
Stud. Univ. Babeş-Bolyai Math. 65(2020), No. 2, 211–227
DOI: 10.24193/subbmath.2020.2.04

Inclusion properties of hypergeometric type
functions and related integral transforms

Lateef Ahmad Wani and Swaminathan Anbhu

Abstract. In this work, conditions on the parameters a, b and c are given so that
the normalized Gaussian hypergeometric function zF (a, b; c; z), where

F (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n(1)n

zn, |z| < 1,

is in certain class of analytic functions. Using Taylor coefficients of functions in
certain classes, inclusion properties of the Hohlov integral transform involving
zF (a, b; c; z) are obtained. Similar inclusion results of the Komatu integral oper-
ator related to the generalized polylogarithm are also obtained. Various results
for the particular values of these parameters are deduced and compared with the
existing literature.
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1. Introduction

Let A denote the class of functions of the form

f(z) = z +

∞∑
k=2

akz
k, (1.1)

analytic in the open unit disk D = {z : |z| < 1}, and S denote the subclass of A
that contains functions univalent in D. A function f ∈ A is called starlike, denoted
by f ∈ S∗, if tw ∈ f(D) whenever w ∈ f(D) and t ∈ [0, 1]. The class of all convex
functions, denoted by C, consists of the functions f ∈ A such that zf ′ is starlike. A
function f ∈ A is said to be close-to-convex with respect to a fixed starlike function

g ∈ S∗ if and only if Re

(
eiλ

zf ′(z)

g(z)

)
> 0 for z ∈ D and λ ∈ R. . Let K denote the
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subclass of all such close-to-convex functions, where λ = 0. Various generalization of
these classes and various other subclasses of S exist in the literature. For example the
class of starlike functions of order σ, denoted by S∗(σ), 0 ≤ σ < 1, which has the

analytic characterization Re
zf ′(z)

f(z)
> σ, is the generalization of the class S∗(0) = S∗.

Note that C(σ), the class of convex functions of order σ contains all functions f ∈ S
for which zf ′ ∈ S∗(σ).

We introduce the class Rτγ,α(β), with 0 ≤ γ < 1, 0 ≤ α ≤ 1, τ ∈ C\{0} and
β < 1 as

Rτγ,α(β) :=

{
f ∈ A :

∣∣∣∣∣ (1− α+ 2γ) f
z

+ (α− 2γ)f ′ + γzf ′′ − 1

2τ(1− β) + (1− α+ 2γ) f
z

+ (α− 2γ)f ′ + γzf ′′ − 1

∣∣∣∣∣ < 1, z ∈ D

}
.

(1.2)

Note that few particular cases of this class discussed in the literature.

1. The class Rτγ,α(β) for α = 2γ+ 1, was considered in [16], where references about
other particular cases in this direction are provided.

2. The class Rτγ, α(β) for τ = eiη cos η, where −π/2 < η < π/2 is considered in [1]
(see also [2, 3]), and the properties of certain integral transforms of the type

Vλ(f) =

∫ 1

0

λ(t)
f(tz)

t
dt, f ∈ R(eiη cos η)

0,γ (β) (1.3)

with β < 1, γ < 1 and |η| < π/2, under suitable restriction on λ(t) was discussed
using duality techniques for various values of γ in [1]. For other interesting cases,
we refer to [3, 16] and references therein.

3. The class Rτ0,1(0) with τ = eiη cos η was considered in [10] with reference to the
univalency of partial sums.

It is clear that the geometric properties of certain integral transforms under du-
ality techniques, which is one of recent research interest (for example, see [1, 3] and
references therein), cannot be proved easily as the results involve certain multiple
integrals and it is difficult to check the conditions given for the existence of the inclu-
sion results for these integral transforms. For this purpose, the inclusion properties of

certain special functions to be in the analytic subclasses like R
(eiη cos η)
γ, α (β) are studied

using techniques other than duality methods which motivates this work.
Among various results related to the integral operator (1.3) available in the

literature, an important and interesting result is application of the operator (1.3)
when λ(t) is related to the function zF (a, b; c; z). Here by F (a, b; c; z) we mean the
well-known Gaussian hypergeometric function

F (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n(1)n

zn (1.4)

z ∈ D, with (λ)n being the Pochhammer symbol given by (λ)n = λ(λ+1)n−1, (λ)0 = 1.
Also, there has been considerable interest to find conditions on the parameters a, b,
and c such that the normalized hypergeometric functions (c/ab) (F (a, b; c; z)− 1) or
zF (a, b; c; z) belong to one of the known subclasses of S. For more details on the basic
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ideas of Gaussian hypergeometric functions, we refer to [11] and on the applications
related to geometric function theory, we refer to [1, 14, 15, 16] and references therein.

Related to F (a, b; c; z) is the Hohlov operator H a, b, c (f)(z) = zF (a, b; c; z)∗f(z),
where ∗ denotes the well-known Hadamard product or convolution. This operator is
particular case of a general integral transform studied in [5]. To be more specific, the
properties of certain integral transforms of the type

Vλ(f) =

∫ 1

0

λ(t)
f(tz)

t
dt, f ∈ R(eiη cos η)

γ, α (β) (1.5)

under suitable restriction on λ(t) was discussed by many authors [1, 3, 5]. In particular,
if

λ(t) =
Γ(c)

Γ(b)Γ(c− b)
tb−1(1− t)c−b−1

then Vλ(f) = L(b, c)(f)(z) which is the well-known Carlson-Schaffer operator. Note
that H 1, b, c (f)(z) = L(b, c)(f)(z). The following lemma exhibits the relation between
the integral operator in discussion with the Hohlov operator.

