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1. Introduction

The inequalities discovered by C. Hermite and J. Hadamard for convex functions
are considerable significant in the literature (see, e.g., [6], [14, p. 137]). These inequa-
lities state that if f : I → R is a convex function on the interval I of real numbers
and a, b ∈ I with a < b, then

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f (a) + f (b)

2
. (1.1)

Both inequalities hold in the reversed direction if f is concave. We note that
Hermite-Hadamard inequality may be regarded as a refinement of the concept of
convexity and it follows easily from Jensen’s inequality. Over the years, many studies
have focused on to establish generalization of the inequality (1.1) and to obtain new
bounds for left hand side and right hand side of the inequality (1.1).

The overall structure of the paper takes the form of five sections including intro-
duction. The remainder of this work is organized as follows: we first give some Hermite-
Hadamard and Fejér type inequalities.. Moreover, we give some Hermite-Hadamard
type inequalities for products two convex functions. In Section 2 and Section 3, we
obtain some integral inequalities of Hermite-Hadamard-Fejér type for products con-
vex and s-convex functions and for products two s-convex functions. We give also
some special cases of these inequalities. Finally, conclusions and future directions of
research are discussed in Section 4.
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The weighted version of the inequalities (1.1), so-called Hermite-Hadamard-Fejér
inequalities, was given by Fejer in [7] as follow:

Theorem 1.1. f : [a, b]→ R, be a convex function, then the inequality

f

(
a + b

2

) b∫
a

w(x)dx ≤
b∫

a

f(x)w(x)dx ≤ f(a) + f(b)

2

b∫
a

w(x)dx (1.2)

holds, where w : [a, b]→ R is non-negative, integrable, and symmetric about x =
a + b

2
(i.e. w(x) = w(a + b− x)).

In [13], Pachpatte established the Hermite-Hadamard type inequalities for pro-
ducts of two convex functions.

Theorem 1.2. Let f and g be real-valued, non-negative and convex functions on [a, b] .
Then we have

1

b− a

b∫
a

f(x)g(x)dx ≤ 1

3
M(a, b) +

1

6
N(a, b), (1.3)

and

2f

(
a + b

2

)
g

(
a + b

2

)
≤ 1

b− a

b∫
a

f(x)g(x)dx +
1

6
M(a, b) +

1

3
N(a, b) (1.4)

where M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).

In recent years, the generalized versions of inequalities (1.3) and (1.4) for several
convexity have been proved. For some of them please refer to ([4]-[5], [8], [16], [17]).
Kirmaci et al. gave the proved inequalities (1.3) and (1.4) for products of convex and
s-convex functions in [9]. On the other hand, Budak and Bakış [1] proved the weighted
versions of the inequalities (1.3) and (1.4) which generalize the several obtained in-
equalities. Moreover in [10], Latif and Alomari proved some inequalities for product
of two co-ordinated convex function. Furthermore in [11] and [12], Ozdemir et al. gave
some generalizations of results given by Latif and Alomari using the product of two
coordinated s-convex mappings and product of two coordinated h-convex mappings,
respectively. In [2], Budak and Sarıkaya proved Hermite-Hadamard type inequalities
for products of two co-ordinated convex mappings via fractional integrals.

2. Fejér type inequalities for products convex and s-convex functions

In this section, we present some Fejér type inequalities for products convex and
s-convex functions.

Theorem 2.1. Suppose that w : I → R is non-negative, integrable, and symmetric

about x =
a + b

2
(i.e. w(x) = w(a+b−x)). If f : I → R is a real-valued, non-negative
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and convex functions on I and if g : I → R is a s-convex on I for some fixed s ∈ (0, 1],
then for any a, b ∈ I, we have

b∫
a

f(x)g(x)w(x)dx ≤ M(a, b)

(b− a)
s+1

b∫
a

(b− x)
s+1

w(x)dx (2.1)

+
N(a, b)

(b− a)
s+1

b∫
a

(b− x) (x− a)
s
w(x)dx

where

M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).

