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1. Introduction

The set-valued differential, integral and discrete-time equations and inclusions
are an important part of the theory of set-valued analysis, and they are high-valued
for the control theory and its applications, as well as for fuzzy differential equations.
They were first studied in 1969 by F.S. de Blasi and F. Iervolino [5]. Later, set-valued
differential equations have been studied by many scientists due to their applications
in many areas. A lot of results on the theory of set-valued differential, integral and
discrete-time equations and inclusions can be found in the following books and articles
[6, 10, 12, 13, 14, 15, 16, 17, 22, 23, 24, 25, 26, 27, 31, 36, 30, 38, 41, 42, 44] and
references therein.

In this article first we consider some definitions of the derivative of a set-valued
mapping (Hukuhara derivative [11], Plotnikov-Skripnik derivative [32] and Bede-Gal
derivative [1, 19, 20, 46, 47]) and some of their properties. Next, we consider a linear
set-valued differential equation with different derivatives that were previously dis-
cussed and study the existence of solutions for these equations.
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2. Preliminaries

Let R be the set of real numbers and let Rn denote the n-dimensional Euclidean
space (n ≥ 2). We denote by comp(Rn) and conv(Rn) the set of nonempty compact
subsets of Rn and the set of nonempty convex and compact subsets of Rn, respectively.
For two given sets X,Y ∈ comp(Rn) and λ ∈ R, the Minkowski sum and scalar
multiple are defined by

X + Y = {x+ y |x ∈ X, y ∈ Y } and λX = {λx |x ∈ X}.

We consider the Hausdorff distance h : comp(Rn)× comp(Rn)→ R+

⋃
{0} given by

h(X,Y ) = min{r ≥ 0 |X ⊂ Y +Br(0), Y ⊂ X +Br(0)},

where Br(0) = {x ∈ Rn | ‖x‖ ≤ r} is the closed ball with radius r centered at the
origin ( ‖x‖ denotes the Euclidean norm).

Lemma 2.1. [39, 40] The following properties hold:
1) (conv(Rn), h) is a complete metric space,
2) h(A+ C,B + C) = h(A,B),
3) h(λA, λB) = |λ|h(A,B) for all A,B,C ∈ conv(Rn) and λ ∈ R.

However, comp(Rn) and conv(Rn) are not linear spaces since they do not contain
inverse elements for the addition, and therefore difference is not well defined, i.e. if
A ∈ comp(Rn) and A 6= {a}, then A + (−1)A 6= {0}. As a consequence, alternative
formulations for difference have been suggested [7, 11, 28, 39]. One of these alternatives
is the Hukuhara difference [11].

Definition 2.2. [11] Let X,Y ∈ conv(Rn). A set Z ∈ conv(Rn) such that X = Y + Z
is called a Hukuhara difference (H-difference) of the sets X and Y and is denoted by
X H Y.

In this case X H X = {0} and also (A+ B) H B = A for any A,B ∈ conv(Rn).

Also, we note that X H Y 6= X + (−1)Y.

Remark 2.3. Let A,B ∈ conv(Rn). Then the following statements are true:

1) if the H-difference A H B exists, then diam(A) ≥ diam(B);

2) if n = 1 and diam(A) ≥ diam(B), then the H-difference A H B exists;

3) if n ≥ 2 and diam(A) ≥ diam(B), then the H-difference A H B may not exist.

For example, if A = {a ∈ Rn | |ai| ≤ 2, i = 1, n} and B = {b ∈ Rn | ‖b‖ ≤ 1},
then A H B does not exist.