Lemma 1.1. If f ∈ A and c− a+ 1 > b > 0, then

Vλ(f)(z) = Ha,b,c(f)(z)

where

Ha,b,c(f)(z) =
Γ(c)

Γ(a)Γ(b)

∫ 1

0

(1− t)c−a−b

Γ(c− a− b+ 1)
tb−2F (c−a, 1−a; c−a−b+1; 1−t)f(tz)dt.

The Komatu operator Kp
a : A → A [9] is defined as

Kp
a [f ](z) =

(1 + a)p

Γ(p)

∫ 1

0

(
log(

1

t
)
)p−1

ta−1f(tz)dt,

where a > −1 and p ≥ 0. It has a series representation as

Kp
a [f ](z) = z +

∞∑
n=2

(1 + a)p

(n+ a)p
anz

n

and in terms of convolution, we can write

Kp
a [f ](z) = Kpa(z) ∗ f(z),

where Kpa(z) = z +

∞∑
n=2

(1 + a)p

(n+ a)p
zn.

In this paper we study the operators H a, b, c (f)(z) and Kp
a [f ](z) for various

choices of the function f .
The paper is organized as follows. In Section 2, some preliminary results about

the Gaussian hypergeometric function F (a, b; c; z) and conditions on the Taylor co-
efficients of f ∈ Rτγ,α(β) are given which are used in the subsequent sections. Con-
ditions on the triplets a, b, c are obtained so that in Section 3 inclusion properties of
F (a, b; c; z) and its normalized case to be in the class Rτγ,α(β) are discussed and in
Section 4, inclusion properties of zF (a, b; c; z) ∗ f(z) for f in various subclasses of S
are discussed. Similar type of inclusion results for the Komatu operator is discussed
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in Section 5. In the last section, certain remarks are given to provide motivation for
further research in this direction.

2. Preliminary results

The following result is available in [16], which can also be easily verified by simple
computation.

Lemma 2.1. Let F (a, b; c; z) be the Gaussian hypergeometric function as given in (1.4).
Then we have the following

(i) For Re (c− a− b) > 0 and c 6= 0,−1,−2, . . .,

F (a, b; c; 1) =
Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)
(2.1)

(ii) For a, b > 0, c > a+ b+ 1,

∞∑
n=0

(n+ 1)(a)n(b)n
(c)n(1)n

= F (a, b; c; 1)

[
ab

c− 1− a− b
+ 1

]
. (2.2)

(iii) For a 6= 1, b 6= 1 and c 6= 1 with c > max{0, a+ b− 1},
∞∑
n=0

(a)n(b)n
(c)n(1)n+1

=
(c− 1)

(a− 1)(b− 1)

[
F (a− 1, b− 1; c− 1; 1)− 1

]
. (2.3)

(iv) For a 6= 1 and c 6= 1 with c > max{0, 2Re a− 1},
∞∑
n=0

|(a)n|2

(c)n(1)n+1
=

(c− 1)

|a− 1|2

[
F (a− 1, ā− 1; c− 1; 1)− 1

]
. (2.4)

Proof. Part (i) is the well-known Gauss summation formula. Part (ii) follows from
splitting the left hand side into two parts and applying (2.1). For part (iii), using the
fact that λ(λ+ 1)m = (λ)m+1, in place of a, b and c, the required result follows. Part
(iv) is nothing but Part (iii) with b = ā. �

In order to obtain the objective, we need conditions on the Taylor coefficients of
Rτγ,α(β) which is given in the following results.

Lemma 2.2. Let f(z) ∈ S and is of the form (1.1). If f(z) is in Rτγ,α(β), then

|an| ≤
2|τ |(1− β)

1 + (n− 1)(α− 2γ + γn)
, n = 2, 3, . . . . (2.5)

Equality holds for the function

f(z) =
1

z(1/ν)−1
1

µν

∫ z

0

1

t
1
µ−

1
ν+1

∫ t

0

w

1

1− 1
µ

(
1 +

2(1− β)τwn−1

1− wn−1

)
dw, (2.6)

where µ+ ν = α− γ and µν = γ.
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Proof. Clearly f ∈ Rτγ,α(β) is equivalent to

1 +
1

τ

(
(1− α+ 2γ)

f

z
+ (α− 2γ)f ′ + γzf ′′ − 1

)
=

1 + (1− 2β)w(z)

1− w(z)
,

where w(z) is analytic in D and satisfies the condition w(0) = 0, |w(z)| < 1 for z ∈ D.
Hence we have
1

τ

(
(1− α+ 2γ)

f

z
+ (α− 2γ)f ′ + γzf ′′ − 1

)
= w(z)

(
2(1− β) +

1

τ

(
(1− α+ 2γ)

f

z
+ (α− 2γ)f ′ + γzf ′′ − 1

))
.

Using (1.1) and w(z) =

∞∑
n=1

bnz
n we have[

2(1− β) +
1

τ

( ∞∑
n=2

[1 + (α− 2γ + γn)(n− 1)]anz
n−1

)][ ∞∑
n=1

bnz
n

]

=
1

τ

∞∑
n=2

[1 + (α− 2γ + γn)(n− 1)]anz
n−1.

