Korovkin type theorem in the space $\tilde{C}_{b}[0, \infty)$

Zoltán Finta

Dedicated to Professor Gheorghe Coman on the occasion of his 80th anniversary

Abstract

A Korovkin type theorem is established in the space $\tilde{C}_{b}[0, \infty)$ of all uniformly continuous and bounded functions on $[0, \infty)$ for a sequence of positive linear operators, the approximation error being estimated with the aid of the usual modulus of continuity. As applications we obtain quantitative results for q-Baskakov operators.

Mathematics Subject Classification (2010): 41A36, 41A25.
Keywords: Korovkin theorem, modulus of continuity, K-functional, q-integers, q-Baskakov operators.

1. Introduction

The well-known Korovkin's theorem ensures the convergence of sequences of positive linear operators to the identity operator in the strong operator topology. For $C[0,1]$ the Banach space of all continuous functions f on $[0,1]$ equipped with the norm $\|f\|=\sup \{|f(x)|: x \in[0,1]\}$, and for the test-functions $e_{i}(x)=x^{i}$, $x \in[0,1], i \in\{0,1,2\}$, Korovkin's theorem is the following (see [5, p. 8]): let $\left(L_{n}\right)_{n \geq 1}$ be a sequence of positive linear operators such that $L_{n}: C[0,1] \rightarrow C[0,1]$. Then $\left\|L_{n} f-f\right\| \rightarrow 0$ as $n \rightarrow \infty$ for all $f \in C[0,1]$ if and only if $\left\|L_{n} e_{i}-e_{i}\right\| \rightarrow 0$ as $n \rightarrow \infty$ for $i \in\{0,1,2\}$. Specifically we recover Weierstrass' approximation theorem if we choose for L_{n} the Bernstein operators $B_{n}: C[0,1] \rightarrow C[0,1]$ defined by

$$
\begin{equation*}
\left(B_{n} f\right)(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f\left(\frac{k}{n}\right) \tag{1.1}
\end{equation*}
$$

The so-called q-Bernstein operators were introduced by Phillips [12], and they are generalization of (1.1) based on q-integers. To present these operators we recall some notions of the q-calculus (see e.g. [11]). Let $q>0$. For each non-negative integer n,
the q-integers $[n]_{q}$ and the q-factorials $[n]_{q}$! are defined by

$$
[n]_{q}=\left\{\begin{array}{rrr}
1+q+\ldots+q^{n-1}, & \text { if } & n \geq 1 \\
0, & \text { if } & n=0
\end{array}\right.
$$

and

$$
[n]_{q}!=\left\{\begin{array}{rll}
{[1]_{q}[2]_{q} \ldots[n]_{q},} & \text { if } & n \geq 1 \\
1, & \text { if } & n=0
\end{array}\right.
$$

For integers $0 \leq k \leq n$, the q-binomial coefficients are defined by

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} .
$$

Then the q-Bernstein operators $B_{n, q}: C[0,1] \rightarrow C[0,1]$ are introduced as

$$
\left(B_{n, q} f\right)(x)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{1.2}\\
k
\end{array}\right]_{q} x^{k}(1-x)(1-q x) \ldots\left(1-q^{n-k-1} x\right) f\left(\frac{[k]_{q}}{[n]_{q}}\right) .
$$

For $q=1$, we recover the operators (1.1). If $0<q<1$, then $B_{n, q}$ are positive linear operators. However, they do not satisfy the conditions of Korovkin's theorem, because $\left(B_{n, q} e_{0}\right)(x)=1,\left(B_{n, q} e_{1}\right)(x)=x$ and

$$
\left(B_{n, q} e_{2}\right)(x)=x^{2}+\frac{1}{[n]_{q}} x(1-x) \rightarrow x^{2}+(1-q) x(1-x) \neq x^{2}
$$

as $n \rightarrow \infty$ (see [12, pp. 513-514]). The investigation of convergence of operators (1.2) for $0<q<1$ fixed has resulted in the discovery of a Korovkin type theorem in $C[0,1]$ due to Wang [14]. Applying Wang's result to (1.2), there exists a limit operator $B_{\infty, q}$ on $C[0,1]$ such that $\left(B_{n, q} f\right)_{n \geq 1}$ converges to $B_{\infty, q} f$ uniformly on $[0,1]$ as $n \rightarrow \infty$. The operator $B_{\infty, q}$ was introduced by Il'inskii and Ostrovska [10], and it is called the limit q-Bernstein operator. Furthermore, in [6] and [7], we established new Korovkin type theorems for parameter depending sequences of operators defined on $C[0,1]$; these results are different from Wang's result.