The properties of this difference are studied in detail in [11, 15, 16, 22, 31, 30, 39].
M. Hukuhara introduced the concept of H-differentiability [11] for set-valued

functions by using the H-difference.
Let X : [0, T ]→ conv(Rn) be a set-valued mapping; (t0 −∆, t0 + ∆) ⊂ [0, T ] be

a ∆- neighborhood of a point t0 ∈ [0, T ]; ∆ > 0.
For any t ∈ (t0 − ∆, t0 + ∆) consider the following Hukuhara differences

X(t) h X(t0), t ≥ t0, and X(t0) h X(t), t ≥ t0 if these differences exist.
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Definition 2.4. [11] We say that the mapping X : [0, T ] → conv(Rn) has Hukuhara
derivative (H-derivative) DHX(t0) at a point t0 ∈ [0, T ], if there exists an element
DHX(t0) ∈ conv(Rn) such that the limits

lim
t↓t0

1

t− t0
(X(t)

h
X(t0)) and lim

t↑t0

1

t0 − t
(X(t0)

h
X(t)) (2.1)

exist in the topology of conv(Rn) and are equal to DHX(t0).

The properties of Hukuhara derivative are studied in detail in [8, 11, 15, 22, 31,
30, 39]. Here, we mention some of them.

Theorem 2.5. [11] If the mapping X : [0, T ]→ conv(Rn) is H-differentiable on [0, T ],
then

X(t) = X(0) +

t∫
0

DHX(s)ds,

where the integral is understood in the sense of [11].

Corollary 2.6. If the mapping X(·) is H-differentiable on [0, T ], then diam(X(·)) is a
non-decreasing function on [0, T ].

Remark 2.7. The inverse statement is not true. For, example. Let X(·) : [0, 1] →

conv(R2) be such that X(t) = A(t)C(t), where A(t) =

(
cos(t) − sin(t)
sin(t) cos(t)

)
is

a rotation matrix, C(t) = {x ∈ R2 | |xi| ≤ t, i = 1, 2} is square. Obviously,

diam(X(t)) =
√

2t. However, the mapping X(·) is not H-differentiable on [0, 1].

Corollary 2.8. If the function diam(X(·)) is a decreasing function on [0, T ], then the
mapping X(·) is not H-differentiable on [0, T ].

In order to overcome these shortcomings of this approach, other types of deriva-
tives for set-valued functions have been explored.

The first alternative of the derivative for set-valued mappings have been intro-
duced by H.T. Banks, M.Q. Jacobs [7] and J.N.Tyurin [45]. According to the Rad-
ströms embedding theorem [40] there is a real normed linear space B and an isometric
mapping π : conv(Rn)→ B. B is a space of equivalence classes (see [7, 39, 40]). Then,
taking advantage of this embedding theorem, a set-valued mapping X(·) is said to
be π-differentiable at t0 if π ◦ X(·) is differentiable at t0. Some properties of this
derivative and its connection with other derivatives for set-valued mappings can be
found in [7, 9, 18, 21, 37, 39]. However, the π-derivative of a set-valued mapping X(·)
may be an element of the space B, which does not have a comparable set in the space
conv(Rn) (examples, see [15, 22, 31, 30]).

In [28, 31, 30] the definition of the T-derivative that generalizes the H-derivative
and reminds outwardly the π - derivative was introduced. However, its use had diffi-
culty when writing the corresponding set-valued differential equation.

Later, A.V. Plotnikov and N.V. Skripnik took advantage of some approaches
that were used in [28] and introduced a new definition of a derivative.
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Definition 2.9. [32] Let X : [0, T ] → conv(Rn) and t ∈ [0, T ]. We say that X(·) has
a Plotnikov-Skripnik derivative (PS-derivative) DpsX(t) ∈ conv(Rn) at t ∈ (0, T ), if
for all ∆ > 0 that are sufficiently close to 0, the H-differences and the limits exist in
at least one of the following expressions:
(i) lim

∆→0
∆−1(X(t+ ∆) H X(t)) = lim

∆→0
∆−1(X(t) H X(t−∆)) = DpsX(t)

or
(ii) lim

∆→0
∆−1(X(t) H X(t+ ∆))= lim

∆→0
∆−1(X(t−∆) H X(t))=DpsX(t)

or
(iii) lim

∆→0
∆−1(X(t+ ∆) H X(t)) = lim

∆→0
∆−1(X(t−∆) H X(t)) = DpsX(t)

or
(iv) lim

∆→0
∆−1(X(t) H X(t+ ∆))= lim

∆→0
∆−1(X(t) H X(t−∆))=DpsX(t).

