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Some approximation properties of Urysohn type
nonlinear operators

Harun Karsli

Abstract. The central issue of this paper is to continue the investigation of con-
vergence properties of Urysohn type operators. By using Urysohn type operators
we will extend the theory of interpolation to functionals and operators. In details,
the present paper centers around Urysohn type nonlinear counterpart of the two
dimensional Stancu operators defined on a triangle. We construct our nonlinear
operators by defining a nonlinear forms of the kernel functions. Afterwards, we
investigate the convergence problem for these operators.
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1. Introduction

In functional analysis, the superposition problem is known as the problem of
representing a function f as the composition of “simpler and more easily calculated”
functions. In 1885, Weierstrass gave a positive answer to this problem with his famous
theorem, which states that every continuous function defined on a closed interval
[a, b] can be uniformly approximated by a sequence of polynomials. Since that time
many researchers try to find an explicit form of such polynomials to give a simple
proof of this theorem. A well-known and most celebrated proof of the Weierstrass
approximation theorem for f ∈ C[0, 1] is due to Bernstein, in which he defined the
following polynomials

(Bnf) (x) =

n∑
k=0

f

(
k

n

)
pn,k(x), n ≥ 1, (1.1)
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where pn,k(x) =

(
n
k

)
xk(1 − x)n−k is the Binomial distribution, and proved that

Bnf converges uniformly to any f ∈ C[0, 1] (see [7]). Further investigations are ob-
tained by Lorentz in [19]. Since Bernstein operators are the prototype of many positive
linear operators used in the theory of approximation, a great number of generaliza-
tions of these operators are given.

For the same functions, Stancu defined another positive linear operator as follows

(Pαn f) (x) =

n∑
k=0

f

(
k

n

)
pαn,k(x), n ≥ 1,

where α is a non-negative parameter, which may depend only on the natural number
n and pαn,k(x) called Markov-Polya distribution (see [23]).

The special case α = 0 yields the Bernstein operator, while the Szasz-Mirakyan
operator is shown to be a limiting case of Pαn . When α = 1/n we obtain the Lupaş and
Lupaş [20] operators corresponding to the equally spaced points k/n (k = 0, 1, ..., n).

Up to the work of the famous polish mathematician Julian Musielak in 1981,
see [22], the theory of approximation was strongly related with the linearity of the
considered operators. Based on the idea developed in [22] and afterwards the works of
C. Bardaro, G. Vinti and their research group on nonlinear operators, the approxima-
tion problem was proved by using nonlinear operators in some function spaces (see the
fundamental book due to Bardaro, Musielak and Vinti [5]). For the approximation by
linear and nonlinear operators, please see also the papers [3]-[2] and the monographs
[10] and [26].

In view of the approach due to Musielak [22] and the techniques introduced
by Bardaro-Mantellini in [4], Karsli-Tiryaki and Altin [18] considered the following
nonlinear Bernstein operators;

(NBnf)(x) =

n∑
k=0

Pn,k

(
x, f

(
k

n

))
, 0 ≤ x ≤ 1, n ∈ N, (1.2)

acting on bounded functions f on an interval [0, 1] , where Pn,k satisfy some suitable
assumptions. For further results we refer the papers [17], [16] and [18].

To generalize and extend the superposition or approximation problem for the
functionals and operators, very recently in [13] and [14] Karsli defined and investigated
the Urysohn type nonlinear Bernstein operators as;

(NBnF )x (t) =

1∫
0

[
n∑
k=0

Pk,n

(
x(s), f

(
t, s,

k

n

))]
ds, 0 ≤ x(s) ≤ 1,

where Pk,n satisfy some suitable assumptions.
As a continuation of the above studies, in [14] the author also obtained

Voronovskaya-type theorems for these operators.
For the linear forms of the Urysohn Bernstein and Urysohn Stancu operators we

refer to the reader [11] and [21].
Moreover, in [15], Karsli considered a sequence NBF = (NBnF ) of operators,

which represents the Urysohn type nonlinear form of the two dimensional Bernstein
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operators defined by P.L. Butzer on the square S = [0, 1]× [0, 1] (see [8], [9]), having
the form:

(NBnF ) (x (t) , y(t)) =

1∫
0

1∫
0

[
n∑
k=0

n∑
i=0

Pk,i,n

(
x(s), y(z), f

(
t, s, z,

k

n
,
i

n

))]
dsdz,

0 ≤ x(s), y(z) ≤ 1, n ∈ N,

acting on bounded functions f on [0, 1]
5
, where Pk,i,n satisfy some suitable assump-

tions.

