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On a certain class of harmonic functions and the
generalized Bernardi-Libera-Livingston integral
operator
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Abstract. In this paper we examine the closure properties of the class VH(F ; γ)
under the generalized Bernardi-Libera-Livingston integral operator Lc(f),

(c > −1) which is defined by Lc(f) = Lc(h) + Lc(g), f = h + g, h and g
are analytic functions, where

Lc(h)(z) =
c+ 1

zc

z∫
0

(tc−1h(t)dt and Lc(g)(z) =
c+ 1

zc

z∫
0

(tc−1g(t)dt.

The obtained results are sharp and they improve known results.
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1. Preliminaries

A continuous function f = u + iv is a complex-valued harmonic function in a
complex domain G if both u and v are real and harmonic in G. In any simply-connected
domain D ⊂ G, we can write f = h + g, where h and g are analytic in D. We call h
the analytic part and g the co-analytic part of f . A necessary and sufficient condition
for f to be locally univalent and orientation preserving in D is that |h′ (z)| > |g′ (z)|
in D (see [3]).
Denote by H the family of functions

f = h+ g (1.1)

which are harmonic, univalent and orientation preserving in the open unit disc
U = {z : |z| < 1} so that f is normalized by f(0) = h(0) = f ′z(0) − 1 = 0. Thus,
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for f = h + g ∈ H, the functions h and g analytic in U can be expressed in the
following forms:

h(z) = z +

∞∑
m=2

amz
m, g(z) =

∞∑
m=1

bmz
m (0 ≤ b1 < 1) ,

and f(z) is then given by

f(z) = z +

∞∑
m=2

amz
m +

∞∑
m=1

bmzm (0 ≤ b1 < 1) . (1.2)

For functions f ∈ H given by (1.2) and F ∈ H given by

F (z) = H(z) +G(z) = z +

∞∑
m=2

Amz
m +

∞∑
m=1

Bmzm, (0 ≤ B1 ≤ 1), (1.3)

we recall the Hadamard product (or convolution) of f and F by

(f ∗ F )(z) = z +

∞∑
m=2

amAmz
m +

∞∑
m=1

bmBmzm (z ∈ U) . (1.4)

In terms of the Hadamard product (or convolution), we choose F as a fixed function
in H such that (f ∗ F )(z) exists for any f ∈ H, and for various choices of F we get
different linear operators which have been studied in recent past.
In [8] a subclass of H denoted by SH(F ; γ), for 0 ≤ γ < 1, is defined and studied and
it consists of functions of the form (1.1) satisfying the inequality:

∂

∂θ
(arg [(f ∗ F )(z)]) > γ (1.5)

0 ≤ θ < 2π and z = reiθ. Equivalently

Re

{
z (h (z) ∗H (z))

′ − z (g (z) ∗G (z))
′

h (z) ∗H (z) + g (z) ∗G (z)

}
≥ γ (1.6)

where z ∈ U . We also let VH(F ; γ) = SH(F ; γ)
⋂
VH where VH is the class of har-

monic functions with varying arguments introduced by Jahangiri and Silverman [6],
consisting of functions f of the form (1.1) in H for which there exists a real number
φ such that

ηm + (m− 1)φ ≡ π (mod 2π) , δm + (m+ 1)φ ≡ 0 (mod 2π) , m ≥ 2, (1.7)

where ηm = arg (am) and δm = arg (bm).
Some of the function classes emerge from the function class SH(F ; γ) defined above.
Indeed, if we specialize the function F (z) we can obtain, respectively, (see [8]) the class
of functions defined using: the Wright’s generalized operator on harmonic functions
([9], [13]), the Dziok-Srivastava operator on harmonic functions ([1]), the Carlson-
Shaffer operator ([2]), the Ruscheweyh derivative operator on harmonic functions
([5], [7], [10]) , the Srivastava-Owa fractional derivative operator ([12]), the Sălăgean
derivative operator for harmonic functions ([4], [11]).
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In the following we suppose that F (z) is of the form

F (z) = H(z) +G(z) = z + z +

∞∑
m=2

Cm (zm + zm) , (1.8)

where Cm ≥ 0 (m ≥ 2).
In [8] the following characterization theorem is proved

Theorem 1.1. Let f = h + g be given by (1.2) with restrictions (1.7) and 0 ≤ b1 <
1− γ
1 + γ

, 0 ≤ γ < 1. Then f ∈ VH(F ; γ) if and only if the inequality

∞∑
m=2

(
m− γ
1− γ

|am|+
m+ γ

1− γ
|bm|

)
Cm ≤ 1− 1 + γ

1− γ
b1 (1.9)

holds true.

Theorem 1.2. [8] Set λm =
1− γ

(m− γ)Cm
and µm =

1− γ
(m+ γ)Cm

. Then for b1 fixed,

0 ≤ b1 <
1− γ
1 + γ

the extreme points for VH(F ; γ), 0 ≤ γ < 1 are{
z + λmxz

m + b1z
}
∪
{
z + b1z + µmxzm

}
where m ≥ 2 and x = 1− 1 + γ

1− γ
b1.

2. Main result

Now, we will examine the closure properties of the class VH(F ; γ) under the
generalized Bernardi-Libera-Livingston integral operator Lc(f), (c > −1) which is

defined by Lc(f) = Lc(h) + Lc(g) where

Lc(h)(z) =
c+ 1

zc

z∫
0

(tc−1h(t)dt and Lc(g)(z) =
c+ 1

zc

z∫
0

(tc−1g(t)dt.

Theorem 2.1. Let f ∈ VH(F ; γ). Then Lc(f) ∈ VH(F ; δ (γ)) where

δ (γ) =
(2 + γ) (c+ 2) (1− b1)− 2 (c+ 1) [(1− γ)− (1 + γ) b1]

(2 + γ) (c+ 2) (1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]
> γ.

