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Parameter estimations for linear parabolic
fractional SPDEs with jumps
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Abstract. We give an unbiased and consistent estimator for the drift coefficient of
a linear parabolic stochastic partial differential equation driven by a multiplicative
cylindrical fractional Brownian motion with Hurst index 1/2 < h < 1 and a
cylindrical centered Poisson process, if the observations of the solution process
are given in discrete time points. The presented method is based on mean square
estimations.
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1. Introduction

There are lots of papers concerning parameter estimations for stochastic differ-
ential equations (SDEs). Results for SDEs driven by a fractional Brownian motion
(fBm) were given, for example, by Y. Kozachenko, A. Melnikov, Y. Mishura [4] and
W.L. Xiao, W.G. Zhang, X. Zhang [11] (see also the references therein). If the driv-
ing process is a Lévy process, then see, for example, H. Long [5] and the references
therein. If the equations are driven by a fBm and a fractional Poisson measure one
can find interesting results and applications in the PhD thesis of J. Lueddeckens [7].

Many papers are devoted to the parameter estimation of fractional stochastic
partial differential equations (SPDEs). As a representative result we quote here the
paper [8] of B. Maslowski and C.A. Tudor.

The following estimation criteria are mainly used in constructing estimators for
the parameters of SPDEs:

• maximum likelihood type methods by considering fundamental martingales and
theorems of Girsanov type;
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• time continuous and time discrete least square criteria;
• Kalman-Bucy filters;
• L1-norm estimations and contrast estimations.

Often SPDEs are considered as stochastic evolution equations in Hilbert spaces.
For example, a parameter estimation problem for linear diagonalized stochastic par-
tial differential equations driven by a multiplicative fBm is considered by I. Cialenco
in [2]. The stochastic processes defined by the random Fourier coefficients of the solu-
tion process describe one dimensional geometric fractional Brownian motions. Based
on these processes, consistent parameter estimates for the SPDEs are determined us-
ing a maximum likelihood type method. So we see, that one dimensional results of
parameter estimations are useful for parameter estimations of SPDEs.

Parameter estimations for diagonal SPDEs are also considered in Chapter 6 in
[6] by S.V. Lototsky, B.L. Rozovsky.

The aim of the present paper is to give new contributions in the estimation
theory of the coefficients of linear homogeneous SPDEs, which are driven by cylindrical
fractional Brownian motions and cylindrical Poisson processes. The applied estimation
criterion uses covariances (as a generalization of the mean squared method), such that
the long range dependence property of the fractional Brownian motion with Hurst
index h ∈]1/2, 1[ is taken into account. Moreover, in this paper weakly, respectively
strongly consistent estimators are constructed by using only information about the
underlying process in discrete time points.

The paper starts with a preliminary section, containing the assumptions needed
throughout the paper. A linear SPDE driven by a multiplicative cylindrical fractional
Brownian motion and a cylindrical Poisson process is introduced in Section 3. In Sec-
tion 4 the one dimensional stochastic differential equations for the Fourier coefficients
of the solution process of the SPDE is considered and similar to the results from [7] an
estimation criterion of least squares type in discrete time points of the observations
for the drift term is formulated. The estimator of the drift coefficient is unbiased.
Conditions for choosing the time points are given such that the constructed estimator
is unbiased and weakly consistent (Theorem 4.2), respectively strongly consistent (see
Theorem 4.4).

2. Preliminaries

Definition 2.1. A real-valued Gaussian process (Bh(t))t≥0 with E(Bh(t)) = 0, for all
t ≥ 0, Bh(0) = 0 and Hurst index h ∈]0, 1[ is called fractional Brownian motion (fBm)
if

E(Bh(t)Bh(s)) =
1

2
(t2h + s2h − |t− s|2h) for all s, t ≥ 0.

The fBm is not a semimartingale and it is not a Markovian process for h 6= 1/2.
The fBm is a Wiener process for h = 1/2. In this paper we consider h ∈]1/2, 1[. Then,
the fBm has the so-called long range dependence property.
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Assumptions:

(A1) Let (V,H, V ∗) be a triplet of rigged Hilbert spaces, where V is compactly em-
bedded into H and A : V → V ∗ is linear and 〈Av, v〉+α1‖v‖2V ≤ α2‖v‖2H for all
v ∈ V and α1 > 0, α2 ∈ IR are constants.