The central issue of this paper is to give a positive answer to the superposition
problem for functionals and operators by introducing the Urysohn nonlinear operators
of the two dimensional Stancu operators (Pαn f) (x, y) defined on the triangle

4 := {(s, z) : s, z ≥ 0, s+ z ≤ 1}.

Afterwards, we investigate the convergence problem for these nonlinear operators.

This paper is organized as follows: in Section 2, we construct the operators and
further we present a basic lemma together with some definitions, which will be used
in the sequel. Section 3 deals with the main convergence results for these operators.

2. Preliminaries and auxiliary results

This section is devoted to collecting some definitions and results which will be
needed further on.

Now, we consider the following two dimensional Urysohn integral operator over
the triangle 4 := {(s, z) : s, z ≥ 0, s+ z ≤ 1},

F (x(t), y(t)) =

∫∫
4

f(t, s, z, x(s), y(z))dsdz, t, s, z ∈ [0, 1]

with unknown kernel f . If this representation exists, then f(t, s, z, x(.), y(.)) is called
the two dimensional Green’s function, which is strongly related to the functions x and
y (see [25] and [26]).

In view of the above relations, we assume that the two dimensional continuous
interpolation conditions hold:

F (xi(t), yj(t)) =

∫∫
4

f(t, s, z, xi(s), yj(z))dsdz, t ∈ [0, 1] , (2.1)

where

xi(s) =
i

n
H(s− ξ); ξ ∈ [0; 1]

yj(z) =
j

n
H(z − ς); ς ∈ [0; 1]
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and i, j = 0, 1, 2, ...n. By a straightforward calculation we have

∂2F
(
i
nH(s− ξ), jnH(z − ς)

)
∂ξ∂ς

= f(t, ξ, ς,
i

n
,
j

n
)− f(t, ξ, ς,

i

n
, 0)

+f(t, ξ, ς, 0, 0)− f(t, ξ, ς, 0,
j

n
).

Say

F1

(
t, ξ, ς,

i

n
,
j

n

)
:=

∂2F
(
i
nH(s− ξ), jnH(z − ς)

)
∂ξ∂ς

.

According to the above definition, it is possible to construct an approximation oper-
ator in order to generalize and extend of the theory of interpolation of functions to
operators.

For a bounded function defined on the triangle4 := {(x, y) : x, y ≥ 0, x+y ≤ 1},
two dimensional Stancu polynomials is given by:

(Pαn f) (x, y) =

n∑
k=0

n−k∑
j=0

pαn,k,j(x, y)f

(
k

n
,
j

n

)
,

where α is a non-negative parameter, which may depend only on the natural number
n and

pαn,k,j(x, y) =

(
n

k

)(
n− k
j

)

∗

k−1∏
l1=0

(x+ l1α)
j−1∏
l2=0

(y + l2α)
n−k−j−1∏
l3=0

(1− x− y + l3α)

n−1∏
l4=0

(1 + l4α)

is the two dimensional Markov-Polya distribution ([24]).
Finally, let us now consider a sequence NPαF = (NPαn F ) of operators, which

represents Urysohn type nonlinear counterpart of the two dimensional Stancu opera-
tors defined on the triangle 4 := {(s, z) : s, z ≥ 0, s+ z ≤ 1}, having the form:

(NPαn F ) (x (t) , y(t))

=

∫∫
4

[
n∑
k=0

n−k∑
i=0

Pαk,i,n

(
x(s), y(z), f

(
t, s, z,

k

n
,
i

n

))]
dsdz, (2.2)

0 ≤ x(s), y(z) and x(s) + y(z) ≤ 1, n ∈ N,

acting on bounded functions f on [0, 1]
5
, where Pαk,i,n satisfy some suitable assump-

tions. In particular, we will put Dom NPαF =
⋂
n∈N

Dom NPαn F, where Dom NPαn F

is the set of all functions f : [0, 1]
5 → R for which the operator is well defined.