Equating the coefficients of the powers of zn−1 on both sides of the above equation,
it is easy to observe that the coefficient an in right hand side of the above expression
depends only on a2, . . . , an−1 and the left hand side of the above expression. Hence,
for n ≥ 2 this gives[

2(1− β) +
1

τ

(
k−1∑
n=2

[1 + (α− 2γ + γn)(n− 1)]anz
n−1

)]
w(z)

=
1

τ

k∑
n=2

[1 + (α− 2γ + γn)(n− 1)]anz
n−1 +

∞∑
n=k+1

dnz
n−1.

Using |w(z)| < 1, this reduces to the inequality∣∣∣∣∣2(1− β) +
1

τ

(
k−1∑
n=2

[1 + (α− 2γ + γn)(n− 1)]anz
n−1

)∣∣∣∣∣
>

∣∣∣∣∣1τ
k∑

n=2

[1 + (α− 2γ + γn)(n− 1)]anz
n−1 +

∞∑
n=k+1

dnz
n−1

∣∣∣∣∣ .
Squaring the above inequality and integrating around |z| = r, 0 < r < 1, we get

4(1− β)2 +
1

|τ |2

(
k−1∑
n=2

[1 + (α− 2γ + γn)(n− 1)]2|an|2r2(n−1)
)

>
1

|τ |2
k∑

n=2

[1 + (α− 2γ + γn)(n− 1)]2|an|2r2(n−1) +

∞∑
n=k+1

|dn|2r2(n−1).
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and letting r → 1 we obtain

4(1− β)2 ≥ 1

|τ |2
[1 + (α− 2γ + γn)(n− 1)]2|an|2

which gives the desired result. For sharpness, consider the function

(1− α+ 2γ)
f

z
+ (α− 2γ)f ′ + γzf ′′ = 1 +

2(1− β)τzn−1

1− zn−1
:= p(z).

Simplifying and using the fact µ+ ν = α− γ and µν = γ gives (2.6). �

Remark 2.3. The condition given in (2.5) is equivalent to the condition

|an| ≤
2|τ |(1− β)

1 + α(n− 1) + γ(n− 1)(n− 2)
, n = 2, 3, . . . , (2.7)

which will be used in the sequel.

Lemma 2.4. Let f(z) be of the of the form (1.1). Then a sufficient condition for f(z)
to be in Rτγ,α(β) is

∞∑
n=2

[1 + (n− 1)(α− 2γ + γn)]|an| ≤ |τ |(1− β). (2.8)

This condition is also necessary if η = 0 in (1.2) and an < 0 in (1.1).

Proof. Using (1.1) it is easy to see that

Re eiη
(

(1− α+ 2γ)
f

z
+ (α− 2γ)f ′ + γzf ′′ − β

)
= (1− β) cos η + Re eiη

∞∑
n=2

(
1 + (α− 2γ + γn)(n− 1)

)
anz

n−1

≥ (1− β) cos η −
∞∑
n=2

∣∣∣(1 + (α− 2γ + γn)(n− 1)
)∣∣∣ |an| ≥ 0,

using (2.8). The resultant obtained above is equivalent to the analytic characterization
of f ∈ Rτγ,α(β) and the proof is complete. �

3. Inclusion results for zF (a, b; c; z)

Theorem 3.1. Let a, b, c and γ satisfy any one of the following conditions such that
Ti(a, b, c, γ) ≤ |τ |(1− β) for i = 1, 2, 3.

(i) a, b > 0, c > a+ b+ 2 and

T1(a, b, c, γ) = F (a, b; c; 1) + α
a b

c
F (a+ 1, b+ 1; c+ 1; 1) + γ

(a)2 (b)2

(c)2
F (a+ 2, b+ 2; c+ 2; 1)− 1.

(ii) a, b ∈ C\{0}, |a| 6= 1, |b| 6= 1, c > |a|+ |b|+ 2 and
T2(a, b, c, γ)

= F (|a|+ 1, |b|+ 1; c+ 1; 1)

(
α
|ab|
c

+ γ
(|a|)2(|b|)2

(c)(c− |a| − |b| − 2)
+
c− |a| − |b| − 1

c

)
− 1.
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(iii) −1 < a < 0, −1 < b < 0, c > 0 and
T3(a, b, c, γ)

= F (a+ 1, b+ 1; c+ 1; 1)

(
α
ab

c
+ γ

(a)2(b)2
(c)(c− a− b− 2)

+
c− a− b− 1

c

)
− 1.

Then zF (a, b; c; z) is in Rτγ,α(β).

Proof. Clearly zF (a, b; c; z) has the series representation of the form (1.1) where

an =
(a)n−1(b)n−1
(c)n−1(1)n−1

. (3.1)

Using Lemma 2.4, it suffices to prove that
∞∑
n=2

[1 + (n− 1)(α− 2γ + γn)]|an| ≤ |τ |(1− β),

which is equivalent in writing
∞∑
n=2

[1 + α(n− 1) + γ(n− 1)(n− 2)]|an| ≤ |τ |(1− β) =⇒ f ∈ Rτγ,α(β). (3.2)

Case (i): Let a, b > 0 and c > a+ b+ 2. Then the series in the left hand side of (3.2)
can be written as

S : =

∞∑
n=2

(
1 + α(n− 1) + γ(n− 1)(n− 2)

)
(a)n−1(b)n−1

(c)n−1(1)n−1

=
∞∑
n=1

(a)n(b)n

(c)n(1)n
+ α

ab

c

∞∑
n=2

(a+ 1)n−2(b+ 1)n−2

(c+ 1)n−2(1)n−2
+ γ

(a)2(b)2

(c)2

∞∑
n=3

(a+ 2)n−3(b+ 2)n−3

(c+ 2)n−3(1)n−3
.

