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A study of existence and multiplicity of
positive solutions for nonlinear fractional
differential equations with nonlocal boundary
conditions
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Abstract. This paper deals with the existence, uniqueness and the multiplicity
of solutions for a class of fractional differential equations boundary value prob-
lems involving three-point nonlocal Riemann-Liouville fractional derivative and
integral boundary conditions. Our results are based on some well-known tools of
fixed point theory such as Banach contraction principle, fixed point index theory
and the Leggett-Williams fixed point theorem. As applications, some examples
are presented at the end to illustrate the main results.
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1. Introduction

In this paper, we are interested in the existence of solutions for the nonlinear
fractional differential equation

Dα
0+u (t) + a(t)f (t, u (t)) = 0, t ∈ (0, 1) , (1.1)

subject to the boundary condition

u(i) (0) = 0, i ∈ {0, 1, 2} , Dβ
0+u (1) = λIβ0+u (η) , (1.2)

where Dα
0+ , D

β
0+ are the standard Riemann-Liouville fractional derivative of order

α ∈ (3, 4] , β ∈ [2, 3], Iβ0+ is the stantard Riemann-Liouville fractional integral of
order β ∈ [2, 3].
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Due to the fact that the tools of fractional calculus has numerous applications
in various disciplines of science and engineering such as physics, mechanics, chem-
istry, biology, aerodynamics, electrodynamics of complex medium, polymer rheology,
Bode’s analysis of feedback amplifiers, capacitor theory, electrical circuits, electro-
analytical chemistry, control theory, fitting of experimental data, involves derivatives
of fractional order. In consequence, the subject of fractional differential equations is
gaining much importance and attention. Therefore, there have been many papers and
books dealing with the theoretical development of fractional calculus and the solutions
or positive solutions of boundary value problems for nonlinear fractional differential
equations. For more details we refer the reader to [10, 19, 21] and the references cited
therein.

Many mathematicians show strong interest in fractional differential equations
and many wonderful results have been obtained. The techniques of nonlinear analysis,
as the main method to deal with the problems of nonlinear fractional differential
equations, plays an essential role in the research of this field, such as establishing the
existence and the uniqueness or the multiplicity of solutions to nonlinear fractional
differential equations boundary value problems, see [2, 5, 7, 9, 11, 14, 16, 18] and the
references therein.

In [17], the authors studied the existence of positive solutions to the following
fractional boundary value problem{

Dα
0+u (t) + h (t) f (t, u (t)) = 0, t ∈ (0, 1) ,

u (0) = u′ (0) = u′′ (0) = 0, u (1) = λ
∫ η

0
u (η) ds,

where Dα
0+ are the standard Riemann-Liouville fractional derivative of order α ∈

(3, 4] , η ∈ (0, 1] , and 0 ≤ ληα

α < 1.

In [22], the authors studied the boundary value problems of the fractional order
differential equation:{

Dα
0+u (t) = f (t, u (t)) = 0, t ∈ (0, 1) ,

u (0) = 0, Dβ
0+u (1) = aDβ

0+u (η) ,

where 1 < α ≤ 2, 0 < η < 1, 0 < a, 0 < β ≤ 1, f ∈ C ([0, 1]× [0,∞) , [0,∞)) and

Dα
0+ , D

β
0+ are the standard Riemann-Liouville fractional derivative of order α, β.

They obtained the multiple positive solutions by the Leray-Schauder nonlinear alter-
native and the fixed point theorem on cones.
In 2017, Benaicha and Bouteraa [3] studied the existence and uniqueness of solutions
for nonlinear fractional differential equation

cDαu (t) = f (t, u (t) , u′ (t)) , t ∈ J = [0, 1]

subject to three-point boundary conditions
βu (0) + γu (1) = u (η) ,

u (0) =
∫ η

0
u (s) ds,

βcDpu (0) + γcDpu (1) = cDpu (η) ,
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where 2 < α ≤ 3, 1 < p ≤ 2 0 < η < 1, β, γ ∈ R+, f : [0, 1] × R × R → R is a
continuous function and cDα denotes the Caputo fractional derivative of order α.
In 2018, Bouteraa and Benaicha [6] interested in the existence of solutions for the
nonlinear fractional differential equation

Dα
0+u (t) + f (t, u (t)) = 0, t ∈ (0, 1) ,

subject to the boundary conditions

u(i) (0) = 0, i ∈ {0, 1, . . . , n− 2} , Dβ
0+u (1) =

p∑
j=1

ajD
β
0+u (ηj) ,

where Dα
0+ , D

β
0+ are the standard Riemann-Liouville fractional derivative of order

α (n− 1, n] , β ∈ [1, n− 2] for n ∈ N∗ and n ≥ 3 and f ∈ C ((0, 1)× R,R) is allowed
to be singular at t = 0 and/or t = 1 and aj ∈ R+, j = 1, 2, . . . , p, 0 < η1 < η2 < . . . <
ηp < 1, for p ∈ N+. The existence and uniqueness of positive solutions for the above
nonlocal boundary value problem obtained by applying the iterative method.

Inspired and motivated by the works mentioned above, we focus on the existence
of positive solutions for the nonlocal boundary value problem (1.1)− (1.2). The paper
is organized as follows. In Section 2, we recall some preliminary facts that will be need
in the sequel. In Section 3, we establish the existence, uniqueness and multiplicity of
the positive solutions for boundary value problem (1.1)−(1.2) by applying some well-
known tools of fixed point theory such as Banach contraction principle, fixed point
index theory and the Leggett-Williams fixed point theorem and we give two examples
to illustrate our results.

2. Preliminaries

In this section, we recall some definitions and facts which will be used in the
later analysis.

Definition 2.1. ([20]) Let E be a real Banach space. A nonempty closed set K ⊂ E is
said to be a cone provided that
(i) c1u+ c2v ∈ K for all c1 ≥ 0, c2 ≥ 0, and
(ii) u ∈ K, −u ∈ K implies u = 0.
Every cone K induces an ordering in E given by u ≤ v if and only if v − u ∈ K.

