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Abstract. The core object of this paper is to define and study new class of analytic
function using Ruscheweyh q-differential operator. We also investigate a number
of useful properties such as inclusion relation, coefficient estimates, subordination
result,for this newly subclass of analytic functions.

Mathematics Subject Classification (2010): 30C45, 30C50.

Keywords: Analytic functions, Subordination, Functions with positive real part,
Ruscheweyh q-differential operator, reciprocal order.

1. Introduction

Quantum calculus (q-calculus) is simply the study of classical calculus without
the notion of limits. The study of q-calculus attracted the researcher due to its appli-
cations in various branches of mathematics and physics, see detail [8]. Jackson [10, 12]
was the first to give some application of q-calculus and introduced the q-analogue of
derivative and integral. Later on Aral and Gupta [5, 6, 7] defined the q-Baskakov
Durrmeyer operator by using q-beta function while the author’s in [2, 3, 4] discussed
the q-generalization of complex operators known as q-Picard and q-Gauss-Weierstrass
singular integral operators. Recently, Kanas and Răducanu [13] defined q-analogue of
Ruscheweyh differential operator using the concepts of convolution and then stud-
ied some of its properties. The application of this differential operator was further
studied by Mohammed and Darus [1] and Mahmood and Sokó l [14]. The aim of the
current paper is to define a new class of analytic functions of reciprocal order involving
q-differetial operator.

Let A be the class of functions having the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)
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which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Let M(α) denote a
subclass of A consisting of functions which satisfy the inequality

Re
zf ′(z)

f(z)
< α (z ∈ U) ,

for some α (α > 1). And let N (α) be the subclass of A consisting of functions f which
satisfy the inequality:

Re
(zf ′(z))

′

f ′(z)
< α (z ∈ U),

for some α (α > 1). These classes were studied by Owa et al. [16, 18]. Shams et al. [20]
have introduced the k-uniformly starlike SD (k, α) and k-uniformly convex CD (k, α)
of order α, for some k (k ≥ 0) and α (0 ≤ α < 1). Using these ideas in above defined
classes, Junichi et al. [17] introduced the following classes.

Definition 1.1. Let f ∈ A. Then f is said to be in class MD (k, α) if it satisfies

Re
zf ′(z)

f(z)
< k

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣+ α (z ∈ U) ,

for some α (α > 1) and k (k ≤ 0).

Definition 1.2. An analytic function f of the form (1.1) belongs to the class ND (k, α),
if and only if

Re
(zf ′(z))

′

f ′(z)
< k

∣∣∣∣ (zf ′(z))′f ′(z)
− 1

∣∣∣∣+ α (z ∈ U) ,

for some α (α > 1) and k (k ≤ 0).

If f and g are analytic in U, we say that f is subordinate to g, written as f ≺ g
or f(z) ≺ g(z), if there exists a Schwarz function w, which is analytic in U with
w (0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)). Furthermore, if the function g(z)
is univalent in U, then we have the following equivalence holds, see [11, 15].

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

For two analytic functions

f(z) =
∞∑
n=1

anz
n g(z) =

∞∑
n=1

bnz
n (z ∈ U) ,

For t ∈ R and q > 0, q 6= 1, the number [t, q] is defined in [14] as

[t, q] =
1− qt

1− q
, [0, q] = 0.

For any non-negative integer n the q-number shift factorial is defined by

[n, q]! = [1, q] [2, q] [3, q] · · · [n, q] , ([0, q]! = 1) .

We have lim
q→1

[n, q] = n. Throughout in this paper we will assume q to be fixed number

between 0 and 1.
The q-derivative operator or q-difference operator for f ∈ A is defined as

∂qf(z) =
f (qz)− f(z)

z (q − 1)
, z ∈ U.
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It can easily be seen that for n ∈ N := {1, 2, 3, . . .} and z ∈ U

∂qz
n = [n, q] zn−1, ∂q

{ ∞∑
n=1

anz
n

}
=

∞∑
n=1

[n, q] anz
n−1.