Proof. Since f is convex and g is s-convex functions on [a, b] , then we have

f (ta + (1− t) b) ≤ tf(a) + (1− t)f(b) (2.2)

and

g (ta + (1− t) b) ≤ tsg(a) + (1− t)
s
g(b). (2.3)

By adding the inequalities (2.2) and (2.3), we get

f (ta + (1− t) b) g (ta + (1− t) b) (2.4)

≤ ts+1f(a)g(a) + (1− t)
s+1

f(b)g(b)

+ t (1− t)
s
f(a)g(b) + ts (1− t) f(b)g(a).

Multiplying both sides of (2.4) by w (ta + (1− t) b) , then integrating the resulting
inequality with respect to t from 0 to 1, we obtain

1∫
0

f (ta + (1− t) b) g (ta + (1− t) b)w (ta + (1− t) b) dt (2.5)

≤ f(a)g(a)

1∫
0

ts+1w (ta + (1− t) b) dt

+f(b)g(b)

1∫
0

(1− t)
s+1

w (ta + (1− t) b) dt

+f(a)g(b)

1∫
0

t (1− t)
s
w (ta + (1− t) b) dt

+f(b)g(a)

1∫
0

ts (1− t)w (ta + (1− t) b) dt.
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By change of variable x = ta + (1− t) b with dx = −(b− a)dt, we get

1∫
0

f (ta + (1− t) b) g (ta + (1− t) b)w (ta + (1− t) b) dt (2.6)

=
1

b− a

b∫
a

f(x)g(x)w(x)dx.

Moreover, it is easily observe that

1∫
0

ts+1w (ta + (1− t) b) dt =
1

(b− a)
s+2

b∫
a

(b− x)
s+1

w(x)dx (2.7)

and since w is symmetric about
a + b

2
, we have

1∫
0

(1− t)
s+1

w (ta + (1− t) b) dt =
1

(b− a)
s+2

b∫
a

(x− a)
s+1

w(x)dx (2.8)

=
1

(b− a)
s+2

b∫
a

(b− u)
s+1

w(a + b− u)du.

=
1

(b− a)
s+2

b∫
a

(b− u)
s+1

w(u)du.

We also have
1∫

0

t (1− t)
s
w (ta + (1− t) b) dt =

1

(b− a)
s+2

b∫
a

(b− x) (x− a)
s
w(x)dx (2.9)

and
1∫

0

ts (1− t)w (ta + (1− t) b) dt (2.10)

=
1

(b− a)
s+2

b∫
a

(b− x)
s

(x− a)w(x)dx

=
1

(b− a)
s+2

b∫
a

(b− u) (u− a)
s
w(a + b− u)du

=
1

(b− a)
s+2

b∫
a

(b− u) (u− a)
s
w(u)du.
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By substituting the equalities (2.6)-(2.10) in (2.5), then we have the following inequa-
lity

1

b− a

b∫
a

f(x)g(x)w(x)dx (2.11)

≤ [f(a)g(a) + f(b)g(b)]

(b− a)
s+2

b∫
a

(b− x)
s+1

w(x)dx

+
f(a)g(b) + f(b)g(a)

(b− a)
s+2

b∫
a

(b− x) (x− a)
s
w(x)dx.

If we multiply both sides of (2.11) by (b− a) , then we obtain the desired result. �

Remark 2.2. If we choose w(x) = 1 for all x ∈ [a, b] in Theorem 2.1, then we have the
following inequality

1

b− a

b∫
a

f(x)g(x)dx ≤ 1

s + 2
M(a, b) +

1

(s + 1) (s + 2)
N(a, b)

which is proved by Kırmacı et al. in [9].

Remark 2.3. If we choose s = 1 in Theorem 2.1, then we have the following inequality

b∫
a

f(x)g(x)w(x)dx ≤ M(a, b)

(b− a)
2

b∫
a

(b− x)
2
w(x)dx

+
N(a, b)

(b− a)
2

b∫
a

(b− x) (x− a)w(x)dx

which is proved by Budak and Bakış in [1].

