, from above we see that calculation of ki requires the approximations for ui and
u′i. Approximation for ui can be obtained by means of our developed scheme (2.2) for
k = 0 and for u′i, following steps can be adapted:
(i) Differentiating equation (2.1) at x = xi, to get

P ′i (x) =
1

k sin(θ)

{
(sin(θ) + eθ)Mi −Mi+1

}
+

(Si+1 − Si)
h

+
1

k2h

{
(1− 2eθ)Mi +Mi+1

}
,

(ii) If the limit k going to zero in the above equation, we obtain

P ′i (x) = −h
6
f(xi+1, ui+1)− h

3
f(xi, ui) +

(Si+1 − Si)
h

; i = 0, 1, ....., N. (2.10)

3. Composite non-polynomial spline solution

To develop the approximation to the solution of BVP (1.1)-(1.2) based on our
developed spline method, we write our scheme (2.2) in the following standard matrix
form:

A0S
(1) − h2Bf (1)

(
S(1)

)
= C(1), (3.1)

where A0 and B are three-band square matrices of order N − 1, given by

A0 =



−2 1
1 −2 1

1 −2 1
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

1 −2 1
1 −2



B =



β γ
α β γ

α β γ
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

α β γ
α β


Matrix: f (1)(S(1)) = f(xi, S

(1)
i ), S(1) = [S1, S2, ..., SN−1]t and

C(1) =

 −A1 + h2αf(x0, A1), i = 1,
0, i = 2, 3, ...N − 2,

−A2 + h2γf(xN , A2), N − 1.
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Likewise,

A0U
(1) − h2Bf (1)(U (1)) = C(1) + T (1), (3.2)

where the vector U (1) = u(xi) is the exact solution with truncation error T (1) = (t
(1)
i ),

for i = 1, 2, . . . , N − 1.
From (3.1) and (3.2), we have

[A0 − h2BQ]E(1) = T (1) (3.3)

where

E(1) = U (1) − S(1) = [e
(1)
1 , e

(1)
2 , ....., e

(1)
N−1]T

and

Q = diag

(
∂f

(1)
i

∂u
(1)
i

)
, i = 1, 2, . . . , N − 1

is the diagonal matrix of order N − 1, whereas for the linear case, Q =diag(f
(1)
i ).

Thus, the equations (3.1)-(3.3) demonstrate our scheme, using which one can
obtain the approximate solution of non-linear DE (1.1) with the BC (1.2). We shall
use Newton’s method to obtain the solution of the non-linear system (2.2), which
converge to the solution of (1.1)-(1.2) for all sufficiently small values of h [24, 46].

4. Convergence analysis

Now, we will derive a bound on
∥∥E(1)

∥∥. From equation (3.3), we get

AE(1) = T (1),

where, A =[A0 − h2BQ] is a tri-diagonal matrix. The elements of A are given by

aij =


−2− h2βfu(xi, ui), i = j,
1− h2αfu(xi, ui), i− j = 1,
1− h2γfu(xi, ui), j − i = 1,

0, |i− j| > 1.

From above, we have ∥∥∥E(1)
∥∥∥ ≤ ∥∥A−1∥∥∥∥∥T (1)

∥∥∥ .
(See [24])

∥∥A−1∥∥ ≤ (b−a)2/8h2 and so, we can infer the following convergent schemes:

Case 4.1. First order convergent method
For (α, β, γ) =(75/1920,1755/1920,90/1920),

∥∥T (1)
∥∥
∞ = 1

128h
3M3.

Then from equation (2.5), we get∥∥∥E(1)
∥∥∥ ≤ K1h ∼= O(h1). (4.1)

This relation (4.1) shows that the method is first order convergent.

Case 4.2. Second order convergent method
For α = γ = 3

38 and β = 32
38 ,
∥∥T (1)

∥∥
∞ = 1

128h
4M4.
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Then it follows from (2.6) that∥∥∥E(1)
∥∥∥ ≤ K2h

2 ∼= O(h2). (4.2)

The relation (4.2) confirms second order convergence of the method.

Case 4.3. Fourth order convergent method
For α = γ = 1

12 and β = 10
12 ,
∥∥T (1)

∥∥
∞ = 1

240h
6M6.

Then from equation (2.7), we have∥∥∥E(1)
∥∥∥ ≤ K3h

4 ∼= O(h4). (4.3)

which confirms fourth order convergence of the method.