The q-generalized Pochhammer symbol for t ∈ R and n ∈ N is defined as

[t, q]n = [t, q] [t+ 1, q] [t+ 2, q] · · · [t+ n− 1, q] ,

and for t > 0, let q-gamma function is defined as

Γq (t+ 1) = [t, q] Γq (t) and Γq (1) = 1.

Definition 1.3. [14] For a function f(z) ∈ A, the Ruscheweyh q-differential operator
is defined as

Dµ
q f(z) = φ (q, µ+ 1; z) ∗ f(z) = z +

∞∑
n=2

Φn−1anz
n, (z ∈ U and µ > −1) , (1.2)

where

φ (q, µ+ 1; z) = z +

∞∑
n=2

Φn−1z
n, (1.3)

and

Φn−1 =
Γq (µ+ n)

[n− 1, q]!Γq (µ+ 1)
=

[µ+ 1, q]n−1
[n− 1, q]!

. (1.4)

From (1.2), it can be seen that

L0
qf(z) = f(z) and L1

qf(z) = z∂qf(z),

and

Lmq f(z) =
z∂mq

(
zm−1f(z)

)
[m, q]!

, (m ∈ N) .

lim
q→1−

φ (q, µ+ 1; z) =
z

(1− z)µ+1 ,

and

lim
q→1−

Dµ
q f(z) = f(z) ∗ z

(1− z)µ+1 .

This shows that in case of q → 1−, the Ruscheweyh q-differential operator reduces
to the Ruscheweyh differential operator Dδ (f(z)) (see [19]). From (1.2) the following
identity can easily be derived.

z∂Dµ
q f(z) =

(
1 +

[µ, q]

qµ

)
Dµ
q f(z)− [µ, q]

qµ
Dµ
q f(z). (1.5)

If q → 1−, then

z
(
Dµ
q f(z)

)′
= (1 + µ)Dµ

q f(z)− µDµ
q f(z).

Now using the Ruscheweyh q-differential operator, we define the following class.
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Definition 1.4. Let f ∈ A. Then f is in the class KDq (k, α, γ) if

Re

{
1 +

1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)}
< k

∣∣∣∣ 1γ
(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)∣∣∣∣+ α,

for some k (k ≤ 0), α (α > 1) and for some γ ∈ C \ {0}.

We note that LD0
2 (1, 1, α) =M(α) and LD0

1 (1, 1, α) = N (α), the classes introduced
by Owa et al. [16, 18]. When we take γ = 1, 2, c = 1, and a = 1 the class KDq (k, α, γ)
reduces to the classesMD (k, α) and ND (k, α) (see [17]). For 1 < α < 4/3 the classes
M(α) and N (α) were investigated by Uralegaddi et al. [21].

2. Preliminary results

Lemma 2.1. [9]For a positive integer t, we have

σ

t∑
j=1

(σ)j−1
(j − 1)!

=
(σ)t

(t− 1)!
. (2.1)

Proof. Consider

σ

t∑
j=1

(σ)j−1
(j − 1)!

= σ

(
1 +

σ

1
+

(σ)2
2!

+
(σ)3
3!

+
(σ)4
4!

+ · · ·+ (σ)t−1
(t− 1)!

)
= σ(1 + σ)

(
1 +

σ

2
+
σ(σ + 2)

2× 3
+ · · ·+ σ(σ + 2) · · · (σ + t− 2)

2× · · · × (t− 1)

)
= σ(1 + σ)

(σ + 2)

2

(
1 +

σ

3
+ · · ·+ σ(σ + 3) · · · (σ + t− 2)

3× 4× · · · × (t− 1)

)
= σ(1 + σ)

(σ + 2)

2

(σ + 3)

3

(
1 +

σ

4
+ · · ·+ σ(σ + 4) · · · (σ + t− 2)

4× · · · × (t− 1)