Remark 2.4. If we choose f(x) = 1 for all x ∈ [a, b] in Theorem 2.1, then we have the
following inequality

b∫
a

g(x)w(x)dx ≤ g(a) + g(b)

2 (b− a)
s

b∫
a

[(b− x)
s

+ (x− a)
s
]w(x)dx

which is proved by Sarıkata et al. in [15, for h(t) = ts].
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Proof. From the inequality (2.1) for f(x) = 1 for all x ∈ [a, b] , we have

b∫
a

g(x)w(x)dx

≤ g(a) + g(b)

(b− a)
s+1

b∫
a

(b− x)
s+1

w(x)dx (2.12)

+
g(a) + g(b)

(b− a)
s+1

b∫
a

(b− x) (x− a)
s
w(x)dx

=
g(a) + g(b)

(b− a)
s+1

 b∫
a

(b− x)
s+1

w(x)dx +

b∫
a

(b− x) (x− a)
s
w(x)dx

 .

Since w is symmetric about
a + b

2
, we have

b∫
a

(b− x)
s+1

w(x)dx =

b∫
a

(x− a)
s+1

w(x)dx.

Using this equality in (2.12), we get

b∫
a

g(x)w(x)dx

≤ g(a) + g(b)

(b− a)
s+1

 b∫
a

(x− a)
s+1

w(x)dx +

b∫
a

(b− x) (x− a)
s
w(x)dx



=
g(a) + g(b)

(b− a)
s

b∫
a

(x− a)
s
w(x)dx

=
g(a) + g(b)

2 (b− a)
s

b∫
a

[(x− a)
s

+ (b− x)
s
]w(x)dx

which completes the proof. �
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Theorem 2.5. Suppose that conditions of Theorem 2.1 hold, then we have the following
inequality

2sf

(
a + b

2

)
g

(
a + b

2

) b∫
a

w (x) dx (2.13)

≤
b∫

a

f(x)g(x)w(x)dx +
M(a, b)

(b− a)
s+1

b∫
a

(x− a)
s

(b− x)w(x)dx

+
N(a, b)

(b− a)
s+1

b∫
a

(b− x)
s+1

w(x)dx.

where M(a, b) and N(a, b) are defined as in Theorem 2.1.

Proof. For t ∈ [0, 1], we can write

a + b

2
=

(1− t)a + tb

2
+

ta + (1− t)b

2
.

Using the convexity of f and s-convexity of g, we have

f

(
a + b

2

)
g

(
a + b

2

)

= f

(
(1− t)a + tb

2
+

ta + (1− t)b

2

)
g

(
(1− t)a + tb

2
+

ta + (1− t)b

2

)
≤ 1

2s+1
[f((1− t)a + tb) + f(ta + (1− t)b)]

× [g((1− t)a + tb) + g(ta + (1− t)b)]

=
1

2s+1
[f((1− t)a + tb)g((1− t)a + tb) + f(ta + (1− t)b)g(ta + (1− t)b)]

+
1

2s+1
[f((1− t)a + tb)g(ta + (1− t)b) + f(ta + (1− t)b)g((1− t)a + tb)] .

By using again the convexity of f and s-convexity of g, we obtain

f

(
a + b

2

)
g

(
a + b

2

)
(2.14)

≤ 1

2s+1
[f((1− t)a + tb)g((1− t)a + tb) + f(ta + (1− t)b)g(ta + (1− t)b)]

+
1

2s+1
[ts (1− t) + t(1− t)s] [f(a)g(a) + f(b)g(b)]

+
1

2s+1

[
ts+1 + (1− t)

s+1
]

[f(a)g(b) + f(b)g(a)] .
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Multiplying both sides of (2.14) by w ((1− t) a + tb) , then integrating the resulting
inequality with respect to t from 0 to 1, we obtain

f

(
a + b

2

)
g

(
a + b

2

) 1∫
0

w ((1− t) a + tb) dt (2.15)

≤ 1

2s+1

1∫
0

[f((1− t)a + tb)g((1− t)a + tb)

+f(ta + (1− t)b)g(ta + (1− t)b)]w ((1− t) a + tb) dt

+
M(a, b)

2s+1

1∫
0

[ts (1− t) + t(1− t)s]w ((1− t) a + tb) dt

+
N(a, b)

2s+1

1∫
0

[
ts+1 + (1− t)

s+1
]
w ((1− t) a + tb) dt.