An easy computation by using the hypothesis of the theorem and applying (2.1), we
get the required result.

Case (ii): Let a, b ∈ C\{0}, c > |a|+ |b|+ 2. Since |(a)n| ≤ (|a|)n, we have from (3.2),

S :=

∞∑
n=2

(
1 + α(n− 1) + γ(n− 1)(n− 2)

)
|an|

≤ |ab|
c

∞∑
n=0

(|a|+ 1)n(|b|+ 1)n
(c+ 1)n(1)n+1

+ α

∞∑
n=0

(|a|)n+1(|b|)n+1

(c)n+1(1)n
+ γ

∞∑
n=1

(n− 1)
(|a|)n(|b|)n
(c)n(1)n−1

.

(3.3)

Note that the third sum in the right hand side of (3.3) is equivalent to
∞∑
n=0

n
(|a|)n+1(|b|)n+1

(c)n+1(1)n

=

∞∑
n=0

(n+ 1)
(|a|)n+1(|b|)n+1

(c)n+1(1)n
−
∞∑
n=0

(|a|)n+1(|b|)n+1

(c)n+1(1)n

=
|ab|
c

∞∑
n=0

(n+ 1)
(|a|+ 1)n(|b|+ 1)n

(c+ 1)n(1)n
− |ab|

c

∞∑
n=0

(|a|+ 1)n(|b|+ 1)n
(c+ 1)n(1)n

.
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Using the above value in (3.3) we get that the inequality (3.3) is equivalent to

S ≤ |ab|
c

∞∑
n=0

(|a|+ 1)n(|b|+ 1)n
(c+ 1)n(1)n+1

+(α− γ)
|ab|
c

∞∑
n=0

(|a|+ 1)n(|b|+ 1)n
(c+ 1)n(1)n

+ γ
|ab|
c

∞∑
n=0

(n+ 1)
(|a|+ 1)n(|b|+ 1)n

(c+ 1)n(1)n
. (3.4)

Now applying (2.3) and the hypothesis of the theorem in the first sum of (3.4) gives(
c− |a| − |b| − 1

c
F (|a|+ 1, |b|+ 1; c+ 1; 1)− 1

)
. (3.5)

Similarly applying (2.2) and the hypothesis of the theorem in the third sum of (3.4)
gives

|ab|
c

(
F (|a|+ 1, |b|+ 1; c+ 1, 1)

(
(|a|+ 1)(|b|+ 1)

c− |a| − |b| − 2
+ 1

))
. (3.6)

Clearly the second sum of (3.4) is related to (2.1) which gives

|ab|
c
F (|a|+ 1, |b|+ 1; c+ 1; 1).

Now substituting this resultant and (3.5) and (3.6) in (3.4) gives the required result.
Case (iii): Let −1 < a < 0, −1 < b < 0 and c > 0. The result follows by proceeding
in a similar way to the previous case. �

Since the substitution a = b in Theorem 3.1 is useful in characterizing polynomi-
als with positive coefficients when b is some negative integer, we give the corresponding
result independently, wherein only the second case can be applied.

Corollary 3.2. Let c > 2 Re b+ 2 and T4(b, c, γ) ≤ |τ |(1− β) where

T4(b, c, γ) = F (b+ 1, b+ 1; c+ 1; 1)

(
α
|b|2

c
+ γ

(|b|)22

c(c− 2Re b− 2)
+
c− 2Re b− 1

c

)
−1.

Then zF (b, b; c; z) is in Rτγ,α(β).

Note that the results in Corollary 3.2 can also be obtained directly by using (2.4)
instead of (2.3), as used in Theorem 3.1.

Further, if we set α = 1 and γ = 0, then by choosing β = 0 and τ = eiη cos η with
−π/2 < η < π/2, we get the functions in the class Rτγ,α(β) satisfying the analytic
criterion Re f ′ > 0 which implies that f(z) is close-to-convex with respect to the
starlike function g(z) = z. Hence the following result is immediate.

Corollary 3.3. Let c > 2|b− 1|+ 3 and

F (b, b; c; 1) ≤ 2(c− 1)

|b− 2|2 + c− 3
, (3.7)

then zF (b, b; c; z) is close-to-convex with respect to the starlike function g(z) = z.
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Remark 3.4. Corollary 3.3, with the absence of α, β, γ and τ , is much useful, in
particular, for extracting polynomials with positive coefficients, which is the main
idea behind choosing a = b. Moreover, if we take b = −m, then (3.7) gives

F (−m,−m; c; 1)

(
m2 + 4m+ c+ 1

2(c− 1)

)
≤ 1.

But, when m is sufficiently large, c has to be chosen so large to have the value in the
left side bounded by 1. This is given by the condition that c > 2m + 5. In the case
of m = 2, c need to be larger than 9 and should satisfy c3 − 18c2 − 75c− 104 ≥ 0 so

that the corresponding polynomial 1+
4

c
z+

2

c(c+ 1)
z2 is close-to-convex. It is easy to

see that the condition is satisfied for c more than 21.68057259 . . ., which is obtained
using mathematical software. Hence if m is chosen as a larger negative integer then
this result is true for polynomials having their coefficients very small, which is not
interesting.