)
= σ(1 + σ)

(σ + 2)

2

(σ + 3)

3

(σ + 4)

4

(
1 +

σ

5
+ · · ·+ σ · · · (σ + t− 2)

5× 6× · · · × (t− 1)

)
= σ(1 + σ)

(σ + 2)

2

(σ + 3)

3

(σ + 4)

4
· · ·
(

1 +
σ

t− 1

)
= σ(1 + σ)

(σ + 2)

2

(σ + 3)

3

(σ + 4)

4
· · ·
(
σ + (t− 1)

t− 1

)
=

(σ)t
(t− 1)!

.

�
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3. Main results

With the help of the definition of KDq (k, α, γ) , we prove the following results.

Theorem 3.1. If f(z) ∈ KDq (k, α, γ) , then

f(z) ∈ KDq
(

0,
α− k
1− k

, γ

)
.

Proof. Because k ≤ 0, we have

Re

{
1 +

1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)}
< k

∣∣∣∣ 1γ
(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)∣∣∣∣+ α,

≤ kRe

(
1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

))
+ α− k,

which implies that

(1− k)Re
1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)
< α− k.

After simplification, we obtain

Re

[
1 +

1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)]
<
α− k
1− k

, (k ≤ 0, α > 1 and ) . (3.1)

This completes the proof. �

Theorem 3.2. If f(z) ∈ KDq (k, α, γ) and if f(z) has the form (1.1), then

|an| ≤
(σ)n−1

(n− 1)!Φn−1
, (3.2)

where

σ =
2|γ|(α− 1)

q(1− k)
. (3.3)

Proof. Let us define a function

p(z) =
(α− k)− (1− k)

[
1 + 1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1
)]

α− 1
. (3.4)

Then p(z) is analytic in U, p(0) = 1 and Re {p(z)} > 0 for z ∈ U. We can write[
1 +

1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)]
=

(α− k)− (α− 1)p(z)

1− k
(3.5)

If we take p(z) = 1 +
∞∑
n=1

pnz
n, then (3.5) can be written as

z∂qD
µ
q f(z)−Dµ

q f(z) = −γ (α− 1)

1− k
(
Dµ
q f(z)

)( ∞∑
n=1

pnz
n

)
.

this implies that[ ∞∑
n=2

q [n− 1] Φn−1anz
n

]
= −γ(α− 1)

1− k

( ∞∑
n=1

Φn−1anz
n

)( ∞∑
n=1

pnz
n

)
.
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Using Cauchy product

( ∞∑
n=1

xn

)
·
( ∞∑
n=1

yn

)
=
∞∑
j=1

j∑
k=1

xkyk−j , we obtain

q [n− 1] Φn−1anz
n = −γ(α− 1)

1− k

∞∑
n=2

n−1∑
j=1

Φj−1ajpn−j

 zn.

Comparing the coefficients of nth term on both sides, we obtain

an =
−γ(α− 1)

q [n− 1] Φn−1 (1− k)

n−1∑
j=1

Φj−1ajpn−j .

By taking absolute value and applying triangle inequality, we get

|an| ≤
|γ| (α− 1)

q [n− 1] Φn−1 (1− k)

n−1∑
j=1

Φj−1 |aj | |pn−j | .

Applying the coefficient estimates |pn| ≤ 2 (n ≥ 1) for Caratheodory functions [11],
we obtain

|an| ≤
2 |γ| (α− 1)

q [n− 1] Φn−1(1− k)

n−1∑
j=1

Φj−1 |aj |

=
σ

[n− 1] Φn−1

n−1∑
j=1

ψj−1 |aj | , (3.6)

where σ = 2|γ|(α− 1)/q(1− k). To prove (3.2) we apply mathematical induction. So
for n = 2, we have from (3.6)

|a2| ≤
σ

Φ1
=

(σ)2−1
[2− 1]!Φ2−1

, (3.7)

which shows that (3.2) holds for n = 2. For n = 3, we have from (3.6)