Observe, that A : D(A) → H is linear and unbounded with D(A) = {v ∈ V :
Av ∈ H}, which is dense in H. The eigenvalues (λk)k≥1 of this operator are
negative and satisfy lim

k→∞
λk = −∞.

(A2) Let (hk)k≥1 ⊂ H be the complete orthonormal system constructed by the eigen-
functions of A.

(A3) The C0 semigroup (Tt)t≥0 defined by

Tt(x) =

∞∑
k=1

exp{λkt}(x, hk)hk, x ∈ H

is generated by −A, where (·, ·) denotes the scalar product in H.
(A4) Φ1,Φ2 : H → H are Hilbert-Schmidt operators of the type

Φi(x) =

∞∑
k=1

µik(x, hk)hk, x ∈ H,

where

∞∑
k=1

µ2
ik <∞ for i ∈ {1, 2}.

(A5) Let (Bhk (t))t≥0, k ∈ {1, 2, . . .}, be independent fractional Brownian motions with
Hurst index h ∈]1/2, 1[ and let

Bh(t) =

∞∑
k=1

Bhk (t)hk, t ≥ 0,

denote the cylindrical fBm.
(A6) Let (πj(t))t≥0, j ∈ {1, 2, . . .}, be independent homogeneous Poisson processes

with parameter ν.
(A7) Consider π̃j(t) = πj(t)− νt, j ∈ {1, 2, . . .} and we denote by

π̃(t) =

∞∑
j=1

π̃j(t)hj , t ≥ 0,

the cylindrical centered Poisson process.
(A8) The processes Bhk and π̃j are independent stochastic processes for all j, k ∈

{1, 2, ...}.
(A9) Let X0 ∈ H be a deterministic initial value.

(A10) All stochastic processes are defined on the same complete filtered probability

space (Ω,F , (Ft)t≥0, P ), where Ft = σ(FBht ∨ F π̃t ) and FBht and F π̃t denote the
σ-algebras generated by (Bh(s))s∈[0,t[ and (π̃(s))s∈[0,t[.
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3. A linear fractional parabolic SPDE with jumps

At first we introduce for k ∈ {1, 2, . . .} the one dimensional linear stochastic
differential equations

dYk(t) = aλkYk(t)dt+ σµ1kYk(t)dBhk (t) + ηµ2kYk(t−)dπ̃k(t), (3.1)

where a, σ, η are positive constants and Yk(0) = (X0, hk).
The stochastic equation (3.1) is defined by

Yk(t) = Yk(0)+aλk

∫ t

0

Yk(s)ds+σµ1k

∫ t

0

Yk(s)dBhk (s)+ηµ2k

∫ t

0

Yk(s−)dπ̃k(s), (3.2)

for all t ≥ 0, where the stochastic integral with respect to Bhk is defined by a divergence
integral as in [9] and the stochastic integral with respect to the compensated Poisson
process is defined as in [10], Chapter II (or [3], page 246).

Theorem 3.1. The process

Yk(t)=Yk(0)(1 + ηµ2k)
πk(t) · exp

{
σµ1kB

h
k (t)− 1

2
σ2µ2

1kt
2h+ aλkt− νηµ2kt

}
(3.3)

solves equation (3.1) for all t ≥ 0 with probability 1.

Proof. We prove that the process Yk(t) = Y1k(t)Y2k(t) with

Y1k(t) = exp

{
σµ1kB

h
k (t)− 1

2
σ2µ2

1kt
2h

}
and

Y2k(t) = Yk(0) (1 + ηµ2k)
πk(t) · exp {aλkt− νηµ2kt} ,

is the solution of (3.1). Since the fBms and the Poisson processes are independent,
we get

dYk(t) = Y1k(t)dY2k(t) + Y2k(t)dY1k(t). (3.4)

Obviously it holds

Y2k(t) = Yk(0) exp {aλkt− νηµ2kt+ πk(t) ln (1 + ηµ2k)} . (3.5)

It follows by a result from [3] (see formula (15) on page 261) that (3.5) solves

dY2k(t) = Y2k(t)[aλk − νηµ2k]dt+ ηµ2kY2k(t−)dπk(t)

with Y2k(0) = Yk(0). By the definition of π̃(t) it follows

dY2k(t) = aλkY2k(t)dt+ ηµ2kY2k(t−)dπ̃k(t)

with Y2k(0) = Yk(0).
The fractional Itô formula in [9] (see formula (2.18)) gives that the process Y1k(t)
solves

dY1k(t) = µ1kσY1k(t)dBhk (t)

with Y1k(0) = 1.
If we substitute these results in (3.4), then we get that the process (3.3) solves

equation (3.1). �

We will prove the following a priori estimates:
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Lemma 3.2. There are constants C0 > 0, C1 > 0 and C2 > 1 such that for all t ≥ 0
and k ∈ {1, 2, ...} it holds

E|Yk(t)|2 ≤ F (t)|Yk(0)|2 (3.6)

with

F (t) = C0 exp{2σ2C1t
2h + νt(C2 − 1)}.

