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A class of differential systems of even degree
with exact non-algebraic limit cycles
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Abstract. Up until now all the polynomial differential systems for which non-
algebraic limit cycles are known explicitly have degree odd. Here we show that
that there are polynomial systems of even degree with explicit no-algebraic limit
cycles. To our knowledge, there are no such type of examples in the literature.
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1. Introduction and statement of the main results

We consider a polynomial differential system of the form{
ẋ = P (x, y),
ẏ = Q (x, y) ,

(1.1)

where P and Q are real polynomials in the variables x and y. The degree of the system
(1.1) is the maximum of the degrees of the polynomials P and Q. As usual the dot
denotes derivative with respect to the independent variable t.

A limit cycle of system (1.1) is an isolated periodic solution in the set of all
periodic solutions of system (1.1). If a limit cycle is contained in the zero level set
of a polynomial function, see for example, [[1], [4], [5], [9], [11]], then we say that it
is algebraic, otherwise it is called non–algebraic see for example ([2], [4], [8], [10]).
The topic of limit cycles is interesting both in mathematics and in science and many
models from physics, engineering, chemistry, biology, economics,..., were displayed as
differential systems with limit cycles.

An important problem of the qualitative theory of differential equations is to
determine the limit cycles of a system of form (1.1). We usually only ask for the number
of such limit cycles, but their location as orbits of the system is also an interesting
problem. And an even more difficult problem is to give an explicit expression of them.
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In the chronological order the first examples where explicit non-algebraic limit
cycles appeared are those of A. Gasull and all [8] and J. Gine and M. Grau [10] and by
Al-Dosary, Khalil I. T.[2] for n = 5. In [6], an example of an explicit limit cycle which
is not algebraic is given for n = 3. Bendjeddou in [3] provide a class of polynomial
differential system of degree odd with explicit limit cycle non-algebraic.

In this paper, we consider the family of the polynomial differential system of the
form

ẋ = x (l + wx+ vy)
n+1

+ n
(
vx2 − vy2 − 2ly − 2wxy

) (
x2 + y2

)n
+ x (l + wx+ vy)

(
a
(
x2 + y2

)
+ 2c

(
x2 − y2

)
− 4bxy

) (
x2 + y2

)n−1

ẏ = y (l + wx+ vy)
n+1

+ n
(
wx2 − wy2 + 2lx+ 2vxy

) (
x2 + y2

)n
+ y (l + wx+ vy)

(
a
(
x2 + y2

)
+ 2c

(
x2 − y2

)
− 4bxy

) (
x2 + y2

)n−1
,

(1.2)

where a, b, c, w, v, n and l are real constants, n is strictly positive integer (n ∈ N∗).
We prove that these systems are Liouville integrable. Moreover, we determine suf-
ficient conditions for a polynomial differential system (1.2) to possess an explicit
non-algebraic limit cycle.

It remains the open question to determine if the polynomial differential systems
of degree 2 can exhibit explicit non-algebraic limit cycles (this question is due to
Benterki and Llibre [6]).

Thus, our main result is the following one.

Theorem 1.1. Consider a multi-parameter polynomial differential system (1.2). Then
the following statements hold.

(a) System (1.2) is Darboux integrable with the Liouvillian first integral

H (x, y) =

(
x2 + y2

wx+ vy + l

)n
e
−
(
a(arctan y

x )+ bx2+2cxy−by2

x2+y2

)

−
∫ arctan y

x

0

e−as−b cos 2s−c sin 2s ds.

(b) If a < 0, w ≥ 0, l > 0 and 2aπ + b 6= 0 then system (1.2) has an explicit non
algebraic limit cycles, given in polar coordinates (r, θ) by

r∗(θ) =
1

2

(
g (θ) ρ∗ (θ)

1
n +

√(
g (θ) ρ∗ (θ)

1
n

)2
+ 4lρ∗ (θ)

1
n

)
,

where

g (θ) = w cos θ + v sin θ,

f (θ) =

∫ θ

0

e−as−b cos 2s−c sin 2s ds,

ρ∗ (θ) = eaθ+b cos 2θ+c sin 2θ

(
e2πaf (2π)

1− e2πa
+ f (θ)

)
.

Moreover, this limit cycle is hyperbolic.
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2. Proof of Theorem 1.1

Firstly, we have

xẏ − yẋ = n (2l + wx+ vy)
(
x2 + y2

)n+1
,

thus, the equilibrium points of system (1.2) are present in the equation curve’s(
x2 + y2

)n+1
(2l + wx+ vy) = 0, (2.1)

we deduce that the origin is an equilibrium point, and any other, if exists must lies
on the straight line

(∆) : (2l + wx+ vy) = 0.