|a3| ≤
σ

[3− 1] Φ3−1
{1 + Φ1 |a2|} ,

using (3.7), we have

|a3| ≤
σ

[2] Φ2
(1 + σ) =

(σ)3−1
[3− 1] Φ3−1

,

which shows that (3.2) holds for n = 3. Let us assume that (3.2) is true for n ≤ t,
that is,

|at| ≤
(σ)t−1

[t− 1]!Φt−1
j = 1, 2, . . . , t. (3.8)
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Using (3.6) and (3.8), we have

|at+1| ≤
σ

tΦt

t∑
j=1

Φj−1 |aj |

≤ σ

tΦt

t∑
j=1

ψj−1
(σ)j−1

[j − 1]!Φj−1

=
σ

tΦt

t∑
j=1

(σ)j−1
[j − 1]!

.

Applying (2.1), we have

|at+1| ≤
1

tΦt

(σ)t
[t− 1]!

=
1

Φt

(σ)t
[t]!

.

Consequently, using mathematical induction, we have proved that (3.2) holds true for
all n, n ≥ 2. This completes the proof. �

Theorem 3.3. If a function f ∈ KDq (k, α, γ), then

z∂qD
µ
q f(z)

Dµ
q f(z)

≺ 1 + 2 (α1 − 1)− 2 (α1 − 1)

1− z
(z ∈ U), (3.9)

α1 =
α− k
1− k

. (3.10)

Proof. If f(z) ∈ KDq (k, α, γ), then by (3.1)

Re

{
1 +

1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)}
< α1. (3.11)

Then there exists a Schwarz function w(z) such that

α1 −
{

1 + 1
γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1
)}

α1 − 1
=

1 + w(z)

1− w(z)
, (3.12)

and

Re

{
1 + w(z)

1− w(z)

}
> 0, (z ∈ U).

Therefore, from (3.12), we obtain

z∂qD
µ
q f(z)

Dµ
q f(z)

= 1 + γ (α1 − 1)

(
1− 1 + w(z)

1− w(z)

)
.

This gives
z∂qD

µ
q f(z)

Dµ
q f(z)

= 1 + 2γ (α1 − 1)− 2γ (α1 − 1)

1− w(z)
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and hence

z∂qD
µ
q f(z)

Dµ
q f(z)

≺ 1 + 2γ (α1 − 1)− 2γ (α1 − 1)

1− z
(z ∈ U).

which was required in (3.9). �

Theorem 3.4. If function f ∈ KDq (k, α, γ), then we have

1− [1 + 2γ(α1 − 1)] r

1− r
≤ Re

{
z∂qD

µ
q f(z)

Dµ
q f(z)

}
≤ 1 + [1 + 2γ(α1 − 1)] r

1 + r
, (3.13)

for |z| = r < 1 and α1 is defined by (3.10).

Proof. By the virtue of Theorem (3.3), let us take the function φ(z) defined by

φ(z) = 1 + 2γ (α1 − 1)− 2γ(α1 − 1)

1− z
(z ∈ U) .

Letting z = reiθ(0 ≤ r < 1), we see that

Reφ(z) = 1 + 2γ (α1 − 1) +
2γ (1− α1) (1− r cos θ)

1 + r2 − 2r cos θ
.

Let us define

ψ(t) =
1− rt

1 + r2 − 2rt
(t = cos θ) .

Since ψ′(t) =
r
(
1− r2

)
(1 + r2 − 2rt)

2 ≥ 0, because r < 1. Therefore we get

1 + 2γ (α1 − 1)− 2γ (α1 − 1)

1− r
≤ Reφ(z) ≤ 1 + 2γ (α1 − 1)− 2γ (α1 − 1)

1 + r
.

After simplification, we have

1− [1 + 2γ (α1 − 1)] r

1− r
≤ Reφ(z) ≤ 1 + [1 + 2γ (α1 − 1))] r

1 + r
.