5. Numerical illustration

To illuminate the use of our developed methods, we have considered several
linear and non-linear examples of second order BVPs and also compared our results
with other existing methods.
Problem 5.1. Consider the linear BVP

u(2)(x) =
2

x2
u− 1

x
; 2 < x < 3; u(2) = u(3) = 0. (5.1)

The theoretical (exact) solution of (5.1) is

u(x) =
1

38
(−5x2 + 19x− 36

x
). (5.2)

Comparing the given equation (5.1) with (1.1) at x = xi, we have

f(xi, ui) =
2

x2i
ui −

1

xi
.

Table 1. Absolute error for the solution of Problem 5.1 at different value of x
for N = 8

x Our method for k = 0 Our k-based method Value of k

17/8 2.36×10−5 4.28×10−6 1.0674
18/8 3.66×10−5 6.31×10−6 0.9581
19/8 4.16×10−5 6.86×10−6 0.8623
20/8 4.07×10−5 6.45×10−6 0.7781
21/8 3.52×10−5 5.38×10−6 0.7040
22/8 2.61×10−5 3.87×10−6 0.6387
23/8 1.42×10−5 2.05×10−6 0.5809

For the linear case, f(x, u) = p(x)u+ g(x), so pi = p(xi) = 2/x2i ; gi = g(xi) = −1/xi
and equation(3.1) is changed to AS = C, where A = A0 − h2BQ; Q = diag(fi).
By substituting these values, we get system of linear equations for Problem 5.1 that
can be solved using any suitable method. Absolute errors at different point of x are
summarized in Table 1 for k = 0, i.e. (α, β, γ) = (1/6, 4/6, 1/6) and k-based method,
when h = 1/8. Results indicate that the modified k-dependent method provides better
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results than the method for k = 0. The value of parameter k at different value of x is
also listed in Table 1 (col. IV).

Table 2 reports the MAE at different value of N for second order schemes to-
gether with k-based technique. Table indicates that k-based method is a third order
convergent method. Comparison of numerical results with other existing methods is
also included in this table. Fourth order method solution when (α, β, γ) = (1/12,
10/12, 1/12) of Problem 5.1 for N=10 is presented in Table 3, along with comparison
with Galerkin method.

Table 2. Comparison of maximum absolute errors for Problem 5.1

Our method N = 4 N = 8 N = 16

Our second order methods
(α = γ = 3/38, β =32/38) 5.94×10−6 2.00×10−6 5.37×10−7

(α = γ = 1/13, β =11/13) 9.88×10−6 3.01×10−6 7.90×10−7

Our method for k = 0 1.65×10−4 4.16×10−5 1.04×10−5

Our k-based Method 5.05×10−5 6.86×10−6 8.61×10−7

Quadratic spline [9] 1.60×10−4 2.66×10−5 5.58×10−6

Centered Difference method [10] 2.79×10−4 5.42×10−5 1.19×10−5

Quadratic spline [42] 7.93×10−5 2.06×10−5 5.20×10−6

Cubic spline [10] 5.49×10−5 1.87×10−5 5.07×10−6

Cubic non-poly. spline [33] 2.05×10−5 5.74×10−6 1.47×10−6

Discrete cubic spline [21] 1.77×10−5 5.00×10−6 1.29×10−6

Figure 1. (a) Comparison of approximate and exact values for Problem 5.1.
(b) Error graph for Problem 5.1 at different values of N (Table 3).
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Table 3. Comparison of MAE for the solution of Problem 5.1
(Fourth order method)

x 2.1 2.2 2.3 2.4 2.5

Our method 3.73×10−8 5.89× 10−8 6.92×10−8 7.15×10−8 6.78×10−8

Galerkin method [25] 2.52× 10−7 1.15×10−6 6.73 ×10−7 6.90 ×10−7 1.24× 10−6

x 2.6 2.7 2.8 2.9

Our method 5.96× 10−8 4.81×10−8 3.39×10−8 1.77×10−8

Galerkin method [25] 4.51×10−7 7.90×10−7 9.70× 10−7 3.17×10−7

Figure 2. (a) Comparison of approximate and exact values for Problem 5.2.
(b) Error graph for Problem 5.2 at different values of N (Table 4).