Let X be the set of all bounded Lebesgue measurable functions

f : [0, 1]5 → R+
0 = [0,∞).
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Let Ψ be the class of all functions ψ : R+
0 → R+

0 such that the function ψ is
continuous and concave with ψ(0) = 0, ψ(u) > 0 for u > 0.

We now introduce a sequence of functions. Let
{
Pαk,i,n

}
n∈N

be a sequence of

functions Pαk,i,n : [0, 1] x [0, 1] xR→ R defined by

Pαk,i,n (t, l, u) = pαk,n(t)pαi,n(l)Hn(u) (2.3)

for every t, l ∈ [0, 1], u ∈ R, where Hn : R→ R is such that Hn(0) = 0 and pαk,n(•) is
the Markov-Polya basis.

Throughout the paper we assume that µ : N→ R+ is an increasing and contin-
uous function such that lim

n→∞
µ(n) =∞.

Assume that the following conditions hold:
a ) Hn : R→ R is such that

|Hn(u)−Hn(v)| ≤ ψ (|u− v|) , (2.4)

holds for every u, v ∈ R, for every n ∈ N. That is, Hn satisfies a (L−Ψ) Lipschitz
condition.

b ) Denoting by rn(u) := Hn(u)−u, u ∈ R and n ∈ N, such that for n sufficiently
large

sup
u
|rn(u)| = sup

u
|Hn(u)− u| ≤ 1

µ(n)
, (2.5)

holds.
The symbol [a] will denote the greatest integer not greater than a.
Following our announced aim, in this part we recall results regarding the uni-

variate and linear case of the celebrated Stancu operators.

Lemma 2.1. [23] For (Pαn t
s)(x), s = 0, 1, 2, one has

(Pαn 1)(x) = 1

(Pαn t)(x) = x

(Pαn t
2)(x) = x2 +

(1 + αn)x(1− x)

n(1 + α)
.

By direct calculation, we find the following equalities:

(Pαn (t− x)
2
)(x) =

x(1− x) (1 + αn)

n(1 + α)
, (Pαn (t− x))(x) = 0 .

Moreover, for the second order central moment one has

(Pαn (t− x)
2
)(x) ≤ 1 + αn

4n(1 + α)
.

Definition 2.2. Let f ∈ C
(

[a, b]
5
)

and δ > 0 be given. Then the complete modulus

of continuity is given by:

ω (f ; δ) = sup√
(u1−u2)

2+(v1−v2)2≤δ
|f(t, s, z, u1, v1)− f(t, s, z, u2, v2)| . (2.6)
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Further on, the partial modulus of continuity with respect to forth and fifth variables
are defined by

ω1 (f ; δ) = sup
t,s,z,v1

(
sup

|u1−u2|≤δ
|f(t, s, z, u1, v1)− f(t, s, z, u2, v1)|

)
,

and

ω2 (f ; δ) = sup
t,s,z,u1

(
sup

|v1−v2|≤δ
|f(t, s, z, u1, v1)− f(t, s, z, u1, v2)|

)
,

respectively. Note that ω (f ; δ) has the following properties;

(i) Let λ ∈ R+, then

ω (f ;λδ) ≤ (λ+ 1)ω (f ; δ) ,

(ii) lim
δ→0+

ω (f ; δ) = 0,

(iii) |f(t, s, z, u1, v1)− f(t, s, z, u2, v2)|

≤ ω (f ; δ)

1 +

√
(u1 − u2)

2
+ (v1 − v2)

2

δ

 .

The same properties also hold for partial moduli of continuity.