Since we note that
z∂qD

µ
q f(z)

Dµ
q f(z)

≺ φ(z), (z ∈ U) by Theorem 3.3 and φ(z) is analytic

in U, we proved the inequality (3.13). �

Theorem 3.5. If f ∈ A satisfies∣∣∣∣z∂qDµ
q f(z)

Dµ
q f(z)

− 1

∣∣∣∣ < (α− 1)|γ|
(1− k)

z ∈ U, (3.14)

for some k (k ≤ 0), α (α > 1) and γ ∈ C \ {0}. Then f ∈ KDq(k, α, γ).
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Proof. ∣∣∣∣z∂qDµ
q f(z)

Dµ
q f(z)

− 1

∣∣∣∣ < (α− 1)|γ|
(1− k)

⇒
∣∣∣∣ 1γ
(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)∣∣∣∣ < α− 1

1− k

⇒ (1− k)

∣∣∣∣ 1γ
(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)∣∣∣∣+ 1 < α

⇒
∣∣∣∣ 1γ
(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)∣∣∣∣+ 1 < k

∣∣∣∣ 1γ
(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)∣∣∣∣+ α

⇒ Re

{
1 +

1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)}
+ 1 < k

∣∣∣∣ 1γ
(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)∣∣∣∣+ α

⇒ f ∈ LDkb (a, c, β)

�

Corollary 3.6. Let f ∈ A be of the form (1.1) and satisfies∣∣∣∣∑∞n=2 [n− 1] Φn−1anz
n−1

1 +
∑∞
n=2 Φn−1anzn−1

∣∣∣∣ < (α− 1)|γ|
q(1− k)

z ∈ U, (3.15)

for some k (k ≤ 0), β (β > 1) and for some b ∈ C \ {0}. Then f ∈ KDq(k, α, γ)..

Proof. We have

Dµ
q f(z) = z +

∞∑
n=2

Φn−1anz
n

and by (1.5)

z∂Dµ
q f(z) = z +

∞∑
n=2

[n] Φn−1anz
n.

Therefore, (3.14) follows immediately (3.15). �

Theorem 3.7. Let f ∈ A be of the form (1.1) and satisfies

∞∑
n=2

([n− 1] + y) |Φn−1||an| < y z ∈ U, (3.16)

for some k (k ≤ 0), β (β > 1) and for some b ∈ C \ {0} and where

y =
(α− 1)|γ|
q(1− k)

> 0.

Then f ∈ KDq(k, α, γ).
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Proof. We have

∞∑
n=2

([n− 1] + y) |Φn−1||an| < y

⇒
∞∑
n=2

([n− 1] + y) |Φn−1||an| < y − y
∞∑
n=2

|Φn−1||an|

⇒ 0 < y − y
∞∑
n=2

|Φn−1||an|

⇒ 0 < y − y
∞∑
n=2

|Φn−1||an||zn−1|

⇒ 0 < y

∣∣∣∣∣1 +

∞∑
n=2

Φn−1anz
n−1

∣∣∣∣∣ (3.17)

We have
∞∑
n=2

([n− 1] + y) |Φn−1||an| < y

⇒
∞∑
n=2

([n− 1] + y) |Φn−1||an||zn−1| < y

⇒
∞∑
n=2

[n− 1] |Φn−1||an||zn−1| < y − y
∞∑
n=2

|Φn−1||an||zn−1|

⇒

∣∣∣∣∣
∞∑
n=2

[n− 1] Φn−1anz
n−1

∣∣∣∣∣ < y

∣∣∣∣∣1 +

∞∑
n=2

Φn−1anz
n−1

∣∣∣∣∣
⇒

∣∣∣∣∑∞n=2 [n− 1] Φn−1anz
n−1

1 +
∑∞
n=2 Φn−1anzn−1

∣∣∣∣ < y,

because of (3.17). By (3.15) it follows f ∈ LDkb (a, c, β). �
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