Definition 2.2. ([10, 15]) The Riemann-Liouville fractional integral of order α > 0 of
a function u : (0,∞)→ R is given by

Iα0+u (t) =
1

Γ (α)

t∫
0

(t− s)α−1
u (s) ds, t > 0,

where Γ (·) is the Euler gamma function, provided that the right side is pointwise
defined on (0,∞).



364 Noureddine Bouteraa and Slimane Benaicha

Definition 2.3. ([10, 15]) The Riemann-Liouville fractional derivative order α > 0 of
a continuous function u is defined by

Dα
0+u (t) =

1

Γ (n− α)

dn

dtn

t∫
0

(t− s)n−α−1
u (s) ds, t > 0,

where Γ (·) is the Euler gamma function and n = dαe + 1, dαe denotes the integer
part of number α, provided that the right side is pointwise defined on (0,∞).

Lemma 2.4. ([10]) (i) If u ∈ Lp (0, 1) , 1 ≤ p ≤ +∞, β > α > 0, then

Dα
0+I

β
0+u (t) = Iβ−α0+ u (t) , Dα

0+Iα0+u (t) = u (t) , Iα0+I
β
0+u (t) = Iα+β

0+ u (t) .

(ii) If β > α > 0, then Dαtβ−1 = Γ(β)tβ−α−1

Γ(β−α) .

(iii) If α > 0 and γ ∈ (−1,+∞), then Iα0+tγ = Γ(γ+1)
Γ(α+γ+1) t

α+γ .

Lemma 2.5. ([10]) Let α > 0 and for any y (·) ∈ L1 (0, 1). Then, the general solution
of the fractional differential equation Dα

0+u (t) + y (t) = 0, 0 < t < 1 is given by

u (t) = − 1

Γ (α)

t∫
0

(t− s)α−1
y (s) ds+ c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n,

where c0, c1, ..., cn−1 are real constants and n = dαe+ 1.

Now, let 0 < d < l < r be given and let β be a nonnegative continuous concave
functional on the cone K i.e.,

β (λu+ (1− λ) v) ≥ λβ (u) + (1− λ)β (v) ,

for all u, v ∈ K and λ ∈ [0, 1].
Define the convex sets Kl and K (β, l, r) by

Kl = {u ∈ K : ‖u‖ < l} ,
and

K (β, l, r) = {u ∈ K : l ≤ β (u) , ‖u‖ ≤ r} .
The key tools in our approaches are the following fixed point theorem and lemmas

Theorem 2.6. (Leggett-Wiliams fixed point (See [20])) Let E be a Banach space and
K ⊂ E be a cone in E. T : K̄c → K̄c be a completely continuous and β be a nonneg-
ative continuous concave functional on K with β (u) ≤ ‖u‖ for all u ∈ Kc. Suppose
there exist 0 < d < l < r ≤ c such that
(i) u ∈ {K (β, l, r) : β (u) > l} 6= ∅ and β (Tu) > l for u ∈ K (β, l, r),
(ii) ‖Tu‖ < d for ‖u‖ ≤ d,
(iii) β (Tu) > l for u ∈ K (β, l, c) with ‖Tu‖ > r.
Then T has at least three positive solutions u1, u2, u3 satisfying

‖u1‖ < d, l < β (u2) , ‖u3‖ > d and β (u3) < l.

Lemma 2.7. (Krein-Rutman [20]) Let K be a reproducing cone in a real Banach space
E, and L : E → E be a compact linear operator with L (K) ⊆ K and spectral radius
r (L). If r (L) > 0, then there exists ϕ ∈ K \ {0} such that Lϕ = r (L)ϕ.
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Lemma 2.8. (Fixed point index theory [20]) Let E be a Banach space and K is
a cone in E and Ω (K) is a bounded open subset in K. Furthermore, assume that

T : Ω (K) → K is a completely continuous operator Then the following conclusion
hold:
(i) there exists u0 ∈ K \ {0} such that Tu + λu0 6= u for all u ∈ ∂Ω (K) and λ ≥ 0,
then the fixed point index i (T,Ω (K) ,K) = 0,
(ii) if 0 ∈ Ω (K) and Tu 6= λu for all u ∈ ∂Ω (K) and λ ≥ 1, then the fixed point
index i (T,Ω (K) ,K) = 1.

Lemma 2.9. Let y (·) ∈ C [0, 1]. Then the solution of the fractional boundary value
problem 

Dα
0+u (t) + y (t) = 0,

u(i) (0) = 0, i ∈ {0, 1, 2} ,
Dβ

0+u (1) = λIβ0+u (η) ,

(2.1)

is given by

u (t) =

1∫
0

G (t, s) y (s) ds, (2.2)

where

G (t, s) =



−PΓ(α−β)Γ(α+β)(t−s)α−1+∆
PΓ(α)Γ(α−β)Γ(α+β) , 0 ≤ s ≤ t ≤ 1, s ≤ η,

∆
PΓ(α)Γ(α−β)Γ(α+β) , 0 ≤ t ≤ s ≤ η ≤ 1,
−PΓ(α−β)Γ(α+β)(t−s)α−1+Λ

PΓ(α)Γ(α−β)Γ(α+β) , 0 ≤ η ≤ s ≤ t ≤ 1,

Γ(α)Γ(α+β)(1−s)α−β−1tα−1

PΓ(α)Γ(α−β)Γ(α+β) , 0 ≤ t ≤ s ≤ 1, s ≥ η,

(2.3)

where

∆ = tα−1
[
Γ (α) Γ (α+ β) (1− s)α−β−1 − λΓ (α) Γ (α− β) (η − s)α+β−1

]
,

and
Λ = Γ (α+ β) Γ (α) (1− s)α−β−1

tα−1,

where

P =
Γ (α)

Γ (α− β)
− λΓ (α)

Γ (α+ β)
ηα+β−1.

