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1. Introduction

It is well known that Choquet Theory provides a unified approach to inte-
gral representations in several areas of mathematics: potential theory, probability,
function algebras, operator theory, group representations, ergodic theory (see, e.g.,
[1-3, 10, 14]). Particularly, the Choquet boundary is an essential tool in Korovkin
approximation theory (see, e.g., [2, 3, 5, 9, 11, 12]).

In this paper we are concerned with the Choquet boundary for subspaces of
parabolic functions and linearly separating subspaces of continuous functions. For
other results concerning boundaries, parabolic functions, linearly separating subspaces
see, e.g., [1-4, 6, 7, 10, 12, 14] and the references therein.

Section 2 is devoted to subspaces of parabolic functions. We recall some known
results about the Choquet boundary of such a subspace, motivated by their relations
with Korovkin theory. The relation between the Choquet boundary and the set of
peak points is also investigated.

In Section 3 we study the Choquet boundary for linearly separating subspaces.
Important results in this direction were obtained in [6,13], and the references therein.
Our main result is Theorem 3.1. We start with Proposition 48 from [13] and add a
supplementary hypothesis; then we construct an example showing that without this
hypothesis the conclusion in not generally true.
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Throughout the paper we use the following definitions and notations.
For other definitions and notations see, e.g., [1-3], [10].
For a compact Hausdorff space X, let C(X) denote the Banach space of real-

valued continuous functions on X, equipped with the supremum norm. Let S be a
subset of C(X).

A subset B of X is called a boundary for S if for each f ∈ S there exists b ∈ B
such that f(b) = min

X
f.

Let M(X) be the space of all Radon measures on X and M+(X) the set of all
Radon positive measures on X. Let

M1
+(X) = {µ ∈M+(X) : µ(1) = 1}.

For x in X let ex be the corresponding Dirac measure on X.
If S is a subset of C(X) and µ, γ are in M+(X), we write µ ≺S γ (or, simply, µ ≺ γ)
if µ(s) ≤ γ(s) for all s in S.
The Choquet boundary of X with respect to S is the set

Ch(S) = {x ∈ X : µ ∈M1
+(X), µ ≺ ex ⇒ µ = ex}.

If S separates the points of X, then Ch(S) is a boundary for S (see [4]).
Let us consider the set of peak points with respect to S (see [1, p. 39]):
P (S) = {x ∈ X : ∃f ∈ S, f(x) < f(y) for all y ∈ X r {x}}.
It is easily seen that P (S) ⊂ Ch(S).
If S is a linear subspace of C(X), then

Ch(S) = {x ∈ X : µ ∈M1
+(X), µ|S = ex|S ⇒ µ = ex}.

2. The Choquet boundary for subspaces of parabolic functions

Let E be a locally convex Hausdorff space over R, and K a compact metrizable
convex subset of E. We denote by A(K) the set of all continuous real-valued affine
functions on K and by exK the set of all extreme points of K.

Theorem 2.1. ([1, Proposition I.4.3]) The Choquet boundary of the subspace A(K)
coincides with exK.

We shall see that the Choquet boundary of the linear subspace of C(K) generated
by A(K) and f ∈ C(K), coincides with K.

Let f ∈ C(K) be convex. Then, it is known that f has a right Gateaux derivative,
given by

Df(x; y) = lim
t↓0

f(x+ ty)− f(x)

t
= inf

t>0

f(x+ ty)− f(x)

t

for all x, y such that x ∈ K,x+ y ∈ K.
We will say that f is smooth provided that for all x ∈ K the mapping

ax : K → R, ax(y) = Df(x; y − x) is in A(K).

Now let f ∈ C(K) be strictly convex. Note that such a function exists since K
is metrizable (see [8]).
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Let S(f) be the subspace of C(K) spanned by A(K) and f . The functions
belonging to S(f) are called parabolic functions. These subspaces were studied by
C.A. Micchelli [9]. In particular, in [9, Proposition 3.1] he proved that, under the
assumption that f is strictly convex and smooth, then ex ∈ U(S(f)) for all x ∈ K,
where

U(S(f)) = {µ ∈M1
+(K) : γ ∈M1

+(K), γ|S(f)
= µ|S(f)

⇒ γ = µ}.
This implies

Theorem 2.2. If f ∈ C(K) is strictly convex and smooth, then Ch(S(f)) = K.