Proof. Since the fBms and the Poisson processes are independent, we get

E|Yk(t)|2 = |Yk(0)|2
(
E exp

{
2σµ1kB

h
k (t)

})(
E
(

(1 + ηµ2k)
2πk(t)

))
× exp

{
−σ2µ2

1kt
2h + 2aλkt− 2νηµ2kt

}
. (3.7)

Since λk < 0 for each k ∈ {1, 2, ..} and (µ2k)k≥1 is a bounded sequence, we have

exp
{
−σ2µ2

1kt
2h + 2aλkt− 2νηµ2kt

}
≤ C0 for each t ≥ 0,

where C0 > 0 is a constant.

The random variable Z1 := exp
{

2σµ1kB
h
k (t)

}
is log-normally distributed, so we

get for its expectation

E(Z1) = exp{2σ2µ2
1kt

2h}.
From the boundedness of (µ1k)k≥1 it follows the existence of a positive constant C1

with

E(Z1) ≤ exp{2σ2C1t
2h}.

For Z2 := (1 + ηµ2k)2πk(t) we compute

E(Z2) = E
(

(1 + ηµ2k)
2πk(t)

)
=

∞∑
j=0

(1 + ηµ2k)
2j

exp{−νt} (νt)j

j!
.

But the sequence (µ2
2k)k≥1 is bounded, hence there is a constant C2 > 1 such that

E(Z2) ≤ exp{−νt}
∞∑
j=0

(νtC2)j

j!
= exp{νt(C2 − 1)}.

Then we get with (3.7) the inequality (3.6). �

We now consider a solution definition of mild solution type.

Theorem 3.3. Let k ∈ {1, 2, . . .}. The process (Yk(t))t≥0 defined by (3.3) solves (3.2)
if and only if the equation

Yk(t) = Yk(0) exp{λkat}+

∫ t

0

exp{λka(t− s)}σµ1kYk(s)dBhk (s)

+

∫ t

0

exp{λka(t− s)}ηµ2kYk(s−)dπ̃k(s), for all t ≥ 0 (3.8)

holds.
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Proof. If the process (Yk(t))t≥0 is the solution of (3.2) defined by (3.3), then this
process solves (3.8) too.

Let (Ỹk(t))t≥0 be a solution process of (3.8). Then we get

Ỹk(t) = Yk(0) exp{aλkt}+ exp{aλkt}
∫ t

0

exp{−aλks}σµ1kỸk(s)dBhk (s)

+ exp{aλkt}
∫ t

0

exp{−aλks}ηµ2kỸk(s−)dπ̃k(s). (3.9)

Obviously exp{aλkt} is deterministic and differentiable and the stochastic differentials
of the stochastic integrals in formula (3.9) exist. If we use the stochastic product
formula to the two last terms of the sum in formula (3.9), then we get

dỸk(t) = aλkỸk(t)dt+ σµ1kỸk(t)dBhk (t) + ηµ2kỸk(t−)dπ̃k(t).

It follows from formula (3.9) that Ỹk(0) = Yk(0). That is, Ỹk(t) = Yk(t) for all t ≥ 0
with probability 1. �

We introduce for n ≥ 1 and t ≥ 0

Xn(t) :=

n∑
k=1

Yk(t)hk

By (3.6) and Yk(0) = (X0, hk) we get

E‖Xn(t)‖2H =

n∑
k=1

E|Yk(t)|2 ≤ ‖X0‖2HF (t) (3.10)

for every t > 0. It follows also from this inequality and the definition of F (t) that
there is for all T > 0 a positive constant CT such that

E‖Xn(t)‖2H ≤ CT ‖X0‖2H (3.11)

and

E

∫ t

0

‖Xn(s)‖2Hds ≤ TCT ‖X0‖2H (3.12)

for all t ∈ [0, T ] and all n ≥ 1.
Consequently for t > 0 there exists in L2(Ω ; H) and in L2(Ω× [0, T ] ;H) the process

X(t) :=

∞∑
k=1

Yk(t)hk (3.13)

and the a priori estimates (3.11) and (3.12) hold also for X(t).

