On a certain class of harmonic functions and the generalized Bernardi-Libera-Livingston integral operator

Grigore Ştefan Sălăgean and Ágnes Orsolya Páll-Szabó

Abstract

In this paper we examine the closure properties of the class $\mathcal{V}_{\mathcal{H}}(F ; \gamma)$ under the generalized Bernardi-Libera-Livingston integral operator $\mathcal{L}_{c}(f)$, $(c>-1)$ which is defined by $\mathcal{L}_{c}(f)=\mathcal{L}_{c}(h)+\overline{\mathcal{L}_{c}(g)}, f=h+\bar{g}, \quad h$ and g are analytic functions, where $$
\mathcal{L}_{c}(h)(z)=\frac{c+1}{z^{c}} \int_{0}^{z}\left(t^{c-1} h(t) d t \text { and } \quad \mathcal{L}_{c}(g)(z)=\frac{c+1}{z^{c}} \int_{0}^{z}\left(t^{c-1} g(t) d t .\right.\right.
$$

The obtained results are sharp and they improve known results.
Mathematics Subject Classification (2010): 30C45, 30C50.
Keywords: Harmonic univalent functions, extreme points, varying arguments, Hadamard product, integral operator.

1. Preliminaries

A continuous function $f=u+i v$ is a complex-valued harmonic function in a complex domain \mathcal{G} if both u and v are real and harmonic in \mathcal{G}. In any simply-connected domain $D \subset \mathcal{G}$, we can write $f=h+\bar{g}$, where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and orientation preserving in D is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in $D($ see $[3])$.
Denote by \mathcal{H} the family of functions

$$
\begin{equation*}
f=h+\bar{g} \tag{1.1}
\end{equation*}
$$

which are harmonic, univalent and orientation preserving in the open unit disc $\mathcal{U}=\{z:|z|<1\}$ so that f is normalized by $f(0)=h(0)=f_{z}^{\prime}(0)-1=0$. Thus,
for $f=h+\bar{g} \in \mathcal{H}$, the functions h and g analytic in \mathcal{U} can be expressed in the following forms:

$$
h(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m}, \quad g(z)=\sum_{m=1}^{\infty} b_{m} z^{m} \quad\left(0 \leq b_{1}<1\right),
$$

and $f(z)$ is then given by

$$
\begin{equation*}
f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m}+\overline{\sum_{m=1}^{\infty} b_{m} z^{m}} \quad\left(0 \leq b_{1}<1\right) . \tag{1.2}
\end{equation*}
$$

For functions $f \in \mathcal{H}$ given by (1.2) and $F \in \mathcal{H}$ given by

$$
\begin{equation*}
F(z)=H(z)+\overline{G(z)}=z+\sum_{m=2}^{\infty} A_{m} z^{m}+\overline{\sum_{m=1}^{\infty} B_{m} z^{m}},\left(0 \leq B_{1} \leq 1\right) \tag{1.3}
\end{equation*}
$$

we recall the Hadamard product (or convolution) of f and F by

$$
\begin{equation*}
(f * F)(z)=z+\sum_{m=2}^{\infty} a_{m} A_{m} z^{m}+\overline{\sum_{m=1}^{\infty} b_{m} B_{m} z^{m}} \quad(z \in \mathcal{U}) . \tag{1.4}
\end{equation*}
$$

In terms of the Hadamard product (or convolution), we choose F as a fixed function in \mathcal{H} such that $(f * F)(z)$ exists for any $f \in \mathcal{H}$, and for various choices of F we get different linear operators which have been studied in recent past.
In [8] a subclass of \mathcal{H} denoted by $\mathcal{S}_{\mathcal{H}}(F ; \gamma)$, for $0 \leq \gamma<1$, is defined and studied and it consists of functions of the form (1.1) satisfying the inequality:

$$
\begin{equation*}
\frac{\partial}{\partial \theta}(\arg [(f * F)(z)])>\gamma \tag{1.5}
\end{equation*}
$$