Let (x0, y0) 6= (0, 0) be such a point. Then form the remark above, x0 and y0 must
satisfy 

x0(−l)n+1 + n(vx20 − wx0y0)(x20 + y20) + x0(−l)(a(x20 + y20)
+2c(x20 − y20)− 4bx0y0) = 0,

y0(−l)n+1 + n(vx0y0 − wy20)(x20 + y20) + y0(−l)(a(x20 + y20)
+2c(x20 − y20)− 4bx0y0) = 0,

vy0 + wx0 + 2l = 0,{
(−l)n+1

+ n (vx0−wy0)
(
x20 + y20

)
+ (−l)

(
a
(
x20 + y20

)
+ 2c

(
x20−y20

)
−4bx0y0

)
= 0,

y0 = − 1
v (2l + wx0) ,

this system can be written as

−l
(
av3 + 2cv3 − 6nw3 + avw2 + 4bv2w − 2cvw2 − 6nv2w

)
x20

−4l2
(
2bv2 − nv2 − 3nw2 + avw − 2cvw

)
x0 + n

(
v2 + w2

)2
x30

−
(

4al3v − (−l)n+1
v3 − 8cl3v − 8l3nw

)
= 0,

(2.2)

then, the equilibrium points of system (1.2) are
{

(0, 0) ,
(
x0,− 1

v (2l + wx0)
)}
, where

x0 is a real root of the equation (2.2).
Note that, the origin of coordinates which is an unstable node because its eigenvalues
are ln+1 > 0 with multiplicity two, for more details see for instance [[7], Theorem
2.15].

Proof of statement (a).
To prove our results (a) and (b) we write the polynomial differential system (1.2) in
polar coordinates (r, θ), defined by x = r cos θ and y = r sin θ. Then the system (1.2)
become ṙ = r (l + wr cos θ + vr sin θ)

n+1
+ l (a+ 2c cos 2θ − 2b sin 2θ) r2n+1

+ (n (v cos θ − w sin θ) + (w cos θ + v sin θ) (a+ 2c cos 2θ − 2b sin 2θ)) r2n+2,

θ̇ = 2lnr2n + n (v sin θ + w cos θ) r2n+1.

Taking θ as an independent variable, we obtain the equation

dr

dθ
=

(l + wr cos θ + vr sin θ)
n+1

r + l (a+ 2c cos 2θ − 2b sin 2θ) r2n+1

2lnr2n + n (v sin θ + w cos θ) r2n+1
(2.3)

+
(n (v cos θ − w sin θ) + (w cos θ + v sin θ) (a+ 2c cos 2θ − 2b sin 2θ)) r2n+2

2lnr2n + n (v sin θ + w cos θ) r2n+1
.
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Via the change of variables

ρ =
r2n

((w cos θ + v sin θ) r + l)
n ,

the equation (2.3) is transformed into the linear differential equation

dρ

dθ
= (a+ 2c cos 2θ − 2b sin 2θ) ρ+ 1. (2.4)

The general solution of linear equation (2.4) is

ρ (θ, k) = eaθ+b cos 2θ+c sin 2θ

(
k +

∫ θ

0

e−as−b cos 2s−c sin 2sds

)
, (2.5)

where k ∈ R. Going back through the changes of variables we obtain the first integral
of the statement (a) of Theorem 1. Since this first integral is a function that can be
expressed by quadratures of elementary functions, it is a Liouvillian function, and
consequently system (1.2) is Darboux integrable.

Proof of statement (b) of Theorem 1.
In (2.5) let θ → ρ(θ, k∗) be the solution taking the value of k∗ ∈ R for θ = 0. To

be a periodic solution, it must satisfy at first the condition

ρ (0, k∗) = ρ (2π, k∗) ,

providing the value of k∗ is

k∗ =
e2πaf (2π)

1− e2πa
> 0,

because a < 0 and f (θ) =

∫ θ

0

e−as−b cos 2s−c sin 2sds > 0 for all ∈ R.

After the substitution of the value k∗ into ρ (θ, k) we obtain

ρ (θ, k∗) = ρ∗ (θ) = eaθ+b cos 2θ+c sin 2θ

(
k∗ +

∫ θ

0

e−as−b cos 2s−c sin 2sds

)
. (2.6)

Note that, since

f (θ) =

∫ θ

0

e−as−b cos 2s−c sin 2sds > 0

for all ∈ R and k∗ > 0, consequently,ρ∗ (θ) > 0 for all θ ∈ R.
Note that, since ρ∗ (θ) > 0 for all θ ∈ R, from the expression of the change of variable
that transform (2.3) into (2.4), one gets a unique r∗ (θ) > 0 for all θ ∈ R and it has
the expression

r∗ (θ) =
1

2

(
g (θ) ρ∗ (θ)

1
n +

√(
g (θ) ρ∗ (θ)

1
n

)2
+ 4lρ∗ (θ)

1
n

)
. (2.7)

Moreover, since l > 0 and ρ∗ (θ) > 0 for all θ ∈ R, then r∗ (θ) > 0, one can see that
it is 2π−periodic, since g and ρ∗ are 2π− periodic.
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In order to prove that the periodic orbit is hyperbolic limit cycles, we consider (2.6),
and introduce the Poincaré return map

λ 7→ Π(2π, λ) = ρ (θ, λ) .