Instead, if we consider, Theorem 3.1, with either a = −m or b = −m we can
still extract polynomials that can have smaller values of c, with coefficients having
alternate signs, that satisfy the hypothesis given in Theorem 3.1.

In Theorem 3.1, if we take a = 1, we get the result for the incomplete beta
function zF (1, b; c; z). Since the incomplete beta function plays an important role in
geometric function theory (for example, see [15]), we give the result for the incomplete
beta function independently as

Theorem 3.5. Let b, c and γ satisfy any one of the following conditions
such that Ti(b, c, γ) ≤ |τ |(1− β) for i = 1, 2.

(i) b > 0, c > b+ 3 and

T1(b, c, γ) = F (1, b; c; 1) + α
b

c
F (2, b+ 1; c+ 1; 1) + γ

2 (b)2

(c)2
F (3, b+ 2; c+ 2; 1)− 1.

(ii) b ∈ C\{0}, c > |b|+ 3 and

T2(b, c, γ) = F (2, |b|+ 1; c+ 1; 1)

(
α
|b|
c

+ γ
2(|b|)2

(c)(c− |b| − 3)
+
c− |b| − 2

c

)
− 1.

Then the incomplete beta function φ(b; c; z) := zF (1, b; c; z) is in Rτγ,α(β).

Remark 3.6. Note that at α = 1, γ = 0, β = 0 and τ = eiη cos η with −π/2 < η < π/2
the above result reduces to c > b + 3, b > 0. Under these conditions, the normalized
incomplete beta function zF (1, b; c; z) is close-to-convex with respect to the starlike
function g(z) = z.

Consider the operator of the form G(a, b; c; z) :=

∫ z

0

F (a, b; c; t)dt. Then we have

G(a, b; c; z) := z +

∞∑
n=2

(a)n−1(b)n−1
(c)n−1(1)n

zn = z +

∞∑
n=2

an
n
zn,

where an is given as in (3.1). This is the normalized form of the hypergeometric
function F (a, b; c; z) which has many interesting properties. Note that a function may
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fail to inherit its geometric properties under such normalization. For example, 1 + z
is convex univalent in D, whereas its normalized form z(1 + z) is not even univalent.

Theorem 3.7. Let a, b ∈ C\{0} with |a| 6= 1, |b| 6= 1 and |c| > |a| + |b| + 1 such that
T (a, b, c, γ) ≤ |τ |(1− β) where
T (a, b, c, γ)

= F (a, b; c; 1)

(
γ ab

c− a− b− 1
+ α+

(1− α+ 2γ)(c− a− b)
(a− 1)(b− 1)

)
− (1− α+ 2γ)(c− 1)

(a− 1)(b− 1)
.

Then G(a, b; c; z) is in Rτγ,α(β).

Proof. We have G(a, b; c; z) = z+

∞∑
n=2

(a)n−1(b)n−1
(c)n−1(1)n

zn. So it is sufficient to prove that

∞∑
n=2

[1 + α(n− 1) + γ(n− 1)(n− 2)] |an| ≤ |τ |(1− β).

The left hand side of the above inequality can be expressed as
∞∑
n=1

(a)n(b)n
(c)n(1)n+1

+ α

∞∑
n=1

n
(a)n(b)n

(c)n(1)n+1
+ γ

∞∑
n=1

n(n− 1)
(a)n(b)n

(c)n(1)n+1
. (3.8)

For the third part (3.8), writing n(n− 1) = n(n+ 1)− 2(n+ 1) + 2 and adding with
the second part of (3.8) gives

(1− α+ 2γ)

∞∑
n=1

(a)n(b)n
(c)n(1)n+1

+ (α− 2γ)

∞∑
n=1

(a)n(b)n
(c)n(1)n

+
γab

c

∞∑
n=0

(a+ 1)n(b+ 1)n
(c+ 1)n(1)n

.

(3.9)

Now, using the hypothesis and comparing the first part of (3.9) with (2.3), second
and third part of (3.9) with (2.1) gives the required result upon simplification. �

Check, if at a = b in the above result gives the following Corollary.

Corollary 3.8. Let a = b, 0 < b 6= 1 and c > 2Re b+1 such that T (b, b, c, γ) ≤ |τ |(1−β)
where
T (b, b, c, γ)

= F (b, b; c; 1)

(
γ |b|2(α− 2γ)

c− 2Re b− 1
+

(1− α+ 2γ)(c− 2Reb)

|b− 1|2

)
−
(

(1− α+ 2γ)(c− 1)

|b− 1|2

)
Then G(b, b; c; z) is in Rτγ,α(β).

4. Inclusion properties of H a, b c(f)(z)

Our next interest is to find the inclusion properties of

H a, b c(f)(z) = zF (a, b; c; z) ∗ f(z),

where f(z) is in certain subclass of S. For this, we recall certain subclasses that are
necessary for further discussion. We begin with the following definition.
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Definition 4.1. [4] Let f ∈ A, 0 ≤ k < ∞, and 0 ≤ σ < 1. Then f ∈ k − UCV (σ) if
and only if

Re

(
1 +

zf ′′(z)

f ′(z)

)
≥ k

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣+ σ. (4.1)

This class generalizes various other classes which are worthy to mention here.
The class k−UCV (0), called as k-uniformly convex is due to [8], and has the geometric
characterization that for 0 ≤ k < ∞, the function f ∈ A is said to be k-uniformly
convex in D, if f is convex in D, and the image of every circular arc γ contained in
D, with center ζ, where |ζ| ≤ k, is convex.