$0 \leq \theta<2 \pi$ and $z=r e^{i \theta}$. Equivalently

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z(h(z) * H(z))^{\prime}-\overline{z(g(z) * G(z))^{\prime}}}{h(z) * H(z)+\overline{g(z) * G(z)}}\right\} \geq \gamma \tag{1.6}
\end{equation*}
$$

where $z \in \mathcal{U}$. We also let $\mathcal{V}_{\mathcal{H}}(F ; \gamma)=S_{\mathcal{H}}(F ; \gamma) \bigcap V_{\mathcal{H}}$ where $V_{\mathcal{H}}$ is the class of harmonic functions with varying arguments introduced by Jahangiri and Silverman [6], consisting of functions f of the form (1.1) in \mathcal{H} for which there exists a real number ϕ such that

$$
\begin{equation*}
\eta_{m}+(m-1) \phi \equiv \pi(\bmod 2 \pi), \quad \delta_{m}+(m+1) \phi \equiv 0(\bmod 2 \pi), \quad m \geq 2 \tag{1.7}
\end{equation*}
$$

where $\eta_{m}=\arg \left(a_{m}\right)$ and $\delta_{m}=\arg \left(b_{m}\right)$.
Some of the function classes emerge from the function class $S_{\mathcal{H}}(F ; \gamma)$ defined above. Indeed, if we specialize the function $F(z)$ we can obtain, respectively, (see [8]) the class of functions defined using: the Wright's generalized operator on harmonic functions ([9], [13]), the Dziok-Srivastava operator on harmonic functions ([1]), the CarlsonShaffer operator ([2]), the Ruscheweyh derivative operator on harmonic functions ([5], [7], [10]), the Srivastava-Owa fractional derivative operator ([12]), the Sălăgean derivative operator for harmonic functions ([4], [11]).

In the following we suppose that $F(z)$ is of the form

$$
\begin{equation*}
F(z)=H(z)+\overline{G(z)}=z+\bar{z}+\sum_{m=2}^{\infty} C_{m}\left(z^{m}+\overline{z^{m}}\right) \tag{1.8}
\end{equation*}
$$

where $C_{m} \geq 0(m \geq 2)$.
In [8] the following characterization theorem is proved
Theorem 1.1. Let $f=h+\bar{g}$ be given by (1.2) with restrictions (1.7) and $0 \leq b_{1}<$ $\frac{1-\gamma}{1+\gamma}, 0 \leq \gamma<1$. Then $f \in \mathcal{V}_{\mathcal{H}}(F ; \gamma)$ if and only if the inequality

$$
\begin{equation*}
\sum_{m=2}^{\infty}\left(\frac{m-\gamma}{1-\gamma}\left|a_{m}\right|+\frac{m+\gamma}{1-\gamma}\left|b_{m}\right|\right) C_{m} \leq 1-\frac{1+\gamma}{1-\gamma} b_{1} \tag{1.9}
\end{equation*}
$$

holds true.
Theorem 1.2. [8] Set $\lambda_{m}=\frac{1-\gamma}{(m-\gamma) C_{m}}$ and $\mu_{m}=\frac{1-\gamma}{(m+\gamma) C_{m}}$. Then for b_{1} fixed, $0 \leq b_{1}<\frac{1-\gamma}{1+\gamma}$ the extreme points for $\mathcal{V}_{\mathcal{H}}(F ; \gamma), 0 \leq \gamma<1$ are

$$
\left\{z+\lambda_{m} x z^{m}+\overline{b_{1} z}\right\} \cup\left\{z+\overline{b_{1} z+\mu_{m} x z^{m}}\right\}
$$

where $m \geq 2$ and $x=1-\frac{1+\gamma}{1-\gamma} b_{1}$.