The properties of this derivative were obtained in [32, 33, 34, 35]. Here, we
mention some of them.

Remark 2.10. If the set-valued mapping X(·) is H-differentiable then it is PS-
differentiable and DpsX(t) = DHX(t).

Remark 2.11. If the set-valued mapping X(·) is PS-differentiable on I and diamX(·)
is a non-decreasing function on [0, T ] then the set-valued mapping X(·) is H-
differentiable and DpsX(t) = DHX(t).

Remark 2.12. There exist set-valued mappings that are PS-differentiable but not
H-differentiable.

Example 2.13. The set-valued mapping X(t) = B|t|(0) is PS-differentiable on R and
its PS-derivative DpsX(t) ≡ B1(0). It is obvious that the given set-valued mapping is
H-differentiable only on the interval (0,+∞) and DHX(t) = B1(0). On the interval
(−∞, 0) it is not H-differentiable as its diameter on this interval decreases.

Theorem 2.14. [32] If the mapping X : [0, T ] → conv(Rn) is PS-differentiable on
[0, T ], then for all t ∈ [0, T ]

(i) if function diam(X(t)) is a non-decreasing function on [0, T ], then

X(t) = X(0) +

t∫
0

DpsX(s)ds;

(ii) if function diam(X(t)) is a decreasing function on [0, T ], then

X(t) = X(0)
H

t∫
0

DpsX(s)ds.

Later, M.T. Malinowski [19, 20], H. Vu and L.S. Dong [46], H. Vu and N. Van
Hoa [47] and Ş.E. Amrahov, A. Khastan, N. Gasilov and A.G. Fatullayev [1] adapted
the concept of the Bede-Gal derivative [3, 4, 10, 43] for interval-valued mappings
on set-valued mappings, that is, such that X : [0, T ] → conv(Rn), and studied its
properties [47].
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Definition 2.15. [1, 46] Let X : [0, T ] → conv(Rn) and t ∈ [0, T ]. We say that X(·)
has a Bede-Gal derivative (BG-derivative) DbgX(t) ∈ conv(Rn) at t ∈ (0, T ), if for
all ∆ > 0 that are sufficiently close to 0, the H-differences and the limits exist in at
least one of the following expressions:
(i) lim

∆→0
∆−1(X(t+ ∆) H X(t)) = lim

∆→0
∆−1(X(t) H X(t−∆)) = DbgX(t)

or
(ii) lim

∆→0
(−∆)−1(X(t) H X(t+ ∆))= lim

∆→0
(−∆)−1(X(t−∆) H X(t))=DbgX(t)

or
(iii) lim

∆→0
∆−1(X(t+ ∆) H X(t)) = lim

∆→0
(−∆)−1(X(t−∆) H X(t)) = DbgX(t)

or
(iv) lim

∆→0
(−∆)−1(X(t) H X(t+ ∆))= lim

∆→0
∆−1(X(t) H X(t−∆))=DbgX(t).

Remark 2.16. In the article [19, 20] M.T. Malinowski considered set-valued mappings
that satisfy condition (ii) and called this derivative a second type Hukuhara derivative.

Remark 2.17. If the set-valued mapping X(·) is H-differentiable on [0, T ] it is BG-
differentiable on [0, T ] and DbgX(t) = DHX(t).

Remark 2.18. If the set-valued mapping X(·) is BG-differentiable on [0, T ] and
diamX(·) is a non-decreasing function on [0, T ] then the set-valued mapping X(·)
is H-differentiable and DbgX(t) = DHX(t).

Remark 2.19. There exist set-valued mappings that are BG-differentiable but not
H-differentiable.