Now, we are ready to state some convergence results of the operators defined on the
triangle.

3. Main theorems

Theorem 3.1. Let F be the Urysohn integral operator with 0 ≤ x(s), y(z) and

x(s) + y(z) ≤ 1.

Then (NPαn F ) converges to F uniformly in x, y ∈ C[0, 1]. That is

lim
n→∞

‖(NPαn F ) (x (t) , y(t))− F (x (t) , y(t))‖C(4) = 0.

Proof. Owing to the definition of the operator given by (2.2), by considering (2.1),
(2.3), (2.4) and (2.5), we have

|(NPαn F ) (x (t) , y(t))− F (x (t) , y(t))|

=

∣∣∣∣∣∣∣
∫∫
4

[
n∑
k=0

n−k∑
i=0

Pαk,i,n

(
x(s), y(z), f

(
t, s, z,

k

n
,
i

n

))]
dsdz − F (x (t) , y(t))

∣∣∣∣∣∣∣
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≤
∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z)) ·

·
∣∣∣∣Hn

(
f

(
t, s, z,

k

n
,
i

n

))
−Hn (f (t, s, z, x(s), y(z)))

∣∣∣∣ dsdz
+

∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z)) ·

· |Hn (f (t, s, z, x(s), y(z)))− f(t, s, z, x(s), y(z))| dsdz
:= I1 + I2.

Owing to the assumption b), one has

I2 =

∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z)) ·

· |Hn (f (t, s, z, x(s), y(z)))− f(t, s, z, x(s), y(z))| dsdz

≤
∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z))
1

µ (n)
dsdz

=
1

µ (n)
,

which tends to zero as n→∞.
Using the definition of the function F1 (t, s, z, x(s), y(z)) , by concavity of the function
ψ, and using Jensen inequality, we obtain

I1 ≤
∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z))

×ψ
(∣∣∣∣f (t, s, z, kn , in

)
− f (t, s, z, x(s), y(z))

∣∣∣∣) dsdz
≤ ψ

∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z))

∣∣∣∣f (t, s, z, kn , in
)
− f (t, s, z, x(s), y(z))

∣∣∣∣ dsdz


≤ ψ

{ ∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z))×
∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z, kn ,

i
n

)∣∣ dsdz
+

∫∫
4

∣∣∣∣∣f (t, s, z, x(s), 0)−
n∑
k=0

pαk,n (x(s)) f

(
t, s, z,

k

n
, 0

)∣∣∣∣∣ dsdz
+

∫∫
4

∣∣∣∣∣f (t, s, z, 0, y(z))−
n∑
i=0

pαi,n (y(z)) f

(
t, s, z, 0,

i

n

)∣∣∣∣∣ dsdz
 ≤ I1,1 + I1,2 + I1,3.
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Let us divide the first term into four parts as;

I1,1 = ψ

 ∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z))·

·
∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z, kn ,

i
n

)∣∣ dsdz


: ≤ I1,1,1 + I1,1,2 + I1,1,3 + I1,1,4,

where

I1,1,1 = ψ

 ∫∫
4

∑
| kn−x(s)|<δ1

∑
| in−y(z)|<δ2

pαk,n(x(s))pαi,n(y(z))·

·
∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z, kn ,

i
n

)∣∣ dsdz
 ,

I1,1,2 = ψ

 ∫∫
4

∑
| kn−x(s)|<δ1

∑
| in−y(z)|≥δ2

pαk,n(x(s))pαi,n(y(z))·

·
∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z, kn ,

i
n

)∣∣ dsdz
 ,

I1,1,3 = ψ

 ∫∫
4

∑
| kn−x(s)|≥δ1

∑
| in−y(z)|<δ2

pαk,n(x(s))pαi,n(y(z))·

·
∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z, kn ,

i
n

)∣∣ dsdz
 ,

and

I1,1,4 = ψ

 ∫∫
4

∑
| kn−x(s)|≥δ1

∑
| in−y(z)|≥δ2

pαk,n(x(s))pαi,n(y(z))·

·
∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z, kn ,

i
n

)∣∣ dsdz
 .