2. Main result

Now, we will examine the closure properties of the class $\mathcal{V}_{\mathcal{H}}(F ; \gamma)$ under the generalized Bernardi-Libera-Livingston integral operator $\mathcal{L}_{c}(f),(c>-1)$ which is defined by $\mathcal{L}_{c}(f)=\mathcal{L}_{c}(h)+\overline{\mathcal{L}_{c}(g)}$ where

$$
\mathcal{L}_{c}(h)(z)=\frac{c+1}{z^{c}} \int_{0}^{z}\left(t^{c-1} h(t) d t \quad \text { and } \quad \mathcal{L}_{c}(g)(z)=\frac{c+1}{z^{c}} \int_{0}^{z}\left(t^{c-1} g(t) d t .\right.\right.
$$

Theorem 2.1. Let $f \in \mathcal{V}_{\mathcal{H}}(F ; \gamma)$. Then $\mathcal{L}_{c}(f) \in \mathcal{V}_{\mathcal{H}}(F ; \delta(\gamma))$ where

$$
\delta(\gamma)=\frac{(2+\gamma)(c+2)\left(1-b_{1}\right)-2(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]}{(2+\gamma)(c+2)\left(1+b_{1}\right)+(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]}>\gamma
$$

The result is sharp.
Proof. Since $f \in \mathcal{V}_{\mathcal{H}}(F ; \gamma)$ we have

$$
\begin{equation*}
\frac{\sum_{m=2}^{\infty}\left(\frac{m-\gamma}{1-\gamma}\left|a_{m}\right|+\frac{m+\gamma}{1-\gamma}\left|b_{m}\right|\right) C_{m}}{1-\frac{1+\gamma}{1-\gamma} b_{1}} \leq 1 \tag{2.1}
\end{equation*}
$$

We know from Theorem 1.1 that $\mathcal{L}_{c}(f) \in \mathcal{V}_{\mathcal{H}}(F ; \delta(\gamma))$ if and only if

$$
\begin{equation*}
\frac{\sum_{m=2}^{\infty}\left(\frac{m-\delta(\gamma)}{1-\delta(\gamma)} \frac{c+1}{c+m}\left|a_{m}\right|+\frac{m+\delta(\gamma)}{1-\delta(\gamma)} \frac{c+1}{c+m}\left|b_{m}\right|\right) C_{m}}{1-\frac{1+\delta(\gamma)}{1-\delta(\gamma)} b_{1}} \leq 1 \tag{2.2}
\end{equation*}
$$

We note that the inequalities

$$
\begin{gather*}
\sum_{m=2}^{\infty}\left(\frac{m-\delta(\gamma)}{1-\delta(\gamma)} \frac{c+1}{c+m}\left|a_{m}\right|+\frac{m+\delta(\gamma)}{1-\delta(\gamma)} \frac{c+1}{c+m}\left|b_{m}\right|\right) C_{m} \\
1-\frac{1+\delta(\gamma)}{1-\delta(\gamma)} b_{1} \tag{2.3}\\
\leq \frac{\sum_{m=2}^{\infty}\left(\frac{m-\gamma}{1-\gamma}\left|a_{m}\right|+\frac{m+\gamma}{1-\gamma}\left|b_{m}\right|\right) C_{m}}{1-\frac{1+\gamma}{1-\gamma} b_{1}}
\end{gather*}
$$

imply (2.2). It is sufficient to determine $\delta(\gamma)$ such that

$$
\begin{equation*}
\frac{\frac{m-\delta(\gamma)}{1-\delta(\gamma)} \frac{c+1}{c+m}}{1-\frac{1+\delta(\gamma)}{1-\delta(\gamma)} b_{1}} \leq \frac{\frac{m-\gamma}{1-\gamma}}{1-\frac{1+\gamma}{1-\gamma} b_{1}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\frac{m+\delta(\gamma)}{1-\delta(\gamma)} \frac{c+1}{c+m}}{1-\frac{1+\delta(\gamma)}{1-\delta(\gamma)} b_{1}} \leq \frac{\frac{m+\gamma}{1-\gamma}}{1-\frac{1+\gamma}{1-\gamma} b_{1}} \tag{2.5}
\end{equation*}
$$

holds true. (2.4) is equivalent to

$$
\begin{gather*}
\frac{m-\delta(\gamma)}{1-\delta(\gamma)-b_{1}-\delta(\gamma) b_{1}} \frac{c+1}{c+m} \leq \frac{m-\gamma}{(1-\gamma)-(1+\gamma) b_{1}} \\
\delta(\gamma) \leq \frac{(m-\gamma)(c+m)\left(1-b_{1}\right)-m(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]}{(m-\gamma)(c+m)\left(1+b_{1}\right)-(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]} . \tag{2.6}
\end{gather*}
$$