On the other hand, in [8] and [9], Korovkin type theorems are studied in weighted spaces, showing that the direct analogue of Korovkin's theorem is not valid in spaces of functions defined on the semi-axis $[0, \infty)$ or on the whole real line, but under additional conditions can be obtained analogous theorem to Korovkin's theorem. Let φ be a strictly increasing continuous function on $[0, \infty)$ such that $\lim _{x \rightarrow \infty} \varphi(x)=+\infty$ and $\rho(x)=\left(1+\varphi^{2}(x)\right)^{-1}, x \geq 0$. Further, let $B_{\rho}[0, \infty)$ be the set of all functions f satisfying the condition $\rho(x)|f(x)| \leq M_{f}$ for $x \geq 0$, where M_{f} is a positive constant depending only on f. We denote by $C_{\rho}[0, \infty)$ the space $C[0, \infty) \cap B_{\rho}[0, \infty)$ with the norm $\|f\|_{\rho}=\sup \{\rho(x)|f(x)|: x \geq 0\}$, and $C_{\rho}^{*}[0, \infty)=\left\{f \in C_{\rho}[0, \infty): \lim _{x \rightarrow \infty} \rho(x)|f(x)|<\infty\right\}$. Gadjiev was the first in noticing the relevance of the spaces $C_{\rho}^{*}[0, \infty)$ in proving Korovkin type theorems. We have the following result [8]: let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of positive linear operators acting from $C_{\rho}[0, \infty)$ to $B_{\rho}[0, \infty)$ satisfying the conditions $\lim _{n \rightarrow \infty}\left\|A_{n} \varphi^{i}-\varphi^{i}\right\|_{\rho}=0$ for $i \in\{0,1,2\}$. Then $\lim _{n \rightarrow \infty}\left\|A_{n} f-f\right\|_{\rho}=0$ for any $f \in C_{\rho}^{*}[0, \infty)$.

In what follows, let $C_{b}[0, \infty)$ be the space of all continuous and bounded functions f on $[0, \infty)$, equipped with the norm $\|f\|=\sup \{|f(x)|: x \geq 0\}$. Further, we set $\tilde{C}_{b}[0, \infty)=\left\{f \in C_{b}[0, \infty): f\right.$ is uniformly continuous on $\left.[0, \infty)\right\}$. We consider the function $\rho \in C_{b}[0, \infty)$ such that $\rho(x)>0$ for all $x \geq 0$, and the space $C_{\rho}[0, \infty)=\{f \in$ $C[0, \infty): \rho f$ is bounded on $[0, \infty)\}$ equipped with the norm $\|f\|_{\rho}=\sup \{\rho(x)|f(x)|$: $x \geq 0\}$. Obviously $C_{\rho}[0, \infty)$ is a Banach space, and for $\rho(x)=1, x \geq 0$, we have $C_{\rho}[0, \infty)=C_{b}[0, \infty)$. The goal of the paper is to establish a Korovkin type theorem for a sequence of positive linear operators $\left(L_{n}\right)_{n \geq 1}$, where $L_{n}: \tilde{C}_{b}[0, \infty) \rightarrow C_{\rho}[0, \infty)$ and $\left(L_{n}\right)_{n \geq 1}$ converges to its limit operator $L_{\infty}: \tilde{C}_{b}[0, \infty) \rightarrow C_{\rho}[0, \infty)$, which is not necessarily the identity operator. The approximation error $\left\|L_{n} f-L_{\infty} f\right\|_{\rho}$ will be estimated with the aid of the usual modulus of continuity of $f \in \tilde{C}_{b}[0, \infty)$ defined by

$$
\begin{equation*}
\omega(f ; \delta)=\sup \{|f(x)-f(y)|: x, y \in[0, \infty),|x-y| \leq \delta\}, \quad \delta>0 \tag{1.3}
\end{equation*}
$$

As applications we obtain quantitative estimates for some q-Baskakov operators.

2. Main result

For $W=\left\{g \in C_{b}[0, \infty): g^{\prime} \in C_{b}[0, \infty)\right\}, f \in C_{b}[0, \infty)$ and $\delta>0$, the K functional defined by $K(f ; \delta)=\inf \left\{\|f-g\|+\delta\left\|g^{\prime}\right\|: g \in W\right\}$ and the modulus of continuity (1.3) are equivalent (see [5, p. 177, Theorem 2.4]), i.e. there exists $C>0$ such that

$$
\begin{equation*}
C^{-1} \omega(f ; \delta) \leq K(f ; \delta) \leq C \omega(f ; \delta) \tag{2.1}
\end{equation*}
$$

Throughout this paper C denotes positive constant independent of n and x, but not necessarily the same in different cases.