The class 1 − UCV (0) = UCV [7] (see also [12]) describes geometrically the

domain of values of the expression p(z) = 1 +
zf ′′(z)

f ′(z)
, z ∈ D, as f ∈ UCV if and only

if p is in the conic region

Ω = {ω ∈ C : (Imω)2 < 2 Reω − 1}.
Using Alexander transform a related class k − Sp(σ) is obtained as f ∈ k − UCV (σ)
⇐⇒ zf ′ ∈ k−Sp(σ). Results for the condition on the Taylor coefficients of functions
in these classes are available in the literature. Among them, we mention the results
that serve our purpose.

Lemma 4.2. [4] A function f ∈ A is in k − UCV (σ) if it satisfies the condition
∞∑
n=2

n [n(1 + k)− (k + σ)] |an| ≤ 1− σ. (4.2)

It was also found that the condition (4.2) is necessary if f ∈ A given by (1.1)
has an < 0. Further that the condition

∞∑
n=2

[n(1 + k)− (k + σ)] |an| ≤ 1− σ. (4.3)

is sufficient for f to be in k−Sp(σ) and turns out to be also necessary if f ∈ A given
by (1.1) has an < 0.

Theorem 4.3. Let f ∈ A be defined as in (1.1). Suppose that a, b ∈ C\{0},
c > |a|+ |b|+ 1 be such that, for k ≥ 0, 0 ≤ σ < 1,
F (|a|+ 1, |b|+ 1; c+ 1; 1)

(|ab|(1 + k) + (1− σ)(c− |a| − |b| − 1) ≤ c(1− σ)

(
1 +

α− 3γ

2|τ |(1− β)

)
. (4.4)

Then, for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1, 0 ≤ α ≤ 1 and 0 ≤ β < 1, H a, b c(f)(z) ∈
k − UCV (σ).

Proof. Let f ∈ A be defined as in Theorem 4.3. Considering (4.2), from Lemma 2.2,
we need to prove that if f ∈ A satisfies (2.5), then

∞∑
n=2

n
(
n(1 + k)− (k + σ)

)
|An| ≤ 1− σ, (4.5)
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where

An =
(a, n− 1)(b, n− 1)

(c, n− 1)(1, n− 1)
an, n ≥ 2.

Since 1 + α(n − 1) + γ(n − 1)(n − 2) ≥ n(α − 3γ) for 0 ≤ γ ≤ 1 and n ≥ 2, using
|(a, n)| ≤ (|a|, n) it is enough if we prove that

T :=

∞∑
n=2

n
(n)(1 + k)− (k + σ)

n

(|a|, n− 1)(|b|, n− 1)

(|c|, n− 1)(1, n− 1)
≤ (1− σ)(α− 3γ)

2|τ |(1− β)
.

Using (n+ 2)(1 + k)− (k + σ) = (n+ 1)(1 + k) + (1− σ) and

F (a, b; c; 1) =

∞∑
n=0

(a, n)(b, n)

(c, n)(1, n)
=

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, Re (c− a− b) > 0,

we get

T = (1 + k)

∞∑
n=0

(n+ 1)
(|a|, n+ 1)(|b|, n+ 1)

(c, n+ 1)(1, n+ 1)
+ (1− σ)

∞∑
n=0

(|a|, n+ 1)(|b|, n+ 1)

(c, n+ 1)(1, n+ 1)

= (1 + k)
ab

c

(
Γ(c− |a| − |b| − 1)Γ(c+ 1)

Γ(c− |a|)Γ(c− |b|)

)
+ (1− σ)

(
Γ(c− |a| − |b|)Γ(c)

Γ(c− |a|)Γ(c− |b|)
− 1

)
=

(
Γ(c− |a| − |b| − 1)Γ(c)

Γ(c− |a|)Γ(c− |b|)

)(
|ab|(1 + k) + (1− σ)(c− |a| − |b| − 1)

)
− (1− σ),

which by using the hypothesis, gives the required result. �

Another sufficient condition for the class k − UCV is also given in [8] by the
following result.

Lemma 4.4. [8] Let f ∈ S and has the form (1.1). If for some k, 0 ≤ k < ∞, the
inequality

∞∑
n=2

n(n− 1)|an| ≤
1

k + 2
, (4.6)

holds, then f ∈ k − UCV . The number 1/(k + 2) cannot be increased.

It is interesting to observe that, even though σ is not involved in this sufficient
condition, this condition holds for f ∈ k−UCV (σ), by the method of proof given for
Lemma 4.4 in [8]. Also that, using the Alexander transform, a result for f ∈ k−Sp(σ)
analogous to (4.6) cannot be obtained by replacing an by an/n as in many other
situations.

To compare the results we are interested in giving a theorem equivalent to The-
orem 4.3, by using (4.6) instead of (4.2). Since σ is not involved in (4.6), we present
this result for the case σ = 0 only. The proof of this theorem is similar to Theorem
4.3 and we omit details.