In [11, Proposition 2] it was shown that the results due to C.A. Micchelli remain
true if we omit the hypothesis that f is smooth. Then we get the result.

Theorem 2.3. If f ∈ C(K) is strictly convex, then Ch(S(f)) = K.

From this it follows that if f ∈ C(K) is strictly convex, then the subspace of
parabolic functions S(f) is a Korovkin subspace of C(K). This result was proved in
[5] in the case when K is a compact convex subset of Rn and in [9] in the general case
under the hypothesis that f is smooth.

As far as the peak point set of S(f) is concerned, we state the following result.

Theorem 2.4. Let K be metrizable, and f ∈ C(K) be strictly convex and smooth.
Then P (S(f)) = K.

Proof. Let x ∈ K and consider the function

s : K → R, s(y) = f(y)− f(x)− ax(y) for all y ∈ K.
Then s ∈ S(f), s(x) = 0, s(y) > 0 for all y ∈ K r {x}. Thus x ∈ P (S(f)). �

Remark 2.5. If f ∈ C(K) is strictly convex but is not smooth, it is possible to have
P (S(f)) 6= K.

This is shown in:

Example 2.6. Let K = [−1, 1]× [−1, 1] and let

f : K → R, f(x, y) = x2 + y2 −
√

1− y2 for all (x, y) ∈ K.
Then f is strictly convex on K. By Theorem 2.3 we have Ch(S(f)) = K.
But P (S(f)) = K r {(x,±1) : |x| < 1}.

3. The Choquet boundary for linearly separating subspaces of C(X)

Let H be a linear subspace of C(X) which separates the points of X. H> denotes
the dual of H, equipped with the weak >- topology.
Let us consider the map

Φ : X → H>,Φ(x)(h) = h(x) for all x ∈ X, h ∈ H.
Φ is easily seen to be a homeomorphism between X and Φ(X). Now set

Y = co(Φ(X)).
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Then Y is a compact convex subset of H>. We have (see [10,13])

exY = Φ(Ch(H)). (3.1)

Let us denote
H+ = {h ∈ H : h ≥ 0}.

(H>)+ = {h> ∈ H> : h>(h) ≥ 0 for all h ∈ H+}.

Proposition 3.1. (see, [Prop. 46, 13]). Let us consider the following assertions:
(1) H = H+ −H+,
(2) (H>)+ ∩ (−(H>)+) = {0},
(3) 0 /∈ Φ(X),
(4) 0 /∈ Y ,
(5) For all x ∈ X there exists h ∈ H such that h(x) 6= 0,
(6) There exists h0 ∈ H such that h0 > 0,
(7) (H>)+ has a compact base.
Then we have:
(3)⇐⇒ (5)⇐= (4)⇐⇒ (6) =⇒ (1) =⇒ (2), (6) =⇒ (7), (2) and (5)⇐⇒ (6).

Let F be a subset of C(X) and set

∂(F ) = {x ∈ X : µ ∈M+(X), µ ≺F ex =⇒ µ = ex}.
We need the following lemma.

Lemma 3.2. If F is a subset of C(X), the following properties hold:
(i) ∂(F ) = ∂(gF ) for all g ∈ C(X), g > 0.
(ii) Suppose that there exists f0 ∈ F, f0 > 0 and for all x ∈ X there exists f ∈ F

such that f(x) < 0.
Then ∂(F ) = ∩{Ch(gF ) : g ∈ C(X), g > 0}.
(iii) If there exists f0 ∈ F such that f0 > 0 and −f0 ∈ F , then ∂(F ) = Ch

(
F
f0

)
.

Proof. (i) Fix g ∈ C(X), g > 0 and y ∈ ∂(F ). Let µ ∈M+(X) be such that µ ≺gF ey.
Then ∫

X

f(x)
g(x)

g(y)
dµ(x) ≤ f(y) for all f ∈ F. (3.2)

Let us define γ ∈M+(X) by

dγ(x) =
g(x)

g(y)
dµ(x).

From (3.2) it follows that γ ≺F ey, and hence

γ = ey. (3.3)

Let now t ∈ C(X), and set

h =
g(y)

g
t.