The next theorem is our Korovkin type theorem.
Theorem 2.1. Let $\left(L_{n}\right)_{n \geq 1}, L_{n}: \tilde{C}_{b}[0, \infty) \rightarrow C_{\rho}[0, \infty)$ be a sequence of positive linear operators, and let $\left(\alpha_{n}\right)_{n \geq 1}$ be a positive sequence with $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$. If the sequence $\left(\beta_{n}\right)_{n \geq 1}$ satisfies the conditions
(i) $\beta_{n}+\beta_{n+1}+\ldots+\beta_{n+p-1} \leq C \alpha_{n}$ for all $n, p \geq 1$,
(ii) $\left\|L_{n} g-L_{n+1} g\right\|_{\rho} \leq C \beta_{n}\left\|g^{\prime}\right\|$ for all $g \in W$ and $n \geq 1$,
then there exists a positive linear operator $L_{\infty}: \tilde{C}_{b}[0, \infty) \rightarrow C_{\rho}[0, \infty)$ such that $\| L_{n} f-$ $L_{\infty} f \|_{\rho} \rightarrow 0$ as $n \rightarrow \infty$, where $f \in \tilde{C}_{b}[0, \infty)$ is arbitrary. Moreover

$$
\begin{equation*}
\left\|L_{n} f-L_{\infty} f\right\|_{\rho} \leq c \omega\left(f ; \alpha_{n}\right) \tag{2.2}
\end{equation*}
$$

for all $f \in \tilde{C}_{b}[0, \infty)$ and $n \geq 1 ; c$ is a constant depending only on $\left\|L_{1} e_{0}\right\|_{\rho}$.
Proof. By (i) and (ii), we have

$$
\begin{align*}
\left\|L_{n} g-L_{n+p} g\right\|_{\rho} \leq & \left\|L_{n} g-L_{n+1} g\right\|_{\rho}+\left\|L_{n+1} g-L_{n+2} g\right\|_{\rho}+\ldots \\
& +\left\|L_{n+p-1} g-L_{n+p} g\right\|_{\rho} \\
\leq & C\left(\beta_{n}+\beta_{n+1}+\ldots+\beta_{n+p-1}\right)\left\|g^{\prime}\right\| \\
\leq & C \alpha_{n}\left\|g^{\prime}\right\| \tag{2.3}
\end{align*}
$$

for all $g \in W$ and $n, p \geq 1$. Because $e_{0} \in W$, we find, in view of (2.3), that $L_{n} e_{0}=$ $L_{n+p} e_{0}$ for $n, p \geq 1$. Hence

$$
\begin{equation*}
L_{n} e_{0}=L_{1} e_{0} \tag{2.4}
\end{equation*}
$$

for all $n \geq 1$. Further, $e_{0} \in \tilde{C}_{b}[0, \infty)$ implies that $L_{1} e_{0} \in C_{\rho}[0, \infty)$, i.e.

$$
\begin{equation*}
\left\|L_{1} e_{0}\right\|_{\rho}<\infty \tag{2.5}
\end{equation*}
$$

Taking into account that L_{n} are positive linear operators and (2.4) is satisfied, we obtain

$$
\begin{aligned}
\rho(x)\left|\left(L_{n} f\right)(x)\right| & \equiv \rho(x)\left|L_{n}(f, x)\right| \leq \rho(x) L_{n}(|f|, x) \leq \rho(x) L_{n}\left(\|f\| e_{0}, x\right) \\
& =\rho(x)\|f\| L_{n}\left(e_{0}, x\right)=\rho(x)\|f\|\left(L_{n} e_{0}\right)(x) \\
& =\rho(x)\|f\|\left(L_{1} e_{0}\right)(x)
\end{aligned}
$$

where $f \in \tilde{C}_{b}[0, \infty)$ and $x \in[0, \infty)$. Hence, by (2.5),

$$
\begin{equation*}
\left\|L_{n} f\right\|_{\rho} \leq\left\|L_{1} e_{0}\right\|_{\rho}\|f\| \tag{2.6}
\end{equation*}
$$

for every $f \in \tilde{C}_{b}[0, \infty)$. Using (2.3) and (2.6), we find for arbitrary $g \in W$ that