Since Yk(0) = (X0, hk) holds, we obtain X0 =

∞∑
k=1

(Yk(0), hk)hk.

It holds for Xn(t)

Xn(t) =

n∑
k=1

exp{λkat}(X0, hk)hk

+σ

∫ t

0

n∑
k=1

exp{λka(t− s)}µ1k(Xn(s), hk)hkdB
h
k (s)
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+η

∫ t

0

n∑
k=1

exp{λka(t− s)}µ2k(Xn(s−), hk)hkdπ̃k(s).

Consequently, we get by the definition of the semigroup Tt and the operators Φ1, Φ2

dXn(t) = TtXn(0) + σ

∫ t

0

Tt−sΦ1Xn(s)dBh(s) + η

∫ t

0

Tt−sΦ2Xn(s−)dπ̃(s), (3.14)

where Bh and π̃ are the cylindrical fractional Brownian motion and the cylindrical
centered Poisson process defined by the sequences (Bhk (t))t≥0, k ∈ {1, 2, . . .}, and
(π̃j(t))t≥0, j ∈ {1, 2, . . .}.

With the definition of X(t) from formula (3.13) and the a priori estimates (3.11),
(3.12), with (3.14), by the definition of Yk(t) and the definitions of the stochastic
integrals it is easy to prove, that the following result holds:

Theorem 3.4. The process (X(t))t∈[0,T ] with X(t) =

∞∑
k=1

Yk(t)hk, t ∈ [0, T ], solves

X(t) = TtX0 + σ

∫ t

0

Tt−sΦ1X(s)dBh(s) + η

∫ t

0

Tt−sΦ2X(s−)dπ̃(s) (3.15)

for all t ∈ [0, T ].

Remark 3.5. The last theorem shows, that (X(t))t∈[0,T ] is the mild solution of

dX(t) = aAX(t)dt+ σΦ1X(t)dBh(t) + ηΦ2X(t−)dπ̃(t) , X(0) = X0.

4. Parameter estimation

In what follows we assume Yk(0) > 0 and 1 + ηµ2k > 0 for all k ∈ {1, 2, . . . }.
Let k ∈ {1, 2, . . . } be arbitrary. We introduce a method to estimate the parameter a
in equation (3.2) for the process (Yk(t))t∈[0,T ]. By construction we can interpret this
process as the process corresponding to the k-th Fourier coefficient of (X(t))t∈[0,T ]

with respect to hk. We introduce the process

ξk(t) := ln(Yk(t)) = ln(Yk(0)) + σµ1kB
h
k (t)− 1

2
σ2µ2

1kt
2h

+aλkt− νηµ2kt+ ln(1 + ηµ2k)πk(t). (4.1)

Then,

E(ξk(t)) = E(ln(Yk(t))) = ln(Yk(0))− 1

2
σ2µ2

1kt
2h

+aλkt− νηµ2kt+ (1 + ηµ2k)νt. (4.2)

Remark 4.1. Parameter estimation problems involving maximum likelihood methods
for equations of type (4.1) without Poisson processes were considered in [1].
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We consider for n ∈ {1, 2, . . .} and for β > 1, such that nβ ∈ N, the partitions

t1 =
1

n
< t2 =

2

n
< . . . < tnβ =

nβ

n
=: T (nβ) .

Having statistical observations for X(·) in this time points, we can calculate
ξk(t1), . . . , ξk(T (nβ)).
We introduce the following estimation criterion analogous to the one given in [7]:

min


nβ∑
i,j=1

cov (ξk(ti), ξk(tj)) : a > 0

 . (4.3)

Equation (4.3) is a quadratic function with respect to a. The factor in front of a2

is given by the positive term λ2k

( nβ∑
i=1

ti

)2
. Consequently, there is a unique estimator

â(nβ).

Theorem 4.2. For every k ∈ {1, 2, . . . } the estimator â(nβ) =

−

nβ∑
i=1

(
ln(Yk(0))− ηµ2kνti + ln(1 + ηµ2k)νti −

1

2
σ2µ2

1kt
2h
i − ln(Yk(ti))

)

λk

nβ∑
i=1

ti

(4.4)

is unbiased and weakly consistent for the parameter a.