Proof. In view of Lemma 2.5, the general solution for the above equation in (2.1) is

u (t) = − 1

Γ (α)

t∫
0

(t− s)α−1
y (s) ds+ c1t

α−1 + c2t
α−2 + c3t

α−3 + C4t
α−4,

where c1, c2, c3, c4 ∈ R.
The boundary condition u (0) = u′ (0) = u′′ (0) = 0, implies that c2 = c3 = c4 = 0.
Thus

u (t) = − 1

Γ (α)

t∫
0

(t− s)α−1
y (s) ds+ c1t

α−1. (2.4)
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By (2.4) and Lemma 2.4, we get

Dβ
0+u (t) =

1

Γ (α− β)

c1Γ (α) tα−β−1 −
t∫

0

(t− s)α−β−1
y (s) ds

 .
In view of boundary condition Dβ

0+u (1) = λIβ0+u (η), we conclude that

c1 =
1

P

 1

Γ (α− β)

1∫
0

(1− s)α−β−1
y (s) ds− λ

Γ (α+ β)

η∫
0

(η − s)α+β−1
y (s) ds

 .
Therefore, the unique solution of the problem (2.1) is given by

u (t) =
tα−1

PΓ (α− β)

1∫
0

(1− s)α−β−1
y (s) ds− λtα−1

PΓ (α+ β)

η∫
0

(η − s)α+β−1
y (s) ds

− 1

Γ (α)

t∫
0

(t− s)α−1
y (s) ds.

For t ≤ η, one has

u (t) =
tα−1

PΓ (α− β)

 t∫
0

(1− s)α−β−1
y (s) ds+

η∫
t

(1− s)α−β−1
y (s) ds

+

1∫
η

(1− s)α−β−1
y (s) ds

− 1

Γ (α)

t∫
0

(t− s)α−1
y (s) ds

− λtα−1

PΓ (α+ β)

 t∫
0

(η − s)α+β−1
y (s) ds+

η∫
t

(η − s)α+β−1
y (s) ds


=

t∫
0

−PΓ (α− β) Γ (α+ β) (t− s)α−1
+ ∆

PΓ (α) Γ (α+ β) Γ (α− β)
y (s) ds

+

η∫
t

∆

PΓ (α) Γ (α+ β) Γ (α− β)
y (s) ds

+

1∫
η

Γ (α) Γ (α+ β) (1− s)α−β−1
tα−1

PΓ (α) Γ (α+ β) Γ (α− β)
y (s) ds

=

1∫
0

G (t, s) y (s) ds.
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For t ≥ η, one has

u (t) =

η∫
0

−PΓ (α− β) Γ (α+ β) (t− s)α−1
+ ∆

PΓ (α) Γ (α+ β) Γ (α− β)
y (s) ds

+

t∫
η

−PΓ (α− β) Γ (α+ β) (t− s)α−1
+ Γ (α) Γ (α+ β) (1− s)α−β−1

tα−1

PΓ (α) Γ (α+ β) Γ (α− β)
y (s) ds

+

1∫
t

Γ (α) Γ (α+ β) (1− s)α−β−1
tα−1

PΓ (α) Γ (α+ β) Γ (α− β)
y (s) ds

=

1∫
0

G (t, s) y (s) ds.

The proof is complete. �

We need some properties of function G (t, s) to establish the existence of positive
solutions.

Lemma 2.10. The Green’s function G (t, s) has the following properties:
(i) The function G (t, s) is continuous on [0, 1]× [0, 1].
(ii) G (t, s) > 0 for all s ∈ (0, 1),
(iii) for all t, s ∈ (0, 1), we have G (t, s) ≤ G (1, s),
(iv) there exists a positive function γ (s) ∈ C (0, 1) such that

min
η≤t≤1

G (t, s) ≥ γ (s) max
0≤t≤1

G (t, s) = ηα−1G (1, s) , 0 < s < 1. (2.5)

Proof. It is easy to prove (i). Now, we prove (ii)− (iv). Let

g1 (t, s) =
∆− PΓ (α− β) Γ (α+ β) (t− s)α−1

PΓ (α) Γ (α+ β) Γ (α− β)
,

where ∆ defined above.

g2 (t, s) =
tα−1Γ (α) Γ (α+ β) (1− s)α−β−1 − PΓ (α− β) Γ (α+ β) (t− s)α−1

PΓ (α) Γ (α+ β) Γ (α− β)

g3 (t, s) =
tα−1Γ (α)

(
Γ (α+ β) (1− s)α−β−1 − λΓ (α− β) (η − s)α+β−1

)
PΓ (α) Γ (α+ β) Γ (α− β)

g4 (t, s) =
tα−1Γ (α) Γ (α+ β) (1− s)α−β−1

PΓ (α) Γ (α+ β) Γ (α− β)
.

We will first show that

g1 (t, s) > 0, 0 ≤ min {t, η} < 1.

To simplify we introduce the abbreviation

41 = tα−1Γ (α) Γ (α+ β) (1− s)α−β−1
.
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We can rewrite 41 as

41 = tα−1Γ (α) Γ (α+ β)

(
Γ (α− β)

Γ (α− β)
− λΓ (α− β)

Γ (α+ β)
ηα+β−1

+
λΓ (α− β)

Γ (α+ β)
ηα+β−1

)
(1− s)α−β−1

= tα−1Γ (α− β) Γ (α+ β)

(
Γ (α)

Γ (α− β)
− λΓ (α)

Γ (α+ β)
ηα+β−1

+
λΓ (α)

Γ (α+ β)
ηα+β−1

)
(1− s)α−β−1

= tα−1Γ (α− β) Γ (α+ β)

(
P +

λΓ (α) ηα+β−1

Γ (α+ β)

)
(1− s)α−β−1

,

λtα−1Γ (α) Γ (α− β) (η − s)α+β−1
= λtα−1Γ (α) Γ (α− β) ηα+β−1

(
1− s

η

)α+β−1

,

and

PΓ (α− β) Γ (α+ β) (t− s)α−1
= Ptα−1Γ (α− β) Γ (α+ β)

(
1− s

t

)α−1

.