$$
\begin{aligned}
\left\|L_{n} f-L_{n+p} f\right\|_{\rho} \leq & \left\|L_{n} f-L_{n} g\right\|_{\rho}+\left\|L_{n} g-L_{n+p} g\right\|_{\rho} \\
& +\left\|L_{n+p} g-L_{n+p} f\right\|_{\rho} \\
\leq & 2\left\|L_{1} e_{0}\right\|_{\rho}\|f-g\|+C \alpha_{n}\left\|g^{\prime}\right\| \\
\leq & \max \left\{2\left\|L_{1} e_{0}\right\|_{\rho}, C\right\}\left\{\|f-g\|+\alpha_{n}\left\|g^{\prime}\right\|\right\}
\end{aligned}
$$

Taking the infimum on the right hand side over all $g \in W$, we get

$$
\left\|L_{n} f-L_{n+p} f\right\|_{\rho} \leq \max \left\{2\left\|L_{1} e_{0}\right\|_{\rho}, C\right\} K\left(f ; \alpha_{n}\right)
$$

Hence, by (2.1),

$$
\begin{equation*}
\left\|L_{n} f-L_{n+p} f\right\|_{\rho} \leq c \omega\left(f ; \alpha_{n}\right) \tag{2.7}
\end{equation*}
$$

where c depends on $\left\|L_{1} e_{0}\right\|_{\rho}$. Further, for $f \in \tilde{C}_{b}[0, \infty)$ and $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$, we have $\omega\left(f ; \alpha_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus, by (2.7), we obtain that $\left(L_{n} f\right)_{n \geq 1}$ is a Cauchy sequence in the Banach space $C_{\rho}[0, \infty)$. Therefore there exists an operator L_{∞} on $\tilde{C}_{b}[0, \infty)$ such that $\left\|L_{n} f-L_{\infty} f\right\|_{\rho} \rightarrow 0$ for every $f \in \tilde{C}_{b}[0, \infty)$. This also implies that L_{∞} is a positive linear operator on $\tilde{C}_{b}[0, \infty)$, because $L_{n}: \tilde{C}_{b}[0, \infty) \rightarrow C_{\rho}[0, \infty)$ are positive linear operators, $n \geq 1$. Now let $p \rightarrow \infty$ in (2.7), then we obtain the estimation (2.2), which completes the proof of the theorem.

3. Applications

In what follows we shall use the following notation:

$$
(z ; q)_{n}=(1-z)(1-q z) \ldots\left(1-q^{n-1} z\right)
$$

where z is a real number, $0<q<1$ and $n=1,2, \ldots$ Then

$$
\left(\frac{q^{2} x}{1+x} ; q\right)_{n}=\left(1-\frac{q^{2} x}{1+x}\right)\left(1-\frac{q^{3} x}{1+x}\right) \ldots\left(1-\frac{q^{n+1} x}{1+x}\right)
$$

and

$$
(-q x ; q)_{n+k}=(1+q x)\left(1+q^{2} x\right) \ldots\left(1+q^{n+k} x\right)
$$

for $x \geq 0$ and $k=0,1,2, \ldots$
In [2], Aral and Gupta introduced the operators $B_{n, q}^{*}: C_{b}[0, \infty) \rightarrow C[0, \infty)$, where $n=1,2, \ldots$ and $0<q<1$, given by

$$
\left(B_{n, q}^{*} f\right)(x)=\left(\frac{q^{2} x}{1+x} ; q\right) \sum_{n} \sum_{k=0}^{\infty} f\left(\frac{[k]_{q}}{q^{k+1}[n]_{q}}\right)\left[\begin{array}{c}
n+k-1 \tag{3.1}\\
k
\end{array}\right]_{q}\left(\frac{q^{2} x}{1+x}\right)^{k}
$$

In [13], C. Radu defined the operators $V_{n, q}^{*}: C_{b}[0, \infty) \rightarrow C[0, \infty)$,

$$
\left(V_{n, q}^{*} f\right)(x)=\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \tag{3.2}\\
k
\end{array}\right]_{q} q^{k(k-1) / 2} \frac{(q x)^{k}}{(-q x ; q)_{n+k}} f\left(\frac{[k]_{q}}{[n]_{q} q^{k-1}}\right)
$$

where $n=1,2, \ldots$ and $0<q<1$ (see also $[3,(2.1)]$). When $q=1$, the operators $B_{n, q}^{*}$ and $V_{n, q}^{*}$ become the classical Baskakov operator [4].