Problem 5.2. Consider the linear BVP

u(2)(x) = 100u; 0 < x < 1; u(0) = u(1) = 1. (5.3)

The theoretical solution of (5.3) is

u(x) =
cosh(10x− 5)

cosh 5
. (5.4)

Problem 5.3. Consider the linear BVP

u(2)(x) = u+ cos(x), 0 < x < 1; u(0) = u(1) = 1. (5.5)

The theoretical solution of (5.5) is

u(x) =
−3 cosh(1) + 3 sinh(1) + cos(1) + 2

4 sinh(1)
ex

+
3 cosh(1) + 3 sinh(1)− cos(1)− 2

4 sinh(1)
e−x − cos(x)

2

(5.6)
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Table 4. Comparison of maximum absolute errors for Problem 5.2

Our method
N = 16 N = 32 N = 20 N = 40

α = γ = 3/38, β=32/38 1.95×10−4 7.15×10−5 1.54×10−4 4.75×10−5

α = γ = 1/13, β=11/13 3.37×10−4 1.07×10−4 2.47×10−4 7.08×10−5

Our method for k = 0 6.10×10−3 1.50×10−3 3.90×10−3 9.65×10−4

Our k-based method 1.16×10−2 1.11×10−3 5.40×10−3 5.57×10−4

Our fourth-order method 1.12×10−4 7.28×10−6 4.75×10−5 2.99×10−6

Cubic non-poly. spline [33] 7.22×10−4 2.06×10−4 5.00×10−4 1.34×10−4

Discrete cubic spline [21] 6.18×10−4 1.80×10−4 4.32×10−4 1.17×10−4

Quadratic spline [42] 3.06×10−3 7.58×10−4 — —
Collocation method [32] — — 1.80×10−3 4.70×10−4

Cubic spline [10] 2.27×10−3 6.84×10−4 1.57×10−3 4.53×10−4

Maximum absolute errors at the different values of N are tabulated in Table 4
for Problem 5.2 and in Table 5 for Problem 5.3. Fourth order method solution and
error graphs at different values of N are also given in Figures 1-3 respectively for
Problems 5.1-5.3.

Table 5. Comparison of maximum absolute errors for the solution of Problem 5.3

x
Our

method

for k = 0

Our
k-based

method

Our
fourth

order

method

Standard
Tau-

method

[45]

Perturbed
Tau-

method

[45]

EADM

[17]

EFM

[44]

1/8 5.24×10−4 7.13×10−6 8.97×10−8 1.00×10−4 2.10×10−4 4.37×10−7 6.88×10−5

2/8 9.69×10−4 1.17×10−5 1.50×10−7 0 1.10×10−4 8.07×10−7 4.93×10−5

3/8 1.26×10−3 1.43×10−5 1.84×10−7 1.00×10−4 7.51×10−5 1.05×10−6 3.21×10−5

4/8 1.37×10−3 1.50×10−5 1.93×10−7 1.00×10−4 6.25×10−5 1.14×10−6 2.63×10−5

5/8 1.26×10−3 1.39×10−5 1.79×10−7 2.00×10−4 4.31×10−5 1.05×10−6 2.16×10−5

6/8 9.69×10−4 1.11×10−5 1.42×10−7 2.00×10−4 2.43×10−5 8.07×10−7 1.09×10−5

7/8 5.24×10−4 6.56×10−6 8.32×10−8 2.00×10−4 1.13×10−5 4.37×10−7 1.01×10−5

Abbreviations: EADM: Extended Adomian Decomposition Method; EFM: Exponential fitting

method

Figure 3. (a) Comparison of approximate and exact values for Problem 5.3.
(b) Error graph for Problem 5.3 at different values of N (Table 5).
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Problem 5.4. Consider the non-linear BVP

u(2)(x) = 2(u(x))3, −1 < x < 0; u(−1) = 1/2, u(0) = 1/3. (5.7)

The theoretical solution of equation (5.7) is

u(x) =
1

(x+ 3)
(5.8)

To solve non-linear BVP (Problem 5.4), compare the equation (5.7) with equation
(1.1) at x = xi and we have

f(xi, ui) = 2(u(xi))
3;

Using equation (3.1), we obtain a system of non-linear equations that have been solved
using Newton’s method. Results are verified with MATLAB builtin solver(fsolve)
command. Tables 6 and 7 show the maximum absolute errors, in case of k=0, modified
k-dependent method and fourth order method solution. Tables clearly indicate that
our developed methods produce the better accuracy than some other specified me-
thods. We have also listed the value of parameter k at different value of x in Table 8.