Example 2.20. [1] The set-valued mapping X(t) = B|t|(0) is BG-differentiable on
R and its BG-derivative DbgX(t) ≡ B1(0). It is obvious that the given set-valued
mapping is H-differentiable only on the interval (0,+∞) and DHX(t) = B1(0). On
the interval (−∞, 0) it is not H-differentiable as its diameter on this interval decreases.

Theorem 2.21. [1] If the mapping X : [0, T ]→ conv(Rn) is BG-differentiable on [0, T ],
then for all t ∈ [0, T ]

(i) if function diam(X(t)) is a non-decreasing function on [0, T ], then

X(t) = X(0) +

t∫
0

DbgX(s)ds;

(ii) if function diam(X(t)) is a decreasing function on [0, T ], then

X(t) = X(0)
H

(−1)

t∫
0

DbgX(s)ds.

Remark 2.22. By Remarks 2.10 and 2.17, if the set-valued mapping X(·) is H-
differentiable on [0, T ] then it is BG-differentiable on [0, T ] and PS-differentiable on
[0, T ] as well as DHX(t) = DpsX(t) = DbgX(t).

Remark 2.23. By Remarks 2.13 and 2.20, we see that the set-valued mapping X(t) =
B|t|(0) is BG-differentiable on R and PS-differentiable on R as well as DbgX(t) ≡
DpsX(t) ≡ B1(0) for all t ∈ R.
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Remark 2.24. There exist set-valued mappings X(·) such that DbgX(t) 6= DpsX(t)
for any t.

Example 2.25. Let X : [0, 2] → conv(R2) and X(t) = B|1−t|(g(t)), where g(t) =

(t+ 1, t+ 1)T (see Figure 1).

Figure 1: X(t), t ∈ [0, 2]

The set-valued mapping X(·) is BG-differentiable on (0, 2) and its BG-derivative
DbgX(t) ≡ B1(a), where a = (1, 1)T . However, the set-valued mapping X(·) is PS-
differentiable on (0, 1) and its PS-derivative DpsX(t) ≡ B1(b) 6= DbgX(t), where
b = (−1,−1)T . Also, the set-valued mapping X(·) is PS-differentiable on (1, 2) and
its PS-derivative DpsX(t) ≡ B1(a) = DbgX(t), where a = (1, 1)T . As well as the
PS-derivative DpsX(t) at the point t = 1 does not exist (see Figure 2 and Figure 3).

Figure 2: DbgX(t), t ∈ [0, 2] Figure 3: DpsX(t), t ∈ [0, 2]

Example 2.26. Let X : [0, 2]→ conv(R2) such that

X(t) =

{
{x ∈ R2 |x2

1 + x2
2 ≤ t, x2 ≥ 0}, t ∈ [0, 1],

{x ∈ R2 |x2
1 + x2

2 ≤ 2− t, x2 ≥ 0}, t ∈ (1, 2]

(see Figure 4).
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Figure 4: X(t), t ∈ [0, 2]

The set-valued mapping X(·) is PS-differentiable on (0, 2) and its PS-derivative
DpsX(t) ≡ {x ∈ R2 |x2

1 + x2
2 ≤ 1, x2 ≥ 0}. However, the set-valued mapping X(·) is

BG-differentiable on (0, 1) and its BG-derivative DbgX(t) ≡ DpsX(t). Also, the set-
valued mapping X(·) is BG-differentiable on (1, 2) and its BG-derivative DbgX(t) ≡
(−1)DpsX(t). As well as the BG-derivative DbgX(t) at the point t = 1 does not exist
(see Figure 5 and Figure 6).

Figure 5: DpsX(t), t ∈ [0, 2] Figure 6: DbgX(t), t ∈ [0, 2]

3. Linear set-valued differential equations

In this section, we consider linear set-valued differential equations

DX(t) = aX(t), X(0) = X0, (3.1)
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where a ∈ R, X : [0, T ]→ conv(Rn) is a set-valued mapping, DX(t) is one of the pre-
viously considered derivatives (DHX(t), DpsX(t), Dbg(t)) of the set-valued mapping
X(t).