Relation (2.5) is equivalent to

$$
\begin{gather*}
\frac{m+\delta(\gamma)}{1-\delta(\gamma)-b_{1}-\delta(\gamma) b_{1}} \frac{c+1}{c+m} \leq \frac{m+\gamma}{(1-\gamma)-(1+\gamma) b_{1}} \\
\delta(\gamma) \leq \frac{(m+\gamma)(c+m)\left(1-b_{1}\right)-m(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]}{(m+\gamma)(c+m)\left(1+b_{1}\right)+(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]} \tag{2.7}
\end{gather*}
$$

From (2.6) and (2.7) we choose the smaller one:

$$
\begin{aligned}
& \frac{(m-\gamma)(c+m)\left(1-b_{1}\right)-m(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]}{(m-\gamma)(c+m)\left(1+b_{1}\right)-(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]} \\
> & \frac{(m+\gamma)(c+m)\left(1-b_{1}\right)-m(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]}{(m+\gamma)(c+m)\left(1+b_{1}\right)+(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]}
\end{aligned}
$$

or equivalently

$$
\frac{2(c+1) \Delta^{2} m(m-1)}{\left[(m-\gamma)(c+m)\left(1+b_{1}\right)-(c+1) \Delta\right]\left[(m+\gamma)(c+m)\left(1+b_{1}\right)+(c+1) \Delta\right]}>0
$$

where $\Delta=\left[(1-\gamma)-(1+\gamma) b_{1}\right]>0$ which is true. So

$$
\begin{equation*}
\delta(\gamma) \leq \frac{(m+\gamma)(c+m)\left(1-b_{1}\right)-m(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]}{(m+\gamma)(c+m)\left(1+b_{1}\right)+(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]} \tag{2.8}
\end{equation*}
$$

Let us consider the function $E:[2 ; \infty) \rightarrow \mathbb{R}$

$$
E(x)=\frac{(x+\gamma)(c+x)\left(1-b_{1}\right)-x(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]}{(x+\gamma)(c+x)\left(1+b_{1}\right)+(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]}
$$

then its derivative is:

$$
E^{\prime}(x)=\frac{(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]\left[\left(1+b_{1}\right) x^{2}+2 x\left(1-b_{1}\right)+2 \gamma+b_{1}-1\right]}{\left\{(x+\gamma)(c+x)\left(1+b_{1}\right)+(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]\right\}^{2}}>0
$$

$E(x)$ is an increasing function. In our case we need $\delta(\gamma) \leq E(m), \forall m \geq 2$ and for this reason we choose

$$
\delta(\gamma)=E(2)=\frac{(2+\gamma)(c+2)\left(1-b_{1}\right)-2(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]}{(2+\gamma)(c+2)\left(1+b_{1}\right)+(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]}
$$

We must check $\delta(\gamma)>\gamma$ that is equivalent to

$$
\frac{\left[(1-\gamma)-(1+\gamma) b_{1}\right](2+\gamma)[(c+2)-(c+1)]}{(2+\gamma)(c+2)\left(1+b_{1}\right)+(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]}>0
$$

which is true.
The result is sharp, because if

$$
f(z)=z+\overline{b_{1} z+\frac{1-\gamma}{(2+\gamma) C_{2}}\left(1-\frac{1+\gamma}{1-\gamma} b_{1}\right) z^{2}}
$$