Since x, y ∈ C[0, 1], then there exist δ1, δ2 > 0 such that∣∣∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z,

k

n
,
i

n

)∣∣∣∣ < ε

holds true when
∣∣ k
n − x(s)

∣∣ < δ1 and
∣∣ i
n − y(z)

∣∣ < δ2. So one can easily obtain

I1,1,1 < ψ (ε) .

As to the other terms∣∣∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z,

k

n
,
i

n

)∣∣∣∣ ≤ 2M

holds true for some M > 0, when
∣∣ k
n − x(s)

∣∣ ≥ δ1 or
∣∣ i
n − y(z)

∣∣ ≥ δ2.
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In view of Lemma 2.1, we obtain

I1,1,2 = ψ

 ∫∫
4

∑
| kn−x(s)|<δ1

∑
| in−y(z)|≥δ2

pαk,n(x(s))pαi,n(y(z))·

·
∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z, kn ,

i
n

)∣∣ dsdz


≤ ψ

2M

∫∫
4

∑
| kn−x(s)|<δ1

∑
| in−y(z)|≥δ2

(
i− ny(z)

δ2

)2

pαk,n(x(s))pαi,n(y(z))dsdz


≤ ψ

2M

∫∫
4

∑
| kn−x(s)|<δ1

∑
| in−y(z)|≥δ2

(
i− ny(z)

δ2

)2

pαk,n(x(s))pαi,n(y(z))dsdz


≤ ψ

(
2M

δ22

1 + αn

4n(1 + α)

)
.

Similarly one has

I1,1,3 ≤ ψ
(

2M

δ2
1 + αn

4n(1 + α)

)
,

and

I1,1,4 ≤ ψ

(
2M

δ21δ
2
2

(
1 + αn

4n(1 + α)

)2
)
.

Collecting these estimates we have

|(NPαn F ) (x (t) , y(t))− F (x (t) , y(t))|

≤ ψ (ε) + ψ

(
2M

δ21

1 + αn

4n(1 + α)

)
+ ψ

(
2M

δ22

1 + αn

4n(1 + α)

)
+ψ

(
2M

δ21δ
2
2

(
1 + αn

4n(1 + α)

)2
)

+
1

µ (n)
.

That is

lim
n→∞

‖(NPαn F ) (x (t) , y(t))− F (x (t) , y(t))‖C([0,1]2) = 0.

This completes the proof.

Theorem 3.2. Let F be the Urysohn integral operator with x, y ∈ C[0, 1] and 0 ≤ x(s),
y(z) ≤ 1. Then

|(NPαn F ) (x (t) , y(t))− F (x (t) , y(t))| ≤ 2ψ (ω (f ; δ)) +
1

µ (n)

holds true, where δ =
√

1+αn
2n(1+α) .
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Proof. Clearly one has

|(NPαn F ) (x (t) , y(t))− F (x (t) , y(t))|

≤
∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z)) ·

·
∣∣∣∣Hn

(
f

(
t, s, z,

k

n
,
i

n

))
−Hn (f (t, s, z, x(s), y(z)))

∣∣∣∣ dsdz
+

1

µ (n)

:= In,1 (x) +
1

µ (n)
, (3.1)

say. Since x, y ∈ C[0, 1] we can rewrite (3.1) as follows

In,1 (x) ≤
∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z))·

· ψ
(∣∣∣∣f (t, s, z, kn , in

)
− f (t, s, z, x(s), y(z))

∣∣∣∣) dsdz
≤
∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z))ψ (ω (f ; δ)) dsdz

≤ ψ

∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z))ω (f ; δ) dsdz



≤ ψ


∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z))·

·

(√
( k

n−x(s))
2
+( i

n−y(z))
2

δ + 1

)
ω (f ; δ) dsdz



= ψ

 ω (f ; δ)
∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z))·

·
√

( k
n−x(s))

2
+( i

n−y(z))
2

δ dsdz


+ ψ

ω (f ; δ)

∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z))dsdz



≤ ψ

ω (f ; δ)

δ

∫∫
4


n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z))·

·
[(

k
n − x(s)

)2
+
(
i
n − y(z)

)2]


1/2

dsdz

+ ψ (ω (f ; δ))
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≤ ψ

(
ω (f ; δ)

δ

[
1 + αn

2n(1 + α)

]1/2)
+ ψ (ω (f ; δ)) .