Table 6. Comparison of MAE at N=10 for the solution of Problem 5.4

Our
method
for k = 0

Our
k-based
method

Our fourth
order
method

Quintic
spline [7]

Cubic
spline[20]

Quartic
spline [6]

2.65×10−5 8.08×10−6 3.23×10−7 8.82×10−6 1.68×10−5 4.67×10−6

Table 7. Maximum absolute errors at different value of N for Problem 5.4

Our method N = 4 N = 8 N = 16

Our method for k = 0 1.63×10−4 4.13×10−5 1.03×10−5

Our k-based method 1.28×10−4 1.53×10−5 6.83×10−6

Our fourth-order method 2.56×10−6 1.64×10−7 1.08×10−8

Table 8. The value of k at different value of x for the solution of Problem 5.4

x -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

k 1.6499 1.5748 1.5062 1.4433 1.3855 1.3321 1.2827 1.2368 1.1941
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Figure 4. (a) Comparison of approximate values and exact values for Problem 5.4.
(b) Error graph for Problem 5.4 at different values of N (Table 7).

Figure 5. (a) Comparison of approximate values and exact values for Problem 5.5.
(b) Error graph for Problem 5.5 at different values of N (Table 9, col. III).

Problem 5.5. Consider the non-linear BVP (Bratu Problem)

u(2)(x) + 2eu(x) = 0, 0 < x < 1; u(0) = u(1) = 0. (5.9)

The theoretical solution of (5.9) is

u(x) = −2 ln(cosh(1.17878 (x− 0.5)))/ cosh (0.589388). (5.10)
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Table 9. Comparison of MAE for the solution of Problem 5.5 at N = 10

Our method for
k = 0

Our k-based
method

Our fourth or-
der method

LGSM [1] Quintic
spline [7]

8.83×10−4 3.56×10−5 3.64×10−6 5.7×10−6 6.22×10−6

B-Spline
method [18]

Quartic spline
method [6]

Cubic
spline[20]

LADM [35] ADM [22]

5.29×10−5 1.10×10−4 6.26×10−4 1.24×10−2 1.52×10−2

Abbreviations: ADM: Adomian Decomposition Method;

LGSM: Lie-group shooting method;
LADM: Laplace Adomian Decomposition Method

Problem 5.6. Consider the non-linear BVP

u(2)(x) =
1

2
(1 + x+ u)3, 0 < x < 1; u(0) = u(1) = 0. (5.11)

The theoretical solution of (5.11) is

u(x) =
2

(2− x)
− x− 1. (5.12)

The other non-linear BVPs mentioned in Problems 5.5 and 5.6, are also solved just
like Problem 5.4 using Newton’s method. Obtained results show the efficiency and
accuracy of our proposed methods. Maximum absolute errors at the nodal points
with a comparison with other methods are summarized in Table 9 for Problem 5.5
and in Table 10 for Problem 5.6, respectively. Figures 4-6 demonstrate the fourth
order method solution and error graphs for nonlinear Problems 5.4-5.6 respectively
with comparison of errors at the nodal points.

Table 10. Comparison of MAE for Problem 5.6 with Approaching spline method
at N = 5

x values 0 0.2 0.4 0.6 0.8 1

Our method for k = 0 0 1.30×10−3 2.40×10−3 3.10×10−3 2.80×10−3 0
Our k-based method 0 2.70×10−5 5.25×10−5 7.19×10−5 6.49×10−5 0
Our fourth order method 0 3.80×10−5 7.26×10−5 9.92×10−5 9.96×10−5 0
Approaching spline [31] 0 1.40×10−4 2.60×10−4 3.20×10−4 2.70×10−4 0
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Figure 6. (a) Comparison of approximate values and exact values for Problem 5.6.
(b) Error graph for Problem 5.6 at different values of N (Table 10).

6. Conclusion

A unique approach based on a different combination of non-polynomial cubic
splines is used to develop various orders methods for solving linear and non-linear
second order BVPs. We have also developed a parameter k -based method for smooth
approximation of these BVPs. The convergence of the developed method is also es-
tablished. Competence of the demonstrated technique can also be weighed through
comparisons with the literature given in tables, which show that our results are com-
paratively better with more precise result. Graphs are plotted at different values of
N for all the problems, which clearly show that absolute errors decrease rapidly as
step size N increases.
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