For (3.1) we compute the difference $\left(B_{n, q}^{*} g\right)(x)-\left(B_{n+1, q}^{*} g\right)(x)$, where $g \in W$ and $x \geq 0$. We have

$$
\begin{aligned}
&\left(B_{n, q}^{*} g\right)(x)-\left(B_{n+1, q}^{*} g\right)(x) \\
&=\left(\frac{q^{2} x}{1+x} ; q\right)_{n} \sum_{k=0}^{\infty} g\left(\frac{[k]_{q}}{q^{k+1}[n]_{q}}\right)\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{q}\left(\frac{q^{2} x}{1+x}\right)^{k} \\
&-\left(\frac{q^{2} x}{1+x} ; q\right)_{n+1} \sum_{k=0}^{\infty} g\left(\frac{[k]_{q}}{q^{k+1}[n+1]_{q}}\right)\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}\left(\frac{q^{2} x}{1+x}\right)^{k} \\
&=\left(\frac{q^{2} x}{1+x} ; q\right)_{n} \sum_{k=0}^{\infty}\left\{g\left(\frac{[k]_{q}}{q^{k+1}[n]_{q}}\right)\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{q}\right. \\
&\left.-\frac{1+x\left(1-q^{n+2}\right)}{1+x} g\left(\frac{[k]_{q}}{q^{k+1}[n+1]_{q}}\right)\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}\right\}\left(\frac{q^{2} x}{1+x}\right)^{k} \\
&=\left(\frac{q^{2} x}{1+x} ; q\right)_{n} \sum_{k=1}^{\infty}\left\{g\left(\frac{[k]_{q}}{q^{k+1}[n]_{q}}\right)\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{q}\right. \\
&\left.-g\left(\frac{[k]_{q}}{q^{k+1}[n+1]_{q}}\right)\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}\right\}\left(\frac{q^{2} x}{1+x}\right)^{k}+\left(\frac{q^{2} x}{1+x} ; q\right)_{n} \\
& \times \sum_{k=0}^{\infty}\left(1-\frac{1+x\left(1-q^{n+2}\right)}{1+x}\right)_{g}\left(\frac{[k]_{q}}{q^{k+1}[n+1]_{q}}\right)\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}\left(\frac{q^{2} x}{1+x}\right)^{k} \\
&=\left(\frac{q^{2} x}{1+x} ; q\right)_{n} \sum_{k=0}^{\infty}\left\{g\left(\frac{[k+1]_{q}}{q^{k+2}[n]_{q}}\right)\left[\begin{array}{c}
n+k \\
k+1
\end{array}\right]_{q}-g\left(\frac{[k+1]_{q}}{q^{k+2}[n+1]_{q}}\right)\right. \\
&\left.\times\left[\begin{array}{r}
n+k+1 \\
k+1
\end{array}\right]_{q}+g\left(\frac{[k]_{q}}{q^{k+1}[n+1]_{q}}\right)\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q} q^{n}\right\}\left(\frac{q^{2} x}{1+x}\right)^{k+1}
\end{aligned}
$$

$$
\begin{aligned}
= & \left(\frac{q^{2} x}{1+x} ; q\right)_{n} \sum_{k=0}^{\infty}\left\{\left[\begin{array}{c}
n+k \\
k+1
\end{array}\right]_{q}\left(g\left(\frac{[k+1]_{q}}{q^{k+2}[n]_{q}}\right)-g\left(\frac{[k+1]_{q}}{q^{k+2}[n+1]_{q}}\right)\right)\right. \\
& \left.+q^{n}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}\left(g\left(\frac{[k]_{q}}{q^{k+1}[n+1]_{q}}\right)-g\left(\frac{[k+1]_{q}}{q^{k+2}[n+1]_{q}}\right)\right)\right\}\left(\frac{q^{2} x}{1+x}\right)^{k+1} \\
= & \left(\frac{q^{2} x}{1+x} ; q\right)_{n} \sum_{k=0}^{\infty}\left\{\left[\begin{array}{c}
n+k \\
k+1
\end{array}\right]_{q} \int_{[k+1]_{q} / q^{k+2}[n+1]_{q}}^{[k+1]_{q} / q^{k+2}[n]_{q}} g^{\prime}(u) d u\right. \\
& \left.+q^{n}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q} \int_{[k+1]_{q} / q^{k+2}[n+1]_{q}}^{[k]_{q} / q^{k+1}[n+1]_{q}} g^{\prime}(u) d u\right\}\left(\frac{q^{2} x}{1+x}\right)^{k+1},
\end{aligned}
$$

where we have used

$$
\left[\begin{array}{c}
n+k \\
k+1
\end{array}\right]_{q}+q^{n}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}=\left[\begin{array}{c}
n+k+1 \\
k+1
\end{array}\right]_{q} .
$$