From (3.3) we obtain γ(h) = h(y), i.e. µ(t) = t(y) for all t ∈ C(X). Thus µ = ey.
This means that y belongs to ∂(gF ). So we have ∂(F ) ⊂ ∂(gF ).

Now ∂(gF ) ⊂ ∂
(

1
g gF

)
= ∂(F ), i.e. ∂(F ) = ∂(gF ).
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(ii) We have ∂(F ) = ∂(gF ) ⊂ Ch(gF ) for all g ∈ C(X), g > 0. This yields

∂(F ) ⊂ ∩{Ch(gF ) : g ∈ C(X), g > 0}.
Let now x ∈ X, x /∈ ∂(F ). Then there exists µ ∈M+(X) such that

µ ≺F ex, (3.4)

µ 6= ex. (3.5)

From hypothesis there exists f ∈ F such that f(x) < 0.
Then (3.4) implies µ(f) ≤ f(x) < 0. So

µ 6= 0. (3.6)

From (3.5) and (3.6) we deduce that there exists a compact subset K of X such that
x /∈ K,

µ(K) > 0. (3.7)

From Urysohn’s Lemma we see that there exists a continuous function k : X −→ [0, 1]
such that

k(x) = 0, k|K = 1. (3.8)

Then (3.7) and (3.8) imply

µ(k) > 0.

From hypothesis there exists f0 ∈ F such that f0 > 0. By (3.4) we have

µ(f0) ≤ f0(x).

Let us consider the function v ∈ C(X) given by

v = f0 +
f0(x)− µ(f0)

µ(k)
k.

We have

v > 0, µ(v) = v(x). (3.9)

Now we define γ ∈M+(X) by

dγ(y) =
v(y)

v(x)
dµ(y). (3.10)

From (3.9) we deduce γ(1) = 1; thus

γ ∈M1
+(X). (3.11)

Let f be arbitrarily chosen in F . Then we have

γ

(
1

v
f

)
=

1

v(x)
µ(f) ≤ 1

v(x)
f(x).

This implies

γ ≺ 1
vF

ex. (3.12)

Suppose now that γ = ex, i.e. γ(g) = g(x) for all g ∈ C(X). Let t be arbitrarily
chosen in C(X). Let us denote

g =
v(x)

v
t.
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From γ(g) = g(x) and from (3.10) we deduce µ(t) = t(x) . This means that µ = ex,
which contradicts (3.5). Thus we have

γ 6= ex. (3.13)

Now (3.11), (3.12) and (3.13) imply

x /∈ Ch
(

1

v
F

)
.

So x /∈ ∩{Ch(gF ) : g ∈ C(X), g > 0}. This completes the proof of (ii).
(iii) Let f0 ∈ F be such that f0 > 0 and −f0 ∈ F . Then the constant functions 1 and

−1 belong to F
f0

; hence ∂
(

F
f0

)
= Ch

(
F
f0

)
. From (i) we deduce ∂(F ) = ∂

(
F
f0

)
and

so ∂(F ) = Ch
(

F
f0

)
.

Thus Lemma 3.1 is completely proved. �

In what follows we need the following definition. A subset F of C(X) is called
linearly separating (see [6, p. 55]) if for all x, y ∈ X,x 6= y there exist f, g ∈ F such
that ∣∣∣∣ f(x) f(y)

g(x) g(y)

∣∣∣∣ 6= 0.

Remark 3.3. It is easily seen that F is linearly separating if and only if for all x, y ∈
X,x 6= y, and for all c ∈ R there exists f ∈ F such that f(x) 6= cf(y) (see [13]).

Remark 3.4. If F separates the points of X and f + 1 belongs to F for all f ∈ F ,
then F is linearly separating.

Remark 3.5. If F is linearly separating and h ∈ C(X), h(x) 6= 0 for all x ∈ X, then
the set hF is linearly separating.

Remark 3.6. A linear subspace H of C(X) is linearly separating if and only if for all
x, y ∈ X,x 6= y, we have Φ(x) 6= 0 and Φ(y) does not belong to the line generated in
H> by 0 and Φ(x).

Remark 3.7. Let H be a linear subspace of C[0, 1], dimH = 2. Then H is linearly
separating if and only if H is a Tchebycheff subspace. If H is linearly separating, then
there exists h0 ∈ H such that h0 > 0.