Theorem 4.5. Let f ∈ A be defined as in (1.1). Suppose that a, b ∈ C\{0},
c > |a|+ |b|+ 1 be such that, for k ≥ 0, 0 ≤ α < 1,

F (|a|+ 1, |b|+ 1; c+ 1; 1)
|ab|
c
≤ (α− 3γ)

2|τ |(1− β)(k + 2)
. (4.7)
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Then, for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1,0 ≤ α ≤ 1 and 0 ≤ β < 1, H a, b, c (f)(z) ∈ k−UCV .

If we let a = b in F (a, b; c; z) we get polynomials with positive coefficients when
b is some negative integer. Hence the above Theorems are useful in characterizing
convex polynomials and we give the corresponding results independently.

Corollary 4.6. Let f ∈ A be defined as in (1.1). Suppose that b > 0, c > 2Reb + 1 and
b, c satisfy

F (b+ 1, b+ 1; c+ 1; 1)(|b|2(1 + k) + (1− σ)(c− 2Reb− 1)

≤ c(1− σ)

(
1 +

α− 3γ

2|τ |(1− β)

)
. (4.8)

Then, for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1, 0 ≤ α ≤ 1 and 0 ≤ β < 1, H b, b c(f)(z) ∈
k − UCV (σ).

Corollary 4.7. Let f ∈ A be defined as in (1.1). Suppose that b > 0, c > 2Reb + 1 be
such that

F (b+ 1, b+ 1; c+ 1; 1)
|b|2

c
≤ (α− 3γ)

2|τ |(1− β)(k + 2)
. (4.9)

Then, for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1,0 ≤ α ≤ 1 and 0 ≤ β < 1, H b, b, c (f)(z) ∈ k−UCV
where k ≥ 0.

The Hohlov operator H a, b, c(f)(z) reduces to the Carlson-Shaffer operator
L(b, c)(f)(z) if a = 1. Hence we give the statement of the following results.

Corollary 4.8. Let f ∈ A be defined as in (1.1). Suppose that b > 0, c > b+2 are such
that, for k ≥ 0, 0 ≤ σ < 1 and

(c− 1)

(c− b− 1)(c− b− 2)
(|b|(1 + k) + (1− σ)(c− b− 2) ≤ (1− σ)

(
1 +

α− 3γ

2|τ |(1− β)

)
.

(4.10)

Then, for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1, 0 ≤ α ≤ 1 and 0 ≤ β < 1, L(b, c)(f)(z) ∈
k − UCV (σ).

Corollary 4.9. Let f ∈ A be defined as in (1.1). Suppose that b > 0, c > b+2 are such
that, for k ≥ 0, 0 ≤ σ < 1 and

(α− 3γ)

2|τ |(1− β)(k + 2)

(
(c− 1)2 + (2b+ 1)(c− 1) + b(b+ 1)

)
− b(c− 1) ≥ 0. (4.11)

Then, for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1, 0 ≤ α ≤ 1 and 0 ≤ β < 1, L(b, c)(f)(z) ∈ k−UCV .

Let S∗λ (λ > 0), denotes the class of functions in S such that

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < λ.

A sufficient condition for f ∈ A of the form (1.1) to be in S∗1 ⊂ S∗, is given

by

∞∑
n=2

n|an| ≤ 1, and is proved by many authors. For example, see [6]. A particular
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extension of this, due to [13], is

∞∑
n=2

(n+ λ− 1)|an| ≤ λ =⇒ f ∈ S∗λ. (4.12)

Theorem 4.10. Let a, b > 0 or a ∈ C\{0} with a = b. Further, let |a| 6= 1, |b| 6= 1, and
0 6= c > a+ b be such that

F (a, b; c; 1)

(
1 +

(λ− 1)(c− |a| − |b|)
(|a| − 1)(|b| − 1)

)
≤ (λ− 1)(c− 1)

(|a| − 1)(|b| − 1)
+ λ

(
1 +

(α− 3γ)

2|τ |(1− β)

)
.

(4.13)

Suppose that f ∈ A be defined as in (1.1). Then, for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1,
0 ≤ α ≤ 1, 0 ≤ β < 1, and λ > 0, H a, b, c(f)(z) ∈ S∗λ.

Proof. Let f(z) be of the form (1.1). In view of (4.12), it suffices to prove that

∞∑
n=2

(n+ λ− 1)|An| ≤ λ, (4.14)

where

An =
(a, n− 1)(b, n− 1)

(c, n− 1)(1, n− 1)
an, n ≥ 2.

Since f ∈ Rτγ,α(β), using (2.5) and 1 + α(n − 1) + γ(n − 1)(n − 2) ≥ n(α − 3γ), we
need only to show that

T :=

∞∑
n=2

(|a|, n− 1)(|b|, n− 1)

(c, n− 1)(1, n− 1)
+ (λ− 1)

∞∑
n=2

(|a|, n− 1)(|b|, n− 1)

(c, n− 1)(1, n)
≤ λ (α− 3γ)

2|τ |(1− β)
.

But this last inequality is true by the hypothesis of the theorem and (2.3). �

5. Inclusion properties of Kp
a [f ](z)

Theorem 5.1. Let f ∈ A be as in (1.1). Suppose a > −1, p ≥ 0 and

∞∑
n=2

[n(1 + k)− (k + σ)]Bn(a, p) ≤ (1− σ)(α− 3γ)

2|τ |(1− β)
, (5.1)

where Bn(a, p) =
(1 + a)p

(n+ a)p
. Then for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1, 0 ≤ α ≤ 1 and

0 ≤ β < 1, we have Kp
a [f ](z) ∈ k − UCV (σ).