then

$$
\begin{gathered}
\mathcal{L}_{c}(f)(z)=\overline{z+b_{1} z+\frac{1-\gamma}{(2+\gamma) C_{2}}\left(1-\frac{1+\gamma}{1-\gamma} b_{1}\right) z^{2} \frac{c+1}{c+2}} \\
=z+\frac{b_{1} z+\frac{1-\delta(\gamma)}{(2+\delta(\gamma)) C_{2}}\left(1-\frac{1+\delta(\gamma)}{1-\delta(\gamma)} b_{1}\right) z^{2}}{1-\gamma}=\frac{1-\delta(\gamma)}{(2+\delta(\gamma))} \frac{1-\delta(\gamma)-(1+\delta(\gamma)) b_{1}}{1-\delta(\gamma)} \\
\Leftrightarrow \frac{1-\gamma}{(2+\gamma)} \frac{c+1}{c+2} \frac{1-\gamma-(1+\gamma) b_{1}}{1-\gamma} \\
\Leftrightarrow \delta(\gamma)=\frac{(2+\gamma)(c+2)\left(1-b_{1}\right)-2(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]}{(2+\gamma)(c+2)\left(1+b_{1}\right)+(c+1)\left[(1-\gamma)-(1+\gamma) b_{1}\right]}
\end{gathered}
$$

this is the (2.7) inequality.

Acknowledgement. The present work has received financial support through the project: Entrepreneurship for innovation through doctoral and postdoctoral research, POCU/360/6/13/123886 co-financed by the European Social Fund, through the Operational Program for Human Capital 2014- 2020.

References

[1] Al-Kharsani, H.A., Al-Khai, R.A., Univalent harmonic functions, J. Inequal. Pure Appl. Math., 8(2007), no. 2, Art. 59, 8 pp.
[2] Carlson, B.C., Shaffer, S.B., Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(1984), no. 4, 737-745.
[3] Clunie, J., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A.I. Math., 9(1984), 3-25.
[4] Jahangiri, J.M., Murugusundaramoorthy, G., Vijaya, K., Sălăgean-type harmonic univalent functions, Southwest J. Pure Apll. Math., (2002), no. 2, 77-82.
[5] Jahangiri, J.M., Murugusundaramoorthy, G., Vijaya, K., Starlikeness of harmonic functions defined by Ruscheweyh derivatives J. Indian Acad. Math., 26(2004), no. 1, 191-200.
[6] Jahangiri, J.M., Silverman, H., Harmonic univalent functions with varying arguments, Int. J. Appl. Math., 8(2002), no. 3, 267-275.
[7] Murugusundaramoorthy, G., A class of Ruscheweyh-type harmonic univalent functions with varying arguments, Southwest J. Pure Appl. Math., 2(2003), 90-95.
[8] Murugusundaramoorthy, G., Sălăgean, G.S., On a certain class of harmonic functions associated with a convolution structure, Mathematica, 54(77)(2012), Special Issue, 131142.
[9] Murugusundaramoorthy, G., Vijaya, K., A subclass of harmonic functions associated with Wright hypergeometric functions, Adv. Stud. Contemp. Math. (Kyungshang), 18(2009), no. 1, 87-95.
[10] Ruscheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
[11] Sălăgean, G.S., Subclasses of univalent functions, Complex Analysis, Fifth RomanianFinnish Seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983.
[12] Srivastava, H.M., Owa, S., Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators and certain subclasses of analytic functions, Nagoya Math. J., 106(1987), 1-28.
[13] Wright, E.M., The asymptotic expansion of the generalized hypergeometric function, Proc. London Math. Soc., 46(1940), no. 2, 389-408.

Grigore Ştefan Sălăgean
Babeş-Bolyai University,
Faculty of Mathematics and Computer Sciences,
1, Kogălniceanu Street,
400084 Cluj-Napoca, Romania
e-mail: salagean@math.ubbcluj.ro

Ágnes Orsolya Páll-Szabó
Babeş-Bolyai University,
Faculty of Mathematics and Computer Sciences,
1, Kogălniceanu Street,
400084 Cluj-Napoca, Romania
e-mail: pallszaboagnes@math.ubbcluj.ro