Thus

g1 (t, s) = Q

{
Ptα−1Γ (α− β) Γ (α+ β)

[
(1− s)α−β−1 −

(
1− s

t

)α−1
]

+ λtα−1Γ (α) Γ (α− β)

[
ηα−β−1 (1− s)α−β−1 − ηα+β−1

(
1− s

η

)α+β−1
]}

> Q

{
Ptα−1Γ (α− β) Γ (α+ β)

[
(1− s)α−1 −

(
1− s

t

)α−1
]

+ λtα−1Γ (α) Γ (α− β)

[
ηα+β−1 (1− s)α+β−1 − ηα+β−1

(
1− s

η

)α+β−1
]}

> Q
{
Ptα−1Γ (α− β) Γ (α+ β)

[
(1− s)α−1 − (1− s)α−1

]
+ λtα−1Γ (α) Γ (α− β) ηα+β−1

[
(1− s)α+β−1 − (1− s)α+β−1

]}
= 0,

where Q = 1
PΓ(α)Γ(α−β)Γ(α+β) .

We deduce that g1 (t, s) > 0, 0 ≤ min {t, η} < 1.
By the similar argument we can conclude that

g2 (t, s) > 0, 0 < η ≤ s ≤ t ≤ 1, g3 (t, s) > 0, 0 ≤ t ≤ s ≤ η ≤ 1,

and

g4 (t, s) > 0, 0 ≤ max {s, η} ≤ s ≤ 1.

Therefore G (t, s) > 0 for any t, s ∈ (0, 1).
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Now, we show that G (t, s) ≤ G (1, s) for any t, s ∈ (0, 1).
Let h1 (t, s) = g1 (t, s) Γ (α) Γ (α− β) Γ (α+ β). Then, as the above argument but for
the derivative of h1 (t, s) with respect to t on [s, 1], we have

∂h1 (t, s)

∂t
=

(α− 1) tα−2

P

{
PΓ (α− β) Γ (α+ β)

[
(1− s)α−β−1 −

(
1− s

t

)α−2
]

+ λΓ (α) Γ (α− β)

[
ηα−β−1 (1− s)α−β−1 − ηα+β−1

(
1− s

η

)α+β−1
]}

>
(α− 1) tα−2

P

{
PΓ (α− β) Γ (α+ β)

[
(1− s)α−2 − (1− s)α−2

]
+ λtα−1Γ (α) Γ (α− β) ηα+β−1

[
(1− s)α+β−1 − (1− s)α+β−1

]}
= 0,

so, we have h1(t,s)
∂t > 0, then g1 (t, s) is increasing with respect to t on [s, 1].

Next, we show that g2 (t, s) is increasing with respect to t on [s, 1].
Let h2 (t, s) = g2 (t, s) Γ (α) Γ (α− β) Γ (α+ β). Then, we have

∂h2 (t, s)

∂t
=

(α−1) tα−2

P

{
Γ (α+ β)

[
Γ (α) (1− s)α−β−1 − PΓ (α− β)

(
1− s

t

)α−2
]}

≥ (α− 1) tα−2

P

{
Γ (α+ β)

[
Γ (α) (1− s)α−β−1 − PΓ (α− β) (1− s)α−2

]}
≥ (α− 1) (1− s)α−2

tα−2

P

{
Γ (α+ β)

[
Γ (α) (1− s)1−β − PΓ (α− β)

]}
=

(α− 1) (t (1− s))α−2

P

{
Γ (α+ β)

[
Γ (α) (1− s)1−β − PΓ (α− β)

]}
=

(α− 1) (t (1− s))α−2

P

{
Γ (α+ β) Γ (α) (1− s)1−β

+ λΓ (α) Γ (α− β) ηα+β−1

−Γ (α) Γ (α+ β)}

≥ (α− 1) (t (1− s))α−2

P

{
Γ (α) Γ (α+ β)

[
(1− s)1−β − 1

]}
≥ 0,

so, we have h2(t,s)
∂t > 0, then g2 (t, s) is increasing with respect to t on [s, 1].

Then, we conclude that G (t, s) is increasing with respect to t on [s, 1]. Hence,
G (t, s) ≤ G (1, s) for s, t ∈ [0, 1].
On the hand, we know that

min
η≤t≤1

G (t, s) =

 min
η≤t≤1

{g1 (t, s) , g3 (t, s)} , 0 ≤ s ≤ η,

min
η≤t≤1

{g2 (t, s) , g4 (t, s)} , η ≤ s ≤ 1,

=

{
g1 (η, s) , 0 ≤ s ≤ η,
g2 (η, s) , η ≤ s ≤ 1.

Let

γ (s) ≤


g1(η,s)
G(1,s) , 0 < s ≤ η,
g2(η,s)
G(1,s) , η < s ≤ 1,
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where

G (1, s) =

{
g1 (1, s) , 0 ≤ s ≤ η,
g2 (1, s) , η ≤ s ≤ 1.

=


Γ(α)(Γ(α+β)(1−s)α−β−1−λΓ(α−β)(η−s)α+β−1)−PΓ(α−β)Γ(α+β)(1−s)α−1

PΓ(α)Γ(α+β)Γ(α−β) , 0 ≤ s ≤ η
Γ(α)Γ(α+β)(1−s)α−β−1−PΓ(α−β)Γ(α+β)(1−s)α−1

PΓ(α)Γ(α−β)Γ(α+β) , η ≤ s ≤ 1.

Therefore, we have

γ (s) = ηα−1 ∈ (0, 1) .

Then

min
η≤t≤1

G (t, s) ≥ γ (s) max
0≤t≤1

G (t, s) = ηα−1G (1, s) , 0 < s < 1.

The proof is complete. �

3. Existence results

We shall consider the Banach space E = C [0, 1] equipped with the norm

‖u‖ = max
0≤t≤1

|u (t)|

and let a closed cone K ⊂ E by

K = {u ∈ E : u (t) ≥ 0, t ∈ [0, 1]} ,

where 0 is the the zero function. Obviously, K is a reproducing cone of E.
Define the operator T : K → K and the linear operator L : K → K as follows

T (u) (t) =

1∫
0

G (t, s) a (s) f (s, u (s)) ds, t ∈ [0, 1] , (3.1)

and

L (u) (t) =

1∫
0

G (t, s) a (s)u (s) ds, t ∈ [0, 1] , (3.2)

where G (t, s) is given by (2.3). It is not hard to see that fixed points of operator T
coincide with the solutions to the problem (1.1)− (1.2).
First, for the existence results of problem (1.1)− (1.2), we need the following assump-
tions.
(H1) f : [0, 1]× [0,∞)→ [0,∞) is continuous function,
(H2) a (·) ∈ L1 (0, 1) is a nonnegative function, a (t) does not vanish identically on

any subinterval of [0, 1] and 0 <
∫ 1

0
a (s) (1− s)α−β−1

sα−1ds <∞.