Using the change of variable, we have

1∫
0

w ((1− t) a + tb) dt =
1

b− a

b∫
a

w (x) dx, (2.16)

1∫
0

f((1− t)a + tb)g((1− t)a + tb)w ((1− t) a + tb) dt (2.17)

+

1∫
0

f(ta + (1− t)b)g(ta + (1− t)b)w ((1− t) a + tb) dt

=
1

b− a

b∫
a

f(x)g(x)w(x)dx +
1

b− a

b∫
a

f(x)g(x)w(a + b− x)dx

=
2

b− a

b∫
a

f(x)g(x)w(x)dx,

1∫
0

[ts (1− t) + t(1− t)s]w ((1− t) a + tb) dt (2.18)

=

1∫
0

[ts (1− t)w ((1− t) a + tb) + t(1− t)sw ((1− t) a + tb)] dt
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=
1

(b− a)
s+2

b∫
a

(x− a)
s

(b− x)w(x)dx

+
1

(b− a)
s+2

b∫
a

(x− a)
s

(b− x)w(a + b− x)dx

=
2

(b− a)
s+2

b∫
a

(x− a)
s

(b− x)w(x)dx

and
1∫

0

[
ts+1 + (1− t)

s+1
]
w ((1− t) a + tb) dt (2.19)

=

1∫
0

[
ts+1w ((1− t) a + tb) + (1− t)

s+1
w ((1− t) a + tb)

]
dt

=
1

(b− a)
s+2

b∫
a

(b− x)
s+1

w(a + b− x)dx

+
1

(b− a)
s+2

b∫
a

(b− x)
s+1

w(x)dx

=
2

(b− a)
s+2

b∫
a

(b− x)
s+1

w(x)dx.

If we substitute the equalities (2.16)-(2.19) in (2.15), then we have the following
inequality

f

(
a + b

2

)
g

(
a + b

2

)
1

b− a

b∫
a

w (x) dx (2.20)

≤ 1

2s (b− a)

b∫
a

f(x)g(x)w(x)dx +
M(a, b)

2s (b− a)
s+2

b∫
a

(x− a)
s

(b− x)w(x)dx

+
N(a, b)

2s (b− a)
s+2

b∫
a

(b− x)
s+1

w(x)dx.

By multiplying the both sides of (2.20) by 2s(b− a) then we obtain the desired result
(2.13). �
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Remark 2.6. If we choose w(x) = 1 for all x ∈ [a, b] in Theorem 2.5, then we have the
following inequality

2sf

(
a + b

2

)
g

(
a + b

2

)
≤ 1

b− a

b∫
a

f(x)g(x)dx +
M(a, b)

(s + 1) (s + 2)
+

N(a, b)

s + 2

which is proved by Kırmacı et al. in [9].

Remark 2.7. If we choose s = 1 in Theorem 2.1, then we have the following inequality

2f

(
a + b

2

)
g

(
a + b

2

) b∫
a

w (x) dx ≤
b∫

a

f(x)g(x)w(x)dx

+
M(a, b)

(b− a)
2

b∫
a

(x− a) (b− x)w(x)dx

+
N(a, b)

(b− a)
2

b∫
a

(b− x)
2
w(x)dx.

which is proved by Budak and Bakış in [1].

Corollary 2.8. If we choose f(x) = 1 for all x ∈ [a, b] in Theorem 2.5, then we have
the following the following Fejér type inequality

2sg

(
a + b

2

) b∫
a

w (x) dx≤
b∫

a

g(x)w(x)dx+
g(a) + g(b)

2 (b− a)
s

b∫
a

[(x− a)
s

+ (b− x)]
s
w(x)dx.