Definition 3.1. A set-valued mapping X(·) is called a solution of (3.1) if it is contin-
uously differentiable and satisfies system (3.1) everywhere on [0, T ].

As known, linear Hukuhara differential equation

DHX(t) = aX(t), X(0) = X0, (3.2)

has a unique solution on the interval [0, T ] [22, 31]. It’s also obvious that function
diam(X(t)) is a non-decreasing function on [0, T ].

Remark 3.2. [5, 22, 31] If a ≥ 0 then X(t) = eatX0 for all t ∈ [0, T ].

Remark 3.3. [38] System (3.2) may not be equivalent to the following system of
interval-valued differential equations with the Hukuhara derivative DHX1(t) = aX1(t), X1(0) = X01,

. . . . . .
DHXn(t) = aXn(t), Xn(0) = X0n,

(3.3)

where Xi : [0, T ]→ conv(R) is a interval-valued mapping, X0i is the projection of the
set X0 on the axis 0xi, i = 1, n.

If X(·) is a solution of (3.2) and Xi(·), i = 1, n are solutions of (3.3), then
X(t) ⊂ X1(t)× . . .×Xn(t) for all t ∈ [0, T ].

If X0 = X01 × . . .×X0n then system (3.2) is equivalent to system (3.3).

We demonstrate this by the following example.

Example 3.4. Let

DHX(t) = X(t), X(0) = B1(0), t ∈ [0, 1], (3.4)

and {
DHX1(t) = X1(t), X1(0) = X01 = [−1, 1],
DHX2(t) = X2(t), X2(0) = X02 = [−1, 1],

(3.5)

where X : [0, 1] → conv(R2) is a set-valued mapping, Xi : [0, 1] → conv(R) is an
interval-valued mapping, X0i is the projection of the set X0 on the axis 0xi, i = 1, 2.

The set-valued mapping X(t) = Bet(0) is a solution of Hukuhara differential
equation (3.4). The interval-valued mappingsXi(t) = [−et, et], i = 1, 2 are solutions of
the system of Hukuhara differential equations (3.5). It’s obvious that X(t) ⊂ X1(t)×
X2(t) for all t ∈ [0, 1] (see Figure 7). However, if X(0) = {x ∈ R2 | |xi| ≤ 1, i = 1, 2}
is a square, then X0 ≡ X01 × X02 and X(t) ≡ X1(t) × X2(t) for all t ∈ [0, 1] (see
Figure 8).

Now, we consider linear differential equation (3.1) with PS-derivative and BG-
derivative. By [1, 32, 33, 34, 35], this set-valued differential equation (3.1) has at
least one solution. Moreover, one of these solutions (the one whose diameter is a
non-decreasing function) coincides with the solution of the corresponding differential
equation (3.2).

We will show it by the following example.
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Figure 7:
X(t) ⊂ X1(t)×X2(t), t ∈ [0, 1]

Figure 8:
X(t) ≡ X1(t)×X2(t), t ∈ [0, 1]

Example 3.5. Let

DX(t) = X(t), X(0) = B1(0), t ∈ [0, 1], (3.6)

where X : [0, 1]→ conv(R2) is a set-valued mapping, DX(t) is one of the previously
considered derivatives (DHX(t), DpsX(t), Dbg(t)) of the set-valued mapping X(t).

The set-valued mapping X(t) = Bet(0) is a solution of Hukuhara differential
equation (3.6) (see Figure 9).

Figure 9: X(t), t ∈ [0, 1]

Set-valued mappings X1(t) = Bet(0) and X2(t) = Be−t(0) are solutions of differential
equation (3.6) with PS-derivative and BG-derivative (see Figure 10 and Figure 11).