Lemma 3.1. Assume (H1) and (H2) hold. Then the operators T : K → K and
L : K → K are completely continuous.
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Proof. For any u ∈ K, it follows from (H1), (H2) and Lemma 2.10, T (u)(t) ≥ 0, t ∈
[0, 1]. So, T : K → K and L : K → K are continuous.
Let Φ ⊂ K be bounded .i.e., there exists a positive constant M such that f (t, u) ≤M
for all t ∈ [0, 1] , u ∈ Φ. Then, It follows from (3.1) that

|Tu (t)| ≤ Mtα−1

PΓ (α− β)

1∫
0

(1− s)α−β−1
a (s) ds+

M

Γ (α)

t∫
0

(t− s)α−1
a (s) ds

+
λMtα−1

PΓ (α+ β)

η∫
0

(η − s)α+β−1
a (s) ds

≤ M

PΓ (α− β)

1∫
0

a (s) ds+
M

Γ (α)

1∫
0

a (s) ds

+
λM

PΓ (α+ β)

1∫
0

a (s) ds

≤ M (Γ (α) Γ (α+ β) + PΓ (α+ β) Γ (α− β) + λΓ (α) Γ (α− β))

PΓ (α) Γ (α+ β) Γ (α− β)

1∫
0

a (s) ds.

Thus ‖Tu‖ <∞ for all u ∈ Φ. Hence, {Tu, u ∈ Φ} is bounded.
Now, we show that T maps bounded sets into equicontinuous sets of K.
Let t1, t2 ∈ [0, 1] with t1 < t2 and u ∈ Φ is a bounded set of K. Then

|Tu (t2)− Tu (t1)| ≤

∣∣∣∣∣∣ tα−1
2

PΓ (α− β)

1∫
0

(1− s)α−β−1
a (s) f (s, u (s)) ds

− tα−1
1

PΓ (α− β)

1∫
0

(1− s)α−β−1
a (s) f (s, u (s)) ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣ t
α−1
1

Γ (α)

t1∫
0

(t1 − s)α−1
a (s) f (s, u (s)) ds− tα−1

2

Γ (α)

t2∫
0

(t2 − s)α−1
a (s) f (s, u (s)) ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣ λtα−1
1

PΓ (α+ β)

η∫
0

(η − s)α−1
a (s) f (s, u (s)) ds

− λtα−1
2

PΓ (α+ β)

η∫
0

(η − s)α−1
a (s) f (s, u (s)) ds

∣∣∣∣∣∣
≤
M
(
tα−1
2 − tα−1

1

)
PΓ (α− β)

1∫
0

a (s) ds+
λM

(
tα−1
2 − tα−1

1

)
PΓ (α− β)

1∫
0

a (s) ds
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+
M
(
tα−1
1 − tα−1

2

)
Γ (α)

∣∣∣∣∣∣
t1∫

0

(t1 − s)α−1
a (s) ds

∣∣∣∣∣∣+
Mtα−1

2

Γ (α)

∣∣∣∣∣∣
t2∫
t1

(t2 − s)α−1
a (s) ds

∣∣∣∣∣∣ .
Obviously, the right hand side of the above inequality tends to zero as t2 → t1. Thus
‖(Tu) (t2)− (Tu) (t1)‖ → 0, as t2 → t1. This shows that the operator T is completely
continuous, by the Arzela-Ascoli theorem.
By the same method we can get that L : K → K is a completely continuous operator.
The proof is complete. �

Now, we present the existence result for the boundary value problem (1.1)− (1.2) via
Banach contraction principle.

Theorem 3.2. Assume (H1) and (H2) hold. Suppose that f : [0, 1]× [0,∞)→ [0,∞)
be a continuous function satisfying the condition
(H3) |f (t, u)− f (t, v)| ≤ l |u− v| , for t ∈ [0, 1] , l > 0 and u, v ∈ [0,+∞).

If 0 <
∫ 1

0
G (1, s) a (s) ds < 1, then the boundary value problem (1.1) − (1.2) has a

unique positive solution on [0, 1].

Proof. As the first step, by Lemma 2.9 we know that T : K → K.
Now, let u, v ∈ K and for each t ∈ [0, 1], it follows from assumption (H3) that

‖Tu (t)− Tv (t)‖ = max
t∈[0,1]

|Tu (t)− Tv (t)|

≤
1∫

0

G (t, s) a (s) |f (s, u (s))− f (s, v (s))| ds

≤ l
1∫

0

G (1, s) a (s) |u (s)− v (s)| ds

≤ l
1∫

0

G (1, s) a (s) ds ‖u− v‖ .

Thus,

‖(Tu)− (Tv)‖ ≤ l
1∫

0

G (1, s) a (s) ds ‖u− v‖ .

Since l
∫ 1

0
G (1, s) a (s) ds < 1, so T s a contraction. Hence it follows by Banach’s

contraction principle that the boundary value problem (1.1) − (1.2) has a unique
positive solution on [0, 1]. The proof is complete. �

Now, we are in a position to study the existence of solutions for the boundary
value problem (1.1)− (1.2) by applying the fixed point index theory.