Proof. Since f ∈ Rτγ,α(β), we have from Lemma 2.2 and the fact

1 + α(n− 1) + γ(n− 1)(n− 2) ≥ n(α− 3γ), n ≥ 2

that

|an| ≤
2|τ |(1− β)

n(α− 3γ)
.
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Now using Lemma 4.2, it is enough to show that
∞∑
n=2

n
[
n(1 + k)− (k + σ)

]
|An| ≤ 1− σ,

where An = Bn(a, p)an. Clearly, the above inequality is true if (5.1) holds. �

It is easy to see that, for all n ≥ 2,

Bn(a, p) =
(1 + a)p

(n+ a)p
< 1, a > −1, p ≥ 0

which leads to

Corollary 5.2. Let f ∈ A be as in (1.1). Suppose a > −1, p ≥ 0 and
∞∑
n=2

[n(1 + k)− (k + σ)] ≤ (1− σ)(α− 3γ)

2|τ |(1− β)
.

Then for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1, 0 ≤ α ≤ 1 and 0 ≤ β < 1, we have Kp
a [f ](z) ∈

k − UCV (σ).

Theorem 5.3. Let p ≥ 0, a > −1 and f ∈ A be as in (1.1). Suppose that
∞∑
n=2

[n+ λ− 1]
Bn(a, p)

n
≤ λ(α− 3γ)

2|τ |(1− β)
, (5.2)

where Bn(a, p) =
(1 + a)p

(n+ a)p
. Then for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1, 0 ≤ α ≤ 1 and

0 ≤ β < 1, we have Kp
a [f ](z) ∈ S∗λ.

Proof. Since f ∈ Rτγ,α(β), Lemma 2.2 gives

|an| ≤
2|τ |(1− β)

1 + α(n− 1) + γ(n− 1)(n− 2)
.

Using the fact that 1 + α(n− 1) + γ(n− 1)(n− 2) ≥ n(α− 3γ), n ≥ 2, we obtain

|an| ≤
2|τ |(1− β)

n(α− 3γ)
. (5.3)

Now Kp
a [f ](z) ∈ S∗λ if

∞∑
n=2

[n+ λ− 1]
∣∣∣ (1 + a)p

(n+ a)p
an

∣∣∣ ≤ λ
=⇒

∞∑
n=2

[n+ λ− 1]
(1 + a)p

(n+ a)p
∣∣an∣∣ ≤ λ

=⇒
∞∑
n=2

[n+ λ− 1]
(1 + a)p

(n+ a)p
2|τ |(1− β)

n(α− 3γ)
≤ λ, using (5.3)

=⇒
∞∑
n=2

[n+ λ− 1]
(1 + a)p

(n+ a)p
1

n
≤ λ(α− 3γ)

2|τ |(1− β)
,
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which is the hypothesis and the proof is complete. �

6. Concluding remarks

Remark 6.1. If k = 0 then it is clear from the analytic characterization that
k − UCV (σ) reduces to the class of Convex functions of order σ, denoted by C(σ).
Similarly, (using Alexander transform), k−Sp(σ) reduces to the class of Starlike func-
tions of order σ, (S∗(σ)). For results regarding to these classes we refer to [6]. Further
results on the restriction k = 0 can be found in the literature, e.g. see [8].

Remark 6.2. We note that Theorem 4.3 and Theorem 4.5 are not sharp. In particular,
for a, b real with η = 0, k = 0 and σ = 0, we get from (2.5),

F (|a|+ 1, |b|+ 1; c+ 1; 1)
|ab|
c

+ (c− |a| − |b| − 1) ≤ 1 +
α− 3γ

2(1− β)
. (6.1)

This inequality for α = 1 and γ = 0 further reduces to

F (|a|+ 1, |b|+ 1; c+ 1; 1)
|ab|
c

+ (c− |a| − |b| − 1) ≤ 1 +
1

2(1− β)
. (6.2)

Similarly, (4.7) reduces to

F (|a|+ 1, |b|+ 1; c+ 1; 1)
|ab|
c
≤ 1

4(1− β)
. (6.3)

From (6.2) and (6.3), it is easy to see that Theorem 4.5 is better for all c lying between

|a|+ |b|+ 1 and |a|+ |b|+ 3

2
and for all other values of c satisfying c > |a|+ |b|+ 3

2
,

Theorem 4.3 is better.

Note that, in Theorem 4.10, |a| 6= 1 and |b| 6= 1. Hence Theorem 4.10 cannot
be reduced to the important transforms such as Carlson-Schaffer integral operator,
which leads to the following.

Problem 6.3. To find conditions on b and c such that the Carlson-Schaffer operator
L(b, c)(f)(z) maps the class Rτγ,α(β) onto S∗λ.

Note that, for p = 1, the results given in Section 5 for the Komatu operator
Kp
a [f ](z) reduce to the results for the Bernardi integral operator and coincide with

the results of Section 4 for particular values of a, b and c. However, for no values of p
or a, the Komatu operator Kp

a [f ](z) can be reduced to the Carlson-Schaffer operator
L(b, c)(f)(z). Hence Problem 6.3 gains further significance.
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