Therefore, a limit cycle of system (1.2) is hyperbolic if and only if

dρ(2π, λ)

dλ

∣∣∣∣
λ=k∗

6= 1.

An easy computation shows that:

dρ(2π, λ)

dλ

∣∣∣∣
λ=k∗

=
dρ∗ (θ)

dk∗
= e2πa+b 6= 1.

Therefore the limit cycle of the differential equation (2.4) is hyperbolic, for more
details see [12]. Consequently 2.7 is hyperbolic limit cycle of the differential equation
(2.3).
Clearly the curve (r(θ) cos θ, r(θ) sin θ) in the (x, y) plane with

r2n

(g (θ) r + l)
n − eaθ+b cos 2θ+c sin 2θ

(
e2πaf(2π)
1−e2πa + f (θ)

)
= 0, (2.8)

is not algebraic, due to the expression e2πaf(2π)
1−e2πa eaθ+b cos 2θ+c sin 2θ. More precisely, in

Cartesian coordinates r2 = x2 +y2, θ = arctan y
x , the curve defined by this limit cycle

is

F (x, y) =

(
x2 + y2

wx+ vy + l

)n
− ea(arctan

y
x )+ bx2+2cxy−by2

x2+y2

×

(
e2πaf(2π)
1−e2πa +

∫ arctan y
x

0

e−as−b cos 2s−c sin 2s ds

)
.

If the limit cycle is algebraic this curve must be given by a polynomial, but a polyno-
mial F (x, y) in the variables x and y satisfies that there is a positive integer n such

that ∂(n)F
∂xn = 0, and this is not the case because in the derivative

d

dx
F (x, y) = n

(
wx2 + 2vxy + 2lx− wy2

) (
x2+y2

l+vy+wx

)n−1

(l + vy + wx)
2

− y

x2 + y2

 1 +
(
ax2+ay2+2cx2−2cy2−4bxy

x2+y2

)
e
a(arctan y

x )+ bx2+2cxy−by2

x2+y2

×
(
e2πaf(2π)
1−e2πa +

∫ arctan y
x

0
e−as−b cos 2s−c sin 2s ds

)
 ,

it appears again the expression

e
a(arctan y

x )+ bx2+2cxy−by2

x2+y2

(
e2πaf(2π)
1−e2πa +

∫ arctan y
x

0

e−as−b cos 2s−c sin 2s ds

)
,

which already appears in F (x, y), and this expression will appear in the partial de-
rivative at any order. This completes the proof of theorem.
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3. Example

If we take b = 1
2 , c = 0, a = −1, v = w = l = 1, then system (1.2) reads

ẋ = x (1 + x+ y)
n+1

+ n
(
x2 − y2 − 2y − 2xy

) (
x2 + y2

)n
+ x (1 + x+ y)

(
−
(
x2 + y2

)
+−2xy

) (
x2 + y2

)n−1

ẏ = y (1 + x+ y)
n+1

+ n
(
x2 − y2 + 2x+ 2xy

) (
x2 + y2

)n
+ y (1 + x+ y)

(
−
(
x2 + y2

)
+−2xy

) (
x2 + y2

)n−1
,

(3.1)

has a non-algebraic limit cycle whose expression in polar coordinates (r, θ) is

r∗ (θ) =
1

2

(
(cos θ + sin θ) ρ∗ (θ)

1
n +

√
(cos θ + sin θ)

2
ρ∗ (θ)

2
n + 4lρ∗ (θ)

1
n

)
,

where

ρ∗ (θ) = e−θ+
1
2 cos 2θ

(
e−2πf(2π)
1−e−2π + f (θ)

)
and f (θ) =

∫ θ

0

es−
1
2 cos 2s ds.

For n = 1: The system (3.1) is a quartic system and that has a non algebraic limit
cycle whose expression in polar coordinates (r, θ) is

r∗(θ) =
1

2

(
(cos θ + sin θ) ρ∗ (θ) +

√
(cos θ + sin θ)

2
ρ∗ (θ)

2
+ 4lρ∗ (θ)

)
.

Figure 1. Limit cycle of system (3.1) for n = 1

For n = 2: The system (3.1) is of degree 6 and that has a non algebraic limit cycle
whose expression in polar coordinates (r, θ) is

r∗(θ) =
1

2

(
(cos θ + sin θ) ρ∗ (θ)

1
2 +

√(
(cos θ + sin θ) ρ∗ (θ)

1
2

)2
+ 4lρ∗ (θ)

1
2

)
.
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Figure 2. Limit cycle of system (3.1) for n = 2
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