Lemma 3.3. Assume (H1) and (H2) hold. Then the spectral radius of the operator L
is positive that is r (L) > 0.
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Proof. Take u (t) = tα−1 ∈ E. Then ‖u‖ = 1. We have

Lu (t) =
tα−1

PΓ (α− β)

1∫
0

(1− s)α−β−1
a (s)u (s) ds

− λtα−1

PΓ (α+ β)

η∫
0

(η − s)α+β−1
a (s)u (s) ds− 1

Γ (α)

t∫
0

(t− s)α−1
a (s)u (s) ds

=
tα−1

PΓ (α− β)

1∫
0

(1− s)α−β−1
a (s) sα−1ds

−λt
α−1ηα+β−1

PΓ (α+ β)

η∫
0

(
1− s

η

)α+β−1

a (s) sα−1ds− tα−1

Γ (α)

t∫
0

(
1− s

t

)α−1

a (s) sα−1ds

= tα−1

− ληα+β−1

PΓ (α+ β)

η∫
0

(
1− s

η

)α+β−1

a (s) sα−1ds

+
1

PΓ (α− β)

1∫
0

(1− s)α−β−1
a (s) sα−1ds− 1

Γ (α)

t∫
0

(
1− s

t

)α−1

a (s) sα−1ds


> tα−1

− ληα+β−1

PΓ (α+ β)

1∫
0

(
1− s

η

)α+β−1

a (s) sα−1ds

+
1

PΓ (α− β)

1∫
0

(1− s)α−β−1
a (s) sα−1 − 1

Γ (α)

1∫
0

(
1− s

t

)α−1

a (s) sα−1ds


> tα−1

− ληα+β−1

PΓ (α+ β)

1∫
0

(1− s)α+β−1
a (s) sα−1ds

+
1

PΓ (α− β)

1∫
0

(1− s)α−β−1
a (s) sα−1ds− 1

Γ (α)

1∫
0

(1− s)α−1
a (s) sα−1ds


= tα−1

− 1

Γ (α)

1∫
0

(1− s)α−1
a (s) sα−1ds

+
1

Γ (α)

1∫
0

(1− s)α−β−1
a (s) sα−1ds

 = νtα−1 > 0,
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where

ν = − 1

Γ (α)

1∫
0

(1− s)α−1
a (s) sα−1ds+

1

Γ (α)

1∫
0

(1− s)α−β−1
a (s) sα−1ds.

Since L : K → K, according the monotonicity of L and (H2), we deduce

L2u (t) = L (Lu (t)) > L
(
νtα−1

)
> νL

(
tα−1

)
> ν2tα−1.

Repeating the process gives Lnu (t) > νntα−1. So, we get ‖Ln‖ > νn. Hence

‖Ln‖
1
n > ν, r (L) = lim

n→∞
‖Ln‖

1
n > ν > 0.

The proof is complete. �

For convenience, we introduce the following notation:

f∞ = lim
u→∞

sup max
t∈[0,1]

f (t, u)

u
,

f0 = lim
u→0+

inf min
t∈[0,1]

f (t, u)

u
,

Kc = {u ∈ K : ‖u‖ < c} ,

r (L) =
1

µ
, µ ∈ R+.

Lemma 3.4. Assume (H1), (H2) hold and µ < f0 ≤ ∞. Then there exists ρ0 > 0 such
that for ρ ∈ (0, ρ0], if u 6= Tu, u ∈ ∂Kρ, then i (T,Kρ,K) = 0.

Proof. It follows from µ < f0 that there exist ε > 0 and ρ0 > 0 such that for t ∈ [0, 1]
and 0 ≤ u ≤ ρ0 we have

f (t, u) ≥ (µ+ ε)u. (3.3)

For 0 < ρ < ρ0 assume that u 6= Tu, u ∈ ∂Kρ. By Lemma 2.7 and Lemma 2.8 (i), we
need only to prove that

u 6= Tu+ λϕ, λ > 0,

where ϕ ∈ K \ {0} with Lϕ = r (L)ϕ.
Otherwise, there exist u0 ∈ ∂Kρ and λ0 > 0 such that

u0 6= Tu0 + λ0ϕ. (3.4)

Then u0 ≥ Tu0 and u0 ≥ λ0ϕ.
From (2.1), we get

Tu0 (t) =

1∫
0

G (t, s) a (s) f (s, u0 (s)) ds ≥ (µ+ ε)Lu0 (t) . (3.5)

Considering u0 ≥ λ0ϕ, we have

lu0 ≥ λ0Lϕ.

For Lϕ = r (L)ϕ, (µ+ ε) r (L) > 1, so that (µ+ ε) r (L)ϕ > ϕ.
Thus, we can conclude Tu0 ≥ (µ+ ε)λ0Lϕ > λ0ϕ.
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Together with the boundary conditions in (2.1), we have u0 ≥ 2λ0ϕ. By (3.3), we
obtain Tu0 ≥ 2λ0ϕ. Thus, u0 ≥ 3λ0ϕ.
Repeating this process, we get that u0 ≥ nλ0ϕ. Hence, we have ‖u0‖ ≥ nλ0 ‖ϕ‖ → ∞
as n→∞. This is a contradiction.
It follows from Lemma 2.8 (ii) that i (T,Kρ,K) = 0 for ρ ∈ (0, ρ0]. The proof is
complete. �

Lemma 3.5. Assume (H1), (H2) hold and 0 ≤ f∞ < µ. Then there exists τ0 > 0 such
that for τ > τ0, if λu 6= Tu, u ∈ ∂Kτ , then i (T,Kρ,K) = 1.

Proof. let ε > 0 satisfy f∞ < µ− ε. Then there exist τ1 > 0 and such that for u > τ1
and t ∈ [0, 1], we have

f (t, u) ≤ (µ− ε)u. (3.6)

Set Ψ (t) = max
u∈[0,τ1]

f (t, u). Then, for all u ∈ R+ and t ∈ [0, 1], we have

f (t, u) ≤ (µ− ε)u+ Ψ (t) . (3.7)

Let

F =

∥∥∥∥∥∥
1∫

0

G (t, s) a (s) Ψ (s) ds

∥∥∥∥∥∥ , τ0 =

∥∥∥∥∥ F

µ− ε

(
I

µ− ε
− L

)−1
∥∥∥∥∥ .

Take τ > τ0. We will show that λu 6= Tu, for all u ∈ ∂Kτ and λ ≥ 1.
Otherwise, there exist u0 ∈ ∂Kτ and λ0 ≥ 1 such that

Tu0 = λ0u0. (3.8)

Together with (3.7), we have

u0 ≤ λu0 = Tu0 ≤ (µ− ε)Lu0 + F.

Then F
µ−ε ≥

(
I

µ−ε − L
)
u0 (t) for t ∈ [0, 1]. So, F

µ−ε −
(

I
µ−ε − L

)
u0 (t) ∈ K.