Proof. From inequality (2.13) for f(x) = 1 for all x ∈ [a, b] , we have

2g

(
a + b

2

) b∫
a

w (x) dx ≤
b∫

a

g(x)w(x)dx +
g(a) + g(b)

(b− a)
s+1

b∫
a

(x− a)
s

(b− x)w(x)dx

+
g(a) + g(b)

(b− a)
s+1

b∫
a

(b− x)
s+1

w(x)dx

=

b∫
a

g(x)w(x)dx

+
g(a)+g(b)

(b− a)s+1

 b∫
a

(x− a)s(b− x)w(x)dx+

b∫
a

(b− x)s+1w(x)dx


=

b∫
a

g(x)w(x)dx +
g(a)+g(b)

2 (b− a)
s

b∫
a

[(x− a)
s

+ (b− x)
s
]w(x)dx.

This completes the proof. �
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3. Fejér type inequalities for products two s-convex functions

In this section, we present some Fejér type inequalities for products two s-convex
functions which generalize the results in Section 2.

Theorem 3.1. Suppose that w : I → R is non-negative, integrable, and symmetric

about x =
a + b

2
(i.e. w(x) = w(a + b− x)). If f : I → R is s1-convex functions on I

and if g : I → R is s2-convex on I for some fixed s1, s2 ∈ (0, 1], then for any a, b ∈ I,
we have

b∫
a

f(x)g(x)w(x)dx ≤ M(a, b)

(b− a)
s1+s2

b∫
a

(b− x)
s1+s2 w(x)dx (3.1)

+
N(a, b)

(b− a)
s1+s2

b∫
a

(b− x)
s1 (x− a)

s2 w(x)dx.

where M(a, b) and N(a, b) are defined as in Theorem 2.1.

Proof. Since f is s1-convex and g is s2-convex functions on [a, b] , then we have

f (ta + (1− t) b) ≤ ts1f(a) + (1− t)s1f(b) (3.2)

and

g (ta + (1− t) b) ≤ ts2g(a) + (1− t)
s2 g(b). (3.3)

By (3.2) and (3.3), we have

f (ta + (1− t) b) g (ta + (1− t) b) (3.4)

≤ ts1+s2f(a)g(a) + (1− t)
s1+s2 f(b)g(b)

+ts1 (1− t)
s2 f(a)g(b) + ts2 (1− t)

s1 f(b)g(a).
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Multiplying both sides of (3.4) by w (ta + (1− t) b) , then integrating the resulting
inequality with respect to t from 0 to 1, we obtain

1∫
0

f (ta + (1− t) b) g (ta + (1− t) b)w (ta + (1− t) b) dt (3.5)

≤ f(a)g(a)

1∫
0

ts1+s2w (ta + (1− t) b) dt

+f(b)g(b)

1∫
0

(1− t)
s1+s2 w (ta + (1− t) b) dt

+f(a)g(b)

1∫
0

ts1 (1− t)
s2 w (ta + (1− t) b) dt

+f(b)g(a)

1∫
0

ts2 (1− t)
s1 w (ta + (1− t) b) dt.

By change of variable x = ta + (1− t) b, we get

1∫
0

ts1+s2w (ta + (1− t) b) dt =
1

(b− a)
s1+s2+1

b∫
a

(b− x)
s1+s2 w(x)dx (3.6)

and since w is symmetric about
a + b

2
, we have

1∫
0

(1− t)
s1+s2 w (ta + (1− t) b) dt =

1

(b− a)
s1+s2+1

b∫
a

(x− a)
s1+s2 w(x)dx

=
1

(b− a)
s1+s2+1

b∫
a

(b− u)
s1+s2 w(a + b− u)du.

=
1

(b− a)
s1+s2+1

b∫
a

(b− u)
s1+s2 w(u)du.