Proof. If we substitute ln(Yk(ti)) in the right hand side of â(nβ), then we get

â(nβ) = a+

nβ∑
i=1

(σBhk (ti) + ln(1 + ηµ2k)π̃k(ti))

λk

nβ∑
i=1

ti

. (4.5)

Consequently, the estimator is unbiased. We get

E[â(nβ)− a]2 = E


nβ∑
i=1

(
σµ1kB

h
k (ti) + ln(1 + ηµ2k)π̃k(ti)

)
λk

nβ∑
i=1

ti



2

=

nβ∑
i,j=1

(
σ2µ2

1k

2

(
t2hi + t2hj − |ti − tj |2h

)
+ (ln(1 + ηµ2k))2νmin{ti, tj}

)

λ2k

nβ∑
i,j=1

titj

.
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Further we have

nβ∑
i,j=1

σ2µ2
1k

2

(
t2hi + t2hj − |ti − tj |2h

)
≤

nβ∑
i,j=1

σ2µ2
1k

2

(
t2hi + t2Hj

)
≤ σ2µ2

1k

nβ∑
i,j=1

(
nβ

n

)2h

= σ2µ2
1k

nβ(2+2h)

n2h
,

nβ∑
i,j=1

(ln(1 + ηµ2k))2νmin{ti, tj} ≤ (ln(1 + ηµ2k))2ν

nβ∑
i,j=1

(
nβ

n

)

= (ln(1 + ηµ2k))2ν
n3β

n

and
nβ∑
i,j=1

titj =
1

n2

 nβ∑
i=1

i

2

=
n2β(nβ + 1)2

4n2
≥ n4β

4n2
.

Consequently,

lim
n→∞

E[â(nβ)− a]2

≤ lim
n→∞

4

λ2k

(
σ2µ2

1k · n(2−2h)+β(2+2h−4) + (ln(1 + ηµ2k))2ν · n(2−1)+β(3−4)
)

≤ lim
n→∞

4

λ2k

(
σ2µ2

1k · n(2−2h)−β(2−2h) + (ln(1 + ηµ2k))2ν · n1−β
)

= 0

and the weak consistency follows for β > 1. �

Remark 4.3. 1. In a similar manner we can calculate estimates for σ2 and ν. Then,
we need the condition β > 4h− 1 to prove the weak consistency.

2. The estimation of η is difficult. A possibility consists in the application of an
approximation of π̃k by Brownian motions (Bk)k≥1 with E(B2

k(t)) = νt by using
the Central Limit Theorem.

3. If η = 0, then the random variable

λ2k
4
· â(nβ)− a
σ2µ2

1k · n(2−2h)−β(2−2h)

is asymptotically N(0, 1) distributed.

Moreover, we prove the following result:

Theorem 4.4. Consider β > 3−2h
2−2h such that nβ ∈ N. Then the estimate (4.4) for the

parameter a is strongly consistent for all k ∈ {1, 2, . . .}.

Proof. It is well known that, if for all ε > 0 the relation
∞∑
n=1

P (|â(nβ)− a| > ε) <∞



288 Wilfried Grecksch, Hannelore Lisei and Jens Lueddeckens

holds, then lim
n→∞

â(nβ) = a with probability 1.

Let k ∈ {1, 2, . . .} be arbitrary. We know from the end of the proof of the last
theorem that for the variance of â(nβ) we can write

V (â(nβ)) ≤ 4

λ2k

(
σ2µ2

1k · n(2−2h)−β(2−2h) + (ln(1 + ηµ2k))2ν · n1−β
)
.

Then, by using Chebyshev’s inequality we obtain

∞∑
n=1

P (|â(nβ)− a| > ε) ≤
∞∑
n=1

1

ε2
V (â(nβ))

≤ 4

λ2k

∞∑
n=1

σ2µ2
1k · n(2−2h)−β(2−2h) +

4

λ2k

∞∑
n=1

(ln(1 + ηµ2k))2ν · n1−β .

Obviously, the first, respectively, the second sum on the right hand side of the last
inequality are convergent, if

β >
3− 2h

2− 2h
, respectively, β > 2.

Hence, we get the statement for β > 3−2h
2−2h > 2 (since 1/2 < h < 1). �
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