It follows from L (K) ⊂ K that u0 (t) ≤ F
µ−ε

(
I

µ−ε − L
)−1

t ∈ [0, 1]. Therefore, we

have ‖u0‖ ≤ τ0 < τ . This is a contradiction. Thus, we conclude that for all u ∈ ∂Kτ

and λ ≥ 1

Tu 6= λu.

It follows from Lemma 2.8 (ii) that i (T,Kτ ,K) = 1 for τ0 < τ .
The proof is complete. �

Theorem 3.6. Assume (H1), (H2) hold, µ < f0 ≤ ∞ and 0 ≤ f∞ ≤ µ. Then, the
boundary value problem (1.1)− (1.2) has at least one positive solution on [0, 1].

Proof. It follows from µ < f0 ≤ ∞ and Lemma 3.4 that there exist 0 < ρ < τ such
that either there exists u ∈ ∂Kρ with u = Tu or i (T,Kρ,K) = 0. From 0 ≤ f∞ ≤ µ
and Lemma 3.5 there exists τ > 0 such that i (T,Kτ ,K) = 1. Thus, we can conclude
that T has fixed point u ∈ K with ρ < ‖u‖ < τ by the properties of index. Hence,
the boundary value problem (1.1) − (1.2) has at least one positive solution on [0, 1].
The proof is complete. �
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Now, we are in the position to present the third main results of this paper. The
existence and the multiplicity result is based on the Leggett-Williams fixed point
theorem.

Theorem 3.7. Assume (H1)and (H2) hold. Furthermore, suppose that there exist con-
stants 0 < d < l < c such that

(H4) f (t, u) < Md, (t, u) ∈ [0, 1]× [0, d],

(H5) f (t, u) ≤Mc, for (t, u) ∈ [0, 1]× [0, c],

(H6) f (t, u) ≥ Nl, for (t, u) ∈ [η, 1]× [l, c],

where

M =

 1∫
0

a (s)G (1, s) ds

−1

,

and

N =

 1∫
η

a (s) γ (s)G (1, s) ds

−1

, and γ (s) ∈ (0, 1) .

Then the boundary value problem (1.1) − (1.2) has at least three positive solutions
u1, u2 and u3 such that

‖u1‖ < d, l < β (u2) , u3 > d with β (u3) < l.

Proof. Let β (u) = min
t∈[η,1]

|u (t)|. Then β (u) is nonnegative continuous concave func-

tional on the cone K satisfying β (u) ≤ ‖u‖ for all u ∈ K.

Let u ∈ K̄c, then ‖u‖ ≤ c. It follows from (H5) and Lemma 2.10 (iii) that

|Tu (t)| =

∣∣∣∣∣∣
1∫

0

G (t, s) a (s) f (s, u (s)) ds

∣∣∣∣∣∣
≤Mc

1∫
0

G (1, s) a (s) ds = c,

which implies that ‖Tu‖ ≤ c, which shows that Tu ∈ Kc. Hence, we have shown
that if (H5) holds, then T maps Kc into Kc and by Lemma 3.1, T is completely
continuous.

If u ∈ Kd, then it follows from (H4) and Lemma 2.10 (iii) that

(Tu) (t) =

1∫
0

G (t, s) a (s) f (s, u (s)) ds

< Md

1∫
0

G (1, s) a (s) ds = d.
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We verify that {u/K (β, l, r) : β (u) > l } 6= φ and β (Tu) > l for all u ∈ K (β, l, r).
Take ϕ0 (t) = l+r

2 , for t ∈ [0, 1]. Then

ϕ0 ∈ {u/u ∈ K (β, l, r) , β (u) > l} .

This shows that

{u/u ∈ K (β, l, r) : β (u) > l } 6= φ.

Finally, we assert that if u ∈ K (β, l, c) and ‖Tu‖ > c, then β (Tu) > l.

Suppose u ∈ K (β, l, c) and ‖u (t)‖ > r, t ∈ [η, 1], then ‖u‖ < c. It follows from (H6)
that

β (Tu) = min
t∈[η,1]

(Tu) (t)

≥ min
t∈[η,1]

1∫
0

G (t, s) a (s) f (s, u (s)) ds

> Nl

1∫
η

G (1, s) a (s) γ (s) ds = l,

which implies that β (Tu) > l for u ∈ K (β, l, c).

To sum up, the hypotheses of Theorem 2.6 hold. Therefore, boundary value problem
(1.1)− (1.2) has at least three positive solutions u1, u2 and u3 such that

‖u1‖ < d, l < β (u2) , u3 > d with β (u3) < l.

The proof is complete. �

We present two examples to illustrate the applicability of the results shown before.

Example 3.8. Consider the following boundary value problem

D
7
2

0+u (t) +
1

(t+ cos t+ 3)
2

(
sin2 t+ arctan (u) +

|u|
1 + |u|

)
= 0, t ∈ (0, 1) , (3.9)

u (0) = u′ (0) = u′′ (0) = 0, D
5
2u (1) =

1

2
I

5
2

0+u

(
1

2

)
, (3.10)

where α = 7
2 , β = 5

2 , λ = 1
2 , η = 1

2 and

f (t, u) =
1

(t+ cos t+ 3)
2

(
sin2 t+ arctan (u) +

|u|
1 + |u|

)
.

Clearly l = 2
9 as |f (t, u)− f (t, v)| ≤ 2

9 |u− v|.
We take a (t) = 1. A simple calculation leads to P ∼= 1, 32620.
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Furthermore, by simple computation, we have

1

M
=

1∫
0

a (s)G (1, s) ds

=
Γ (α) Γ (α+ β)

∫ 1

0
ds− PΓ (α− β) Γ (α+ β)

∫ 1

0
(1− s)

5
2 ds

PΓ (α) Γ (α− β) Γ (α+ β)

+
Γ (α) Γ (α+ β)

∫ 1

η
(1− s) ds

PΓ (α) Γ (α− β) Γ (α+ β)
∼= 0, 27303,

so,

0 < l

1∫
0

a (s)G (1, s) ds ≤ 2

9
(0, 27303) ∼= 0, 060673 < 1.