We also have

1∫
0

ts1(1−t)s2w(ta+(1−t)b)dt= 1

(b− a)s1+s2+1

b∫
a

(b−x)s1(x−a)s2w(x)dx (3.7)
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and

1∫
0

ts2 (1− t)
s1 w (ta + (1− t) b) dt (3.8)

=
1

(b− a)
s1+s2+1

b∫
a

(b− x)
s2 (x− a)

s1 w(x)dx

=
1

(b− a)
s1+s2+1

b∫
a

(b− u)
s1 (u− a)

s2 w(a + b− u)du

=
1

(b− a)
s1+s2+1

b∫
a

(b− u)
s1 (u− a)

s2 w(u)du

By substituting the equalities (3.6)-(3.8) in (3.5), then we have the following inequality

1

b− a

b∫
a

f(x)g(x)w(x)dx (3.9)

≤ f(a)g(a) + f(b)g(b)

(b− a)
s1+s2+1

b∫
a

(b− x)
s1+s2 w(x)dx

+
f(a)g(b) + f(b)g(a)

(b− a)
s1+s2+1

b∫
a

(b− x)
s1 (x− a)

s2 w(x)dx.

If we multiply both sides of (3.9) by (b− a) , then we obtain the desired result. �

Remark 3.2. If we choose w(x) = 1 for all x ∈ [a, b] in Theorem 3.1, then we have the
following inequality

1

b− a

b∫
a

f(x)g(x)dx ≤ 1

s1 + s2 + 1
M(a, b) + B(s1 + 1, s2 + 1)N(a, b)

which is proved by Kırmacı et al. in [9]. Here B(x, y) is the Beta Euler function.

Remark 3.3. If we choose s1 = 1 and s2 = s in Theorem 3.1, then the inequality (3.1)
reduces to the inequality (2.1).
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Corollary 3.4. If we choose s1 = s2 = s in Theorem 3.1, then we have the following
inequality

b∫
a

f(x)g(x)w(x)dx ≤ M(a, b)

(b− a)
2s

b∫
a

(b− x)
2s
w(x)dx

+
N(a, b)

(b− a)
2s

b∫
a

(b− x)
s

(x− a)
s
w(x)dx.

Theorem 3.5. Suppose that conditions of Theorem 3.1 hold, then we have the following
inequality

2s1+s2−1f

(
a + b

2

)
g

(
a + b

2

) b∫
a

w (x) dx (3.10)

≤
b∫

a

f(x)g(x)w(x)dx +
M(a, b)

(b− a)
s1+s2

b∫
a

(x− a)
s1 (b− x)

s2 w(x)dx

+
N(a, b)

(b− a)
s1+s2

b∫
a

(b− x)
s1+s2 w(x)dx.

where M(a, b) and N(a, b) are defined as in Theorem 2.1.

Proof. Using the s1-convexity of f and s2-convexity of g, we have

f

(
a + b

2

)
g

(
a + b

2

)

= f

(
(1− t)a + tb

2
+

ta + (1− t)b

2

)
g

(
(1− t)a + tb

2
+

ta + (1− t)b

2

)
≤ 1

2s1+s2
[f((1− t)a + tb) + f(ta + (1− t)b)]

× [g((1− t)a + tb) + g(ta + (1− t)b)]

=
1

2s1+s2
[f((1− t)a + tb)g((1− t)a + tb) + f(ta + (1− t)b)g(ta + (1− t)b)]

+
1

2s1+s2
[f((1− t)a + tb)g(ta + (1− t)b) + f(ta + (1− t)b)g((1− t)a + tb)] .
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By using again the s1-convexity of f and s2-convexity, we obtain

f

(
a + b

2

)
g

(
a + b

2

)
(3.11)

≤ 1

2s1+s2
[f((1− t)a + tb)g((1− t)a + tb) + f(ta + (1− t)b)g(ta + (1− t)b)]

+
1

2s1+s2
[ts1 (1− t)

s2 + ts2(1− t)s1 ] [f(a)g(a) + f(b)g(b)]

+
1

2s1+s2

[
ts1+s2 + (1− t)

s1+s2
]

[f(a)g(b) + f(b)g(a)] .