In this case, solutions of differential equations with PS-derivative will be solutions
of the differential equation with BG-derivative and vice versa. For the first solution
X1(·) the function diam(X1(t)) is an increasing function on [0, 1]. For the second
solution X2(·) the function diam(X2(t)) is a decreasing function on [0, 1]. Also, the
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Figure 10: X1(t), t ∈ [0, 1] Figure 11: X2(t), t ∈ [0, 1]

first solution X1(·) is the solution of the Hukuhara differential equation, i.e. X(t) =
X1(t) for all t ∈ [0, 1].

Solutions X1(·) and X2(·) will be called basic solutions.
We also note that set-valued mappings

Y1(t) =

{
Bet(0), t ∈ [0, 0.5]
Be1−t(0), t ∈ [0.5, 1]

Y2(t) =

{
Be−t(0), t ∈ [0, 0.5]
Bet−1(0), t ∈ [0.5, 1]

are the solutions of differential equation (3.6) with PS-derivative and BG-derivative
(see Figure 12 and Figure 13).

Figure 12: Y1(t), t ∈ [0, 1] Figure 13: Y2(t), t ∈ [0, 1]

It is obvious that in this example such solutions can be built infinitely many.
These solutions will be called mixed solutions. For these mixed solutions Y (·), the
diameter function diam(Y (·)) is not increasing or decreasing over the entire interval.
We also note that the shape of the cross section of solutions corresponds to the shape
of the initial set.

Later in this article we will consider only the basic solutions.
The question arises: Do such equations always have two basic solutions?
Consider the following examples when a = 1 (a > 0).
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Example 3.6. Let
DpsX(t) = X(t), X(0) = K, t ∈ [0, 1], (3.7)

where X : [0, 1]→ conv(R2) is a set-valued mapping,

K = {x ∈ R2 |x2
1 + x2

2 ≤ 1, x2 ≥ 0}.
This differential equation with PS-derivative has two basic solutions X1(·) and X2(·)
(see Figure 14 and Figure 15).

Figure 14: X1(t), t ∈ [0, 1] Figure 15: X2(t), t ∈ [0, 1]

Example 3.7. Let
DbgX(t) = X(t), X(0) = K, t ∈ [0, 1]. (3.8)

This differential equation with BG-derivative has only one basic solution, which
coincides with the solution of the Hukuhara differential equation and the first basic
solution X1(·) of the differential equation with the PS-derivative (see Figure 14).

There will be no second solution because there is no set-valued mapping that sat-
isfies the corresponding integral equation (since the set K is not a centrally symmetric
set, the Hukuhara difference does not exist)

X(t) = K
H

(−1)

t∫
0

DbgX(s)ds = K
H

(−1)

t∫
0

X(s)ds.

Now, we consider the same examples when a = −1 (a < 0).

Example 3.8. Let

DbgX(t) = (−1)X(t), X(0) = K, t ∈ [0, 1], (3.9)

where X : [0, 1]→ conv(R2) is a set-valued mapping,

K = {x ∈ R2 |x2
1 + x2

2 ≤ 1, x2 ≥ 0}.
This differential equation with BG-derivative has two basic solutions X1(·) and X2(·)
(see Figure 16 and Figure 17).
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Figure 16: X1(t), t ∈ [0, 1] Figure 17: X2(t), t ∈ [0, 1]

Example 3.9. Let

DpsX(t) = (−1)X(t), X(0) = K, t ∈ [0, 1]. (3.10)

This differential equation with PS-derivative has only one basic solution, which
coincides with the solution of the Hukuhara differential equation and the first basic
solution X1(·) of the differential equation with the BG-derivative.

There will be no second basic solution because there is no set-valued mapping
that satisfies the corresponding integral equation (the Hukuhara difference does not

exist) X(t) = K H
t∫

0

DpsX(s)ds = K H (−1)
t∫

0

X(s)ds.

Next, we consider the same examples when X0 is such that H-difference
X0

H (−1)X0 exists (X0 is centrally symmetric set [7]).