Thus all assumptions of Theorem 3.2 are satisfied. So, by the conclusion of Theorem
3.2, problem (3.9)− (3.10) has a unique solution on [0, 1].

Example 3.9. Consider the following boundary value problem

D
7
2

0+u (t) + f (t, u (t)) = 0, t ∈ (0, 1) , (3.11)

u (0) = u′ (0) = u′′ (0) = 0, D
5
2u (1) =

1

2
I

5
2

0+u

(
1

2

)
, (3.12)

where α = 7
2 , β = 5

2 , λ = 1
2 , η = 1

2 , and here

f (t, u) =

{
10u+ t, (t, u) ∈ [0, 1]× [0, 1] ,

10, (t, u) ∈ [0, 1]× (1,+∞) .

We take a (t) = 1. We see that f ∈ C ([0, 1]× [0,∞) , [0,∞)), so, assumption (H1)
satisfied. And

0 <

1∫
0

a (s) (1− s)α−β−1
sα−1ds =

1∫
0

(1− s) s 5
2 ds =

4

63
<∞,

so, assumption (H2) satisfied.
By simple calculation, we obtain P ∼= 1, 32620, M ∼= 3, 66264 and N ∼= 7218, 14758.
Choosing, d = 1

4 , l = 1 and c = 3, we have

f (t, u) = 10u+ t ≤ 3.5 < Md ∼= 14, 65056, (t, u) ∈ [0, 1]×
[
0,

1

4

]
,

f (t, u) = 10 ≤Ml ∼= 10, 98792, (t, u) ∈ [0, 1]× (1, 3] ,

and

f (t, u) = 10 ≥ Nr ∼= 9, 00765, (t, u) ∈
[

1

2
, 1

]
× (1, 3] .

Thus, all assumptions and conditions of Theorem 3.7 are satisfied. Hence Theorem
3.7, implies that the problem (3.11)− (3.12) has at least three solutions u1, u2 and u3

such that
‖u1‖ < d, l < β (u2) , u3 > d with β (u3) < l.
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Mathematics, Informatics, Physics, 10(59)(2017), no. 2, 31-48.

[4] Bouteraa, N., Benaicha, S., Existence of solutions for three-point boundary value problem
for nonlinear fractional equations, An. Univ. Oradea, Fasc. Mat., 24(2017), no. 2, 109-
119.

[5] Bouteraa, N., Benaicha, S., Djourdem, H., Positive solutions for nonlinear fractional
equation with nonlocal boundary conditions, Universal Journal of Mathematics and Ap-
plications, 1(2018), no. 1, 39-45.

[6] Bouteraa, N., Benaicha, S., The uniqueness of positive solution for higher-order nonlin-
ear fractional differential equation with nonlocal boundary conditions, Advances in the
Theory of Nonlinear and it Application, 2(2018), no. 2, 74-84.

[7] Bouteraa, N., Benaicha, S., The uniqueness of positive solution for nonlinear fractional
differential equation with nonlocal boundary conditions, An. Univ. Oradea, Fasc. Mat.,
24(2018), no. 2, 53-65.

[8] Cabada, A., Wang, G., Positive solutions of nonlinear fractional differential equations
with integral boundary conditions, J. Math. Anal. Appl., 389(2012), no. 1, 403-411.

[9] Han, X.L., Gao, H.L., Existence of positive solutions for eigenvalue problem of nonlinear
fractional differential equations, Adv. Differ. Equ., 66(2012).

[10] Kilbas, A.A., Srivastava, H.M., Trijullo, J.J., Theory and Applications of Fractional
Differential Equations, Elsevier Science, Amsterdam, 2006.

[11] Lakshmikantham, V., Vatsala, A.S., General uniqueness and monotone iterative tech-
nique for fractional differential equations, Appl. Math. Lett., 21(8)(2008), 828-834.

[12] Li, C.F., Luo, X.N., Zhou, Y., Existence of positive solutions of the boundary value
problem for nonlinear fractional differential equations, Comput. Math. Appl., 59(2010),
1363-1375.

[13] Liu, F., Burrage, K., Novel techniques in parameter estimation for fractional dynamycal
models arising from biological systems, Comput. Math. Appl., 62(2011), no. 3, 822-833.

[14] Liu, S., Li, H., Dai, Q., Nonlinear fractional differential equations with nonlocal integral
boundary conditions, Bound. Value. Prob., (2015), 11 pages.

[15] Miller, S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differen-
tial Equations, John Wiley and Sons, Inc. New York, 1993.

[16] Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional Integrals and Derivatives: Theory
and Applications, Gordon & Breach, Yverdon, 1993.

[17] Sun, Y., Zhao, M., Positive solutions for a class of fractional differential equations with
integral boundary conditions, Appl. Math. Lett., 34(2014), 17-21.

[18] Tan, J., Cheng, C., Fractional boundary value problems with Riemann-Liouville frac-
tional derivatives, Bound. Value Probl., (2015), 14 pages.

[19] Xu, Y.F., Fractional boundary value problems with integral and anti-periodic boundary
conditions, Bull. Malays. Math. Sci. Soc., 39(2016), 571-587.



380 Noureddine Bouteraa and Slimane Benaicha

[20] Zeidler, E., Nonlinear Functional Analysis and its Applications. Fixed-Point Theorem,
Springer, Berlin, 1985.

[21] Zhai, C., Hoo, M., Fixed point theorem for mixed monotone operators with perturbation
and applications to fractional differential equation boundary value problems, Nonlinear
Anal. TMA, 75(2012), 2542-2551.

[22] Zhang, X, Wang, L., Sun, Q., Existence of positive solutions for a class of nonlinear
fractional differential equations with integral boundary conditions and a parameter, Appl.
Math. Comput., 226(2014), 708-718.

Noureddine Bouteraa
Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO),
University of Oran1, Ahmed Benbella,
Algeria
e-mail: bouteraa-27@hotmail.fr

Slimane Benaicha
Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO),
University of Oran1, Ahmed Benbella,
Algeria
e-mail: slimanebenaicha@yahoo.fr