The following result is essentially contained in [Proposition 48, 13]. Here we
introduce at 30 the additional hypothesis that there exists h0 ∈ H, h0 > 0. We shall
construct an example in which, without this hypothesis, 30 does not hold, that is

∅ = ∂(H) $ ∩{Ch(fH) : f ∈ C(X), f > 0} $ Ch(H).

Theorem 3.8. Let H be a linear subspace of C(X). Then:
10 ∂(H) ⊂ Ch(H). If H contains the constant functions, then ∂(H) = Ch(H).
20 ∂(H) = ∂(fH) for all f ∈ C(X), f > 0.
30 If there exists h0 ∈ H,h0 > 0, then

∂(H) = ∩{Ch(fH) : f ∈ C(X), f > 0} = Ch

(
H

h0

)
.
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40 If H is linearly separating, then the following assertions are equivalent:
a) ∂(H) 6= ∅,
b) there exists h0 ∈ H,h0 > 0,
c) H = H+ −H+,
d) (H>)+ ∩ (−(H>)+) = {0}.

Proof. 10 is obvious.
20 and 30 follow from Lemma 3.1.
40 is a consequence of Proposition 3.1. �

Example 3.9. Let X = [−2, 2]. Consider the functions h1, h2, h3, belonging to C[−2, 2]
and defined for all x ∈ [−2, 2] as

h1(x) = −1

2
x, h2(x) = 1− |x|,

h3(x) =

{
1− |x+ 1|, if x ∈ [−2, 0],
1− |x− 1|, if x ∈ (0, 2].

Let us denote by H the linear subspace of C[−2, 2] generated by h1, h2, h3.
We identify the functional ϕ ∈ H> with the vector (ϕ(h1), ϕ(h2), ϕ(h3)); so, we
identify H> with R3.
Φ([−2, 2]) is the following curve in R3:
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From Remark 3.6 we have that H is linearly separating. Since 0 ∈ Y = co(Φ([−2, 2])),
from Proposition 3.1 we deduce that H does not contain strictly positive functions
(this fact can be easily proved directly).
By Theorem 3.1 we have

∂(H) = ∅.
From (3.1) we deduce

Ch(H) = {−2,−1, 0, 1, 2}.
Let us prove that

∩{Ch(fH) : f ∈ C[−2, 2], f > 0} = {−2, 0, 2}. (3.14)

Let t ∈ {−2, 0, 2} and f ∈ C[−2, 2], f > 0. Let µ ∈M1
+([−2, 2]) be such that

µ|fH = et|fH . (3.15)

Then we have µ(fh3) = f(t)h3(t) = 0. This yields

suppµ ⊂ {−2, 0, 2}.

Hence there exist a, b, c ∈ [0, 1] such that

a+ b+ c = 1, (3.16)

µ = ae−2 + be0 + ce2.

From (3.15) and (3.16) we obtain f(−2)a− f(2)c = f(t)h1(t)
−f(−2)a+ f(0)b− f(2)c = f(t)h2(t)
a+ b+ c = 1.

It is easily seen that this system has a unique solution, and we deduce µ = et.
This means that t ∈ Ch(fH). So we have

{−2,−0, 2} ⊂ ∩{Ch(fH) : f ∈ C[−2, 2], f > 0} ⊂ Ch(H) = {−2,−1, 0, 1, 2}.
(3.17)

Let us consider now the functions f1, f2 ∈ C[−2, 2] defined by

f1(x) =

{
1
3 (1 + 2|x+ 1|), x ∈ [−2, 0],
1, x ∈ (0, 2].

f2(x) =

{
1, x ∈ [−2, 0],
1
3 (1 + 2|x− 1|), x ∈ (0, 2].

It is easy to verify that

1

3
(e−2 + e0 + e1)|f1H = e−1|f1H ,

1

3
(e−2 + e0 + e2)|f2H = e1|f2H .

This means that −1 /∈ Ch(f1H), 1 /∈ Ch(f2H). Hence −1 and 1 do not belong to
∩{Ch(fH) : f ∈ C[−2, 2], f > 0}. From (3.17) we deduce (3.14).
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[12] Raşa, I., Sets on which concave functions are affine and Korovkin closures, Anal. Numér.
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