The result is sharp.

Proof. Since f ∈ VH(F ; γ) we have

∞∑
m=2

(
m− γ
1− γ

|am|+
m+ γ

1− γ
|bm|

)
Cm

1− 1 + γ

1− γ
b1

≤ 1. (2.1)
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We know from Theorem 1.1 that Lc(f) ∈ VH(F ; δ (γ)) if and only if

∞∑
m=2

(
m− δ (γ)

1− δ (γ)

c+ 1

c+m
|am|+

m+ δ (γ)

1− δ (γ)

c+ 1

c+m
|bm|

)
Cm

1− 1 + δ (γ)

1− δ (γ)
b1

≤ 1. (2.2)

We note that the inequalities

∞∑
m=2

(
m− δ (γ)

1− δ (γ)

c+ 1

c+m
|am|+

m+ δ (γ)

1− δ (γ)

c+ 1

c+m
|bm|

)
Cm

1− 1 + δ (γ)

1− δ (γ)
b1

≤

∞∑
m=2

(
m− γ
1− γ

|am|+
m+ γ

1− γ
|bm|

)
Cm

1− 1 + γ

1− γ
b1

(2.3)

imply (2.2). It is sufficient to determine δ (γ) such that

m− δ(γ)

1− δ(γ)

c+ 1

c+m

1− 1 + δ(γ)

1− δ(γ)
b1

≤

m− γ
1− γ

1− 1 + γ

1− γ
b1

(2.4)

and
m+ δ(γ)

1− δ(γ)

c+ 1

c+m

1− 1 + δ(γ)

1− δ(γ)
b1

≤

m+ γ

1− γ

1− 1 + γ

1− γ
b1

. (2.5)

holds true. (2.4) is equivalent to

m− δ(γ)

1− δ(γ)− b1 − δ(γ)b1

c+ 1

c+m
≤ m− γ

(1− γ)− (1 + γ) b1

δ(γ) ≤ (m− γ) (c+m) (1− b1)−m (c+ 1) [(1− γ)− (1 + γ) b1]

(m− γ) (c+m) (1 + b1)− (c+ 1) [(1− γ)− (1 + γ) b1]
. (2.6)

Relation (2.5) is equivalent to

m+ δ(γ)

1− δ(γ)− b1 − δ(γ)b1

c+ 1

c+m
≤ m+ γ

(1− γ)− (1 + γ) b1

δ(γ) ≤ (m+ γ) (c+m) (1− b1)−m (c+ 1) [(1− γ)− (1 + γ) b1]

(m+ γ) (c+m) (1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]
. (2.7)
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From (2.6) and (2.7) we choose the smaller one:

(m− γ) (c+m) (1− b1)−m (c+ 1) [(1− γ)− (1 + γ) b1]

(m− γ) (c+m) (1 + b1)− (c+ 1) [(1− γ)− (1 + γ) b1]

>
(m+ γ) (c+m) (1− b1)−m (c+ 1) [(1− γ)− (1 + γ) b1]

(m+ γ) (c+m) (1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]

or equivalently

2(c+ 1)∆2m(m− 1)

[(m− γ) (c+m) (1 + b1)− (c+ 1) ∆] [(m+ γ) (c+m) (1 + b1) + (c+ 1) ∆]
> 0,

where ∆ = [(1− γ)− (1 + γ) b1] > 0 which is true. So

δ(γ) ≤ (m+ γ) (c+m) (1− b1)−m (c+ 1) [(1− γ)− (1 + γ) b1]

(m+ γ) (c+m) (1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]
. (2.8)

Let us consider the function E : [2;∞)→ R

E(x) =
(x+ γ) (c+ x) (1− b1)− x (c+ 1) [(1− γ)− (1 + γ) b1]

(x+ γ) (c+ x) (1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]
;

then its derivative is:

E′(x) =
(c+ 1) [(1− γ)− (1 + γ) b1]

[
(1 + b1)x2 + 2x(1− b1) + 2γ + b1 − 1

]
{(x+ γ) (c+ x) (1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]}2

> 0.

E(x) is an increasing function. In our case we need δ (γ) ≤ E (m) ,∀m ≥ 2 and for
this reason we choose

δ (γ) = E(2) =
(2 + γ) (c+ 2) (1− b1)− 2 (c+ 1) [(1− γ)− (1 + γ) b1]

(2 + γ) (c+ 2) (1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]
.

We must check δ (γ) > γ that is equivalent to

[(1− γ)− (1 + γ) b1] (2 + γ) [(c+ 2)− (c+ 1)]

(2 + γ) (c+ 2) (1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]
> 0

which is true.
The result is sharp, because if

f(z) = z + b1z +
1− γ

(2 + γ)C2

(
1− 1 + γ

1− γ
b1

)
z2

then

Lc(f)(z) = z + b1z +
1− γ

(2 + γ)C2

(
1− 1 + γ

1− γ
b1

)
z2
c+ 1

c+ 2

= z + b1z +
1− δ (γ)

(2 + δ (γ))C2

(
1− 1 + δ(γ)

1− δ(γ)
b1

)
z2

⇔ 1− γ
(2 + γ)

c+ 1

c+ 2

1− γ − (1 + γ)b1
1− γ

=
1− δ (γ)

(2 + δ (γ))

1− δ(γ)− (1 + δ(γ))b1
1− δ(γ)

⇔ δ(γ) =
(2 + γ) (c+ 2)(1− b1)− 2 (c+ 1) [(1− γ)− (1 + γ) b1]

(2 + γ) (c+ 2)(1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]

this is the (2.7) inequality. �
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