Hence

$$
\begin{align*}
& \left|\left(B_{n, q}^{*} g\right)(x)-\left(B_{n+1, q}^{*} g\right)(x)\right| \\
& \quad \leq \quad\left(\frac{q^{2} x}{1+x} ; q\right)_{n} \sum_{k=0}^{\infty}\left\{\left[\begin{array}{c}
n+k \\
k+1
\end{array}\right]_{q}\left|\frac{[k+1]_{q}}{q^{k+2}[n]_{q}}-\frac{[k+1]_{q}}{q^{k+2}[n+1]_{q}}\right|\right. \\
& \left.\quad+q^{n}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}\left|\frac{[k]_{q}}{q^{k+1}[n+1]_{q}}-\frac{[k+1]_{q}}{q^{k+2}[n+1]_{q}}\right|\right\}\left(\frac{q^{2} x}{1+x}\right)^{k+1}\left\|g^{\prime}\right\| \\
& = \\
& =2\left\|g^{\prime}\right\|\left(\frac{q^{2} x}{1+x} ; q\right)_{n} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q} \frac{q^{n}}{[n+1]_{q}} \frac{1}{q^{k+2}}\left(\frac{q^{2} x}{1+x}\right)^{k+1} \tag{3.3}\\
& = \\
& \\
& \quad \frac{2 q^{n-1}}{[n+1]_{q}}\left\|g^{\prime}\right\|\left(\frac{q^{2} x}{1+x} ; q\right)_{n} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}\left(\frac{q x}{1+x}\right)^{k+1} .
\end{align*}
$$

Because (see [1, p. 420])

$$
\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{q} z^{k}=(1-z)^{-1}(1-q z)^{-1} \ldots\left(1-q^{n-1} z\right)^{-1}, \quad|z|<1
$$

we have, by (3.3),

$$
\begin{align*}
\mid\left(B_{n, q}^{*} g\right)(x) & -\left(B_{n+1, q}^{*} g\right)(x) \mid \\
\leq & \frac{2 q^{n-1}}{[n+1]_{q}}\left\|g^{\prime}\right\|\left(1-\frac{q^{2} x}{1+x}\right)\left(1-\frac{q^{3} x}{1+x}\right) \ldots\left(1-\frac{q^{n+1} x}{1+x}\right) \\
& \times \frac{q x}{1+x}\left(1-\frac{q x}{1+x}\right)^{-1}\left(1-\frac{q^{2} x}{1+x}\right)^{-1} \ldots\left(1-\frac{q^{n+1} x}{1+x}\right)^{-1} \\
= & \frac{2 q^{n-1}}{[n+1]_{q}}\left\|g^{\prime}\right\| \frac{q x}{1+x} \frac{1+x}{1+x(1-q)} \\
\leq & \frac{2 q^{n-1}}{[n+1]_{q}}\left\|g^{\prime}\right\| \frac{q}{1-q}=\frac{2 q^{n}}{1-q^{n+1}}\left\|g^{\prime}\right\| . \tag{3.4}
\end{align*}
$$

We set $\beta_{n}=q^{n} /\left(1-q^{n+1}\right), n=1,2, \ldots$ Then

$$
\begin{align*}
\beta_{n}+\beta_{n+1}+\ldots+\beta_{n+p-1} & =\frac{q^{n}}{1-q^{n+1}}+\frac{q^{n+1}}{1-q^{n+2}}+\ldots+\frac{q^{n+p-1}}{1-q^{n+p}} \\
& \leq \frac{q^{n}}{1-q^{n+1}}\left(1+q+\ldots+q^{p-1}\right) \\
& \leq \frac{q^{n}}{(1-q)\left(1-q^{n+1}\right)} \tag{3.5}
\end{align*}
$$

for all $n, p=1,2, \ldots$ Due to (3.4) and (3.5), we can apply Theorem 2.1 (case $\rho(x)=1$, $x \geq 0)$ with $\alpha_{n}=q^{n} /(1-q)\left(1-q^{n+1}\right), n=1,2, \ldots$ Thus we obtain the following