Multiplying both sides of (3.11) by w ((1− t) a + tb) , then integrating the resulting
inequality with respect to t from 0 to 1, we obtain

f

(
a + b

2

)
g

(
a + b

2

) 1∫
0

w ((1− t) a + tb) dt (3.12)

≤ 1

2s1+s2

1∫
0

[f((1− t)a + tb)g((1− t)a + tb)

+f(ta + (1− t)b)g(ta + (1− t)b)]w ((1− t) a + tb) dt

+
M(a, b)

2s1+s2

1∫
0

[ts1 (1− t)
s2 + ts2(1− t)s1 ]w ((1− t) a + tb) dt

+
N(a, b)

2s1+s2

1∫
0

[
ts1+s2 + (1− t)

s1+s2
]
w ((1− t) a + tb) dt.

Using the change of variable, we have

1∫
0

[ts1 (1− t)
s2 + ts2(1− t)s1 ]w ((1− t) a + tb) dt (3.13)

=

1∫
0

[ts1 (1− t)
s2 w ((1− t) a + tb) + ts2(1− t)s1w ((1− t) a + tb)] dt

=
1

(b− a)
s1+s2+1

b∫
a

(x− a)
s1 (b− x)

s2 w(x)dx

+
1

(b− a)
s1+s2+1

b∫
a

(x− a)
s1 (b− x)

s2 w(a + b− x)dx
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=
2

(b− a)
s1+s2+1

b∫
a

(x− a)
s1 (b− x)

s2 w(x)dx

and
1∫

0

[
ts1+s2 + (1− t)

s1+s2
]
w ((1− t) a + tb) dt (3.14)

=

1∫
0

[
ts1+s2w ((1− t) a + tb) + (1− t)

s1+s2 w ((1− t) a + tb)
]
dt

=
1

(b− a)
s1+s2+1

b∫
a

(b− x)
s1+s2 w(a + b− x)dx

+
1

(b− a)
s1+s2+1

b∫
a

(b− x)
s1+s2 w(x)dx

=
2

(b− a)
s1+s2+1

b∫
a

(b− x)
s1+s2 w(x)dx.

If we substitute the equalities (2.16), (2.17), (3.13) and (3.14) in (3.12), then we have
the following inequality

f

(
a + b

2

)
g

(
a + b

2

)
1

b− a

b∫
a

w (x) dx (3.15)

≤ 1

2s1+s2−1 (b− a)

b∫
a

f(x)g(x)w(x)dx

+
M(a, b)

2s1+s2−1 (b− a)
s1+s2+1

b∫
a

(x− a)
s1 (b− x)

s2 w(x)dx

+
N(a, b)

2s1+s2−1 (b− a)
s1+s2+1

b∫
a

(b− x)
s1+s2 w(x)dx.

By multiplying the both sides of (3.15) by 2s1+s2−1 (b− a) then we obtain the desired
result (3.10). �
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Corollary 3.6. If we choose w(x) = 1 for all x ∈ [a, b] in Theorem 3.5, then we have
the following inequality

2s1+s2−1f

(
a + b

2

)
g

(
a + b

2

)

≤ 1

b− a

b∫
a

f(x)g(x)dx + B(s1 + 1, s2 + 1)M(a, b) +
1

s1 + s2 + 1
N(a, b).

Remark 3.7. If we choose s1 = 1 and s2 = s in Theorem 3.5, then the inequality
(3.10) reduces to the inequality (2.13).

Corollary 3.8. If we choose s1 = s2 = s in Theorem 3.5, then we have the following
inequality

22s−1f

(
a + b

2

)
g

(
a + b

2

) b∫
a

w (x) dx

≤
b∫

a

f(x)g(x)w(x)dx

+
M(a, b)

(b− a)
2s

b∫
a

(x− a)
s

(b− x)
s
w(x)dx +

N(a, b)

(b− a)
2s

b∫
a

(b− x)
2s
w(x)dx.

4. Concluding remarks

In this paper, we present some Hermite-Hadamard-Fejér type inequalities for
products convex and s-convex functions. For further investigations we propose to
consider the Fejér type inequalities for products other type convex functions or for
fractional integral operators.
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