Example 3.10. Let

DbgX(t) = X(t), X(0) = P, t ∈ [0, 1], (3.11)

DpsX(t) = X(t), X(0) = P, t ∈ [0, 1], (3.12)

where X : [0, 1]→ conv(R2) is set-valued mapping, P = {x ∈ R2 | 0 ≤ x1−2 ≤ 4, 1 ≤
x2 − 2 ≤ 3}.

Each differential equation will have two basic solutionsXbg
1 (·),Xbg

2 (·) andXps
1 (·),

Xps
2 (·) (see Figures 18,19 and Figures 20,21).

Example 3.11. Let

DbgX(t) = (−1)X(t), X(0) = P, t ∈ [0, 1], (3.13)

DpsX(t) = (−1)X(t), X(0) = P, t ∈ [0, 1]. (3.14)

Also, each differential equation will have two basic solutions Xbg
1 (·), Xbg

2 (·) and Xps
1 (·),

Xps
2 (·) (see Figures 22, 23 and Figures 24, 25).

Remark 3.12. It’s obvious that the basic solution Xps
2 (·) of differential equation (3.12)

coincides with the basic solution Xbg
2 (·) of differential equation (3.13). Also, the basic

solution Xbg
2 (·) of differential equation (3.11) coincides with the basic solution Xps

2 (·)
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Figure 18: Xbg
1 (t), t ∈ [0, 1] Figure 19: Xbg

2 (t), t ∈ [0, 1]

Figure 20: Xps
1 (t), t ∈ [0, 1] Figure 21: Xps

2 (t), t ∈ [0, 1]

Figure 22: Xbg
1 (t), t ∈ [0, 1] Figure 23: Xbg

2 (t), t ∈ [0, 1]

of differential equation (3.14). This is confirmed by integral equations that correspond
to differential equations (3.11), (3.12), (3.13) and (3.14):

Xbg
2 (t) = P

H
(−1)

t∫
0

Xbg
2 (s)ds, (3.15)
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Figure 24: Xps
1 (t), t ∈ [0, 1] Figure 25: Xps

2 (t), t ∈ [0, 1]

Xps
2 (t) = P

H
t∫

0

Xps
2 (s)ds, (3.16)

Xbg
2 (t) = P

H
(−1)

t∫
0

(−1)Xbg
2 (s)ds = P

H
t∫

0

Xbg
2 (s)ds, (3.17)

Xps
2 (t) = P

H
t∫

0

(−1)Xps
2 (s)ds = P

H
(−1)

t∫
0

Xps
2 (s)ds. (3.18)

Remark 3.13. If the differential equation with the PS-derivative (BG-derivative) has
two basic solutions and we write the corresponding system of interval-valued differen-
tial equations the PS-derivative (BG-derivative) similar to (3.3), then Remark 3.3 will
be satisfied. However, we note that this system will always have two basic solutions
(even when the original equation has only one basic solution).

Based on all above stated, we can make the following proposition.

Proposition 3.14. For system (3.1) the following statements are true:
1) if H-difference X0

H (−1)X0 exists, then differential equation (3.1) with
PS(BG)-derivative has two basic solutions;

2) if H-difference X0
H (−1)X0 does not exist, then

a) if a > 0, then differential equation (3.1) with PS-derivative has two basic
solutions and differential equation (3.1) with BG-derivative has one basic solution;

a) if a < 0, then differential equation (3.1) with BG-derivative has two basic
solutions and differential equation (3.1) with PS-derivative has one basic solution.

4. Conclusion

In the article it is shown that linear set-valued differential equations have sig-
nificant differences from ordinary and interval-valued linear differential equations. In
these equations, the number of solutions may depend on the form (shape) of the initial
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set, the considered derivative and the coefficient in the right-hand side. We also note
that in articles [32, 33, 34, 35, 42], the authors considered a new type of differential
equations with PS-derivative, in which no more than one solution can exist.
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