Theorem 3.1. For the operators $B_{n, q}^{*}$ defined by (3.1) and $q \in(0,1)$ given, there exists a positive linear operator $B_{\infty, q}^{*}: \tilde{C}_{b}[0, \infty) \rightarrow C_{b}[0, \infty)$ such that

$$
\left\|B_{n, q}^{*} f-B_{\infty, q}^{*} f\right\| \leq C \omega\left(f ; q^{n} /(1-q)\left(1-q^{n+1}\right)\right)
$$

for all $f \in \tilde{C}_{b}[0, \infty)$ and $n=1,2, \ldots$
Here C is independent of $\left\|B_{1, q}^{*} e_{0}\right\|$, because $B_{n, q}^{*} e_{0}=e_{0}$ (see [2, Lemma 2]) implies that $\left\|B_{n, q}^{*} f\right\| \leq\|f\|, f \in \tilde{C}_{b}[0, \infty)$. This justifies that $B_{n, q}^{*} f \in C_{b}[0, \infty)$ for $f \in \tilde{C}_{b}[0, \infty)$.

Now we shall study the sequence $\left(V_{n, q}^{*}\right)_{n \geq 1}$ defined by (3.2). In the same way as above, we obtain the following representation for $\left(V_{n, q}^{*} g\right)(x)-\left(V_{n+1, q}^{*} g\right)(x)$, where $g \in W$ and $x \geq 0$:

$$
\begin{aligned}
\left(V_{n, q}^{*} g\right)(x) & -\left(V_{n+1, q}^{*} g\right)(x) \\
= & \sum_{k=0}^{\infty} q^{k(k+1) / 2} \frac{(q x)^{k+1}}{(-q x ; q)_{n+k+1}}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}\left\{q^{n} g\left(\frac{[k]_{q}}{[n+1]_{q} q^{k-1}}\right)\right. \\
& \left.-\frac{[n+k+1]_{q}}{[k+1]_{q}} g\left(\frac{[k+1]_{q}}{[n+1]_{q} q^{k}}\right)+\frac{[n]_{q}}{[k+1]_{q}} g\left(\frac{[k+1]_{q}}{[n]_{q} q^{k}}\right)\right\}
\end{aligned}
$$

(see also [3, Theorem 6]). Hence, by $[n+k+1]_{q}=[n]_{q}+q^{n}[k+1]_{q}$, we get

$$
\begin{aligned}
&\left(V_{n, q}^{*} g\right)(x)-\left(V_{n+1, q}^{*} g\right)(x) \\
&= \sum_{k=0}^{\infty} q^{k(k+1) / 2} \frac{(q x)^{k+1}}{(-q x ; q)_{n+k+1}}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}\left\{q ^ { n } \left(g\left(\frac{[k]_{q}}{[n+1]_{q} q^{k-1}}\right)\right.\right. \\
&\left.\left.-g\left(\frac{[k+1]_{q}}{[n+1]_{q} q^{k}}\right)\right)+\frac{[n]_{q}}{[k+1]_{q}}\left(g\left(\frac{[k+1]_{q}}{[n]_{q} q^{k}}\right)-g\left(\frac{[k+1]_{q}}{[n+1]_{q} q^{k}}\right)\right)\right\} \\
&= \sum_{k=0}^{\infty} q^{k(k+1) / 2} \frac{(q x)^{k+1}}{(-q x ; q)_{n+k+1}}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}\left\{q^{n} \int_{[k+1]_{q} /[n+1]_{q} q^{k}}^{[k]_{q} /[n+1]_{q} q^{k-1}} g^{\prime}(u) d u\right. \\
&\left.\quad+\frac{[n]_{q}}{[k+1]_{q}} \int_{[k+1]_{q} /[n+1]_{q} q^{k}}^{[k+1]_{q} /[n]_{q} q^{k}} g^{\prime}(u) d u\right\} .
\end{aligned}
$$

Then

$$
\begin{align*}
& \left|\left(V_{n, q}^{*} g\right)(x)-\left(V_{n+1, q}^{*} g\right)(x)\right| \\
& \leq \sum_{k=0}^{\infty} q^{k(k+1) / 2} \frac{(q x)^{k+1}}{(-q x ; q)_{n+k+1}}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}\left\{q^{n}\left|\frac{[k]_{q}}{[n+1]_{q} q^{k-1}}-\frac{[k+1]_{q}}{[n+1]_{q} q^{k}}\right|\right. \\
& \left.\quad+\frac{[n]_{q}}{[k+1]_{q}}\left|\frac{[k+1]_{q}}{[n]_{q} q^{k}}-\frac{[k+1]_{q}}{[n+1]_{q} q^{k}}\right|\right\}\left\|g^{\prime}\right\| \\
& =\frac{2 q^{n}}{[n+1]_{q}}\left\|g^{\prime}\right\| \sum_{k=0}^{\infty} q^{k(k-1) / 2} \frac{(q x)^{k+1}}{(-q x ; q)_{n+k+1}}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q} . \tag{3.6}
\end{align*}
$$