Taking into account that ω (f ; δ) is the modulus of continuity defined as (2.6). If we
choose

δ =

√
1 + αn

2n(1 + α)
,

then one can obtain the desired estimate, namely,

|(NPαn F ) (x (t) , y(t))− F (x (t) , y(t))| ≤ 2ψ (ω (f ; δ)) +
1

µ (n)
.

Thus the proof is now complete.

Theorem 3.3. Let F be the Urysohn integral operator with x, y ∈ C[0, 1], and 0 ≤ x(s),
y(z) ≤ 1. Then

|(NPαn F ) (x (t) , y(t))− F (x (t) , y(t))|

≤ 2

[
ψ

(
ω1

(
f ;

[
1 + αn

4n(1 + α)

]1/2))
+ ψ

(
ω2

(
f ;

[
1 + αn

4n(1 + α)

]1/2))]
+

1

µ (n)

holds true.

Proof. In view of the definition of the considered operator, one has

|(NPαn F ) (x (t) , y(t))− F (x (t) , y(t))|

≤
∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z)) ·

·
∣∣∣∣Hn

(
f

(
t, s, z,

k

n
,
i

n

))
−Hn (f (t, s, z, x(s), y(z)))

∣∣∣∣ dsdz
+

1

µ (n)

=

∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z)) ·

·
∣∣∣∣ Hn

(
f
(
t, s, z, kn ,

i
n

))
−Hn

(
f
(
t, s, z, x(s), in

))
+Hn

(
f
(
t, s, z, x(s), in

))
−Hn (f (t, s, z, x(s), y(z)))

∣∣∣∣ dsdz
+

1

µ (n)
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≤
∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z)) ·

·
∣∣∣∣Hn

(
f

(
t, s, z,

k

n
,
i

n

))
−Hn

(
f

(
t, s, z, x(s),

i

n

))∣∣∣∣ dsdz
+

∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z))

∣∣∣∣Hn

(
f

(
t, s, z, x(s),

i

n

))
−Hn (f (t, s, z, x(s), y(z)))

∣∣∣∣ dsdz
+

1

µ (n)

: = In,1 (x) + In,2 (x) +
1

µ (n)
,

say. Since x, y ∈ C[0, 1] we can rewrite (3.1) as follows: By concavity of the function
ψ, and using Jensen inequality, we obtain

In,1 (x) =

∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z)) ·

·
∣∣∣∣Hn

(
f

(
t, s, z,

k

n
,
i

n

))
−Hn

(
f

(
t, s, z, x(s),

i

n

))∣∣∣∣ dsdz
≤

∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z))ψ

(
ω1

(
f ;

∣∣∣∣kn − x(s)

∣∣∣∣)) dsdz
≤ ψ

∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z))ω1

(
f ;

∣∣∣∣kn − x(s)

∣∣∣∣) dsdz


Since ψ is non decreasing, then one has

In,1 (x) ≤ ψ


∫∫
4

n∑
k=0

n−k∑
i=0

pαk,n(x(s))pαi,n(y(z))·

·

(√
( k

n−x(s))
2

δ1
+ 1

)
ω1 (f ; δ) dsdz


≤ ψ

(
ω1 (f ; δ)

δ

[
1 + αn

4n(1 + α)

]1/2)
+ ψ (ω1 (f ; δ)) .

Similarly

In,1 (x) ≤ ψ

(
ω2 (f ; δ)

δ

[
1 + αn

4n(1 + α)

]1/2)
+ ψ (ω2 (f ; δ)) .
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If we choose δ =
[

1+αn
4n(1+α)

]1/2
, so we get the desired estimate.
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