Because of [13, Remark 4], we have

$$
\left(V_{n+1, q}^{*} e_{0}\right)(x)=\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q} q^{k(k-1) / 2} \frac{(q x)^{k}}{(-q x ; q)_{n+k+1}}=1
$$

Therefore, by (3.6), we obtain

$$
\left|\left(V_{n, q}^{*} g\right)(x)-\left(V_{n+1, q}^{*} g\right)(x)\right| \leq \frac{2 q^{n+1} x}{[n+1]_{q}}\left\|g^{\prime}\right\|
$$

or

$$
\frac{1}{1+q x}\left|\left(V_{n, q}^{*} g\right)(x)-\left(V_{n+1, q}^{*} g\right)(x)\right| \leq \frac{2 q^{n}}{[n+1]_{q}}\left\|g^{\prime}\right\|
$$

With the notation $\rho(x)=1 /(1+q x), x \geq 0$, we have

$$
\begin{equation*}
\left\|V_{n, q}^{*} g-V_{n+1, q}^{*} g\right\|_{\rho} \leq \frac{2 q^{n}}{[n+1]_{q}}\left\|g^{\prime}\right\| . \tag{3.7}
\end{equation*}
$$

Now we set $\beta_{n}=q^{n} /[n+1]_{q}, n=1,2, \ldots$ Then

$$
\begin{align*}
\beta_{n}+\beta_{n+1}+\ldots+\beta_{n+p-1} & \leq \frac{q^{n}}{[n+1]_{q}}\left(1+q+\ldots+q^{p-1}\right) \\
& \leq \frac{q^{n}}{1-q^{n+1}} \tag{3.8}
\end{align*}
$$

for all $n, p=1,2, \ldots$ Due to (3.7) and (3.8), we can apply Theorem 2.1 with $\alpha_{n}=q^{n} /\left(1-q^{n+1}\right), n=1,2, \ldots$ In conclusion we obtain the following
Theorem 3.2. For the operators $V_{n, q}^{*}$ defined by (3.2), $q \in(0,1)$ given and $\rho(x)=$ $1 /(1+q x), x \geq 0$, there exists a positive linear operator $V_{\infty, q}^{*}: \tilde{C}_{b}[0, \infty) \rightarrow C_{\rho}[0, \infty)$ such that

$$
\left\|V_{n, q}^{*} f-V_{\infty, q}^{*} f\right\|_{\rho} \leq C \omega\left(f ; q^{n} /\left(1-q^{n+1}\right)\right)
$$

for all $f \in \tilde{C}_{b}[0, \infty)$ and $n=1,2, \ldots$
The constant C is independent of $\left\|V_{1, q}^{*} e_{0}\right\|_{\rho}$, because

$$
\begin{aligned}
\left\|V_{n, q}^{*} f\right\|_{\rho} & =\sup \left\{\rho(x)\left|\left(V_{n, q}^{*} f\right)(x)\right|: x \geq 0\right\} \leq \sup \left\{\left|\left(V_{n, q}^{*} f\right)(x)\right|: x \geq 0\right\} \\
& \leq\|f\| \sup \left\{\left(V_{n, q}^{*} e_{0}\right)(x): x \geq 0\right\}=\|f\| \sup \left\{e_{0}(x): x \geq 0\right\}=\|f\|,
\end{aligned}
$$

where $f \in \tilde{C}_{b}[0, \infty)$ (see [13, Remark 4]).

$$
\text { Korovkin type theorem in the space } \tilde{C}_{b}[0, \infty)
$$

References

[1] Andrews, G.E., Askey, R., Roy, R., Special Functions, Cambridge Univ. Press, Cambridge, 1999.
[2] Aral, A., Gupta, V., On q-Baskakov type operators, Demonstratio Math., 42(2009), no. 1, 107-120.
[3] Aral, A., Gupta, V., Generalized q-Baskakov operators, Math. Slovaca, 61(2011), no. 4, 619-634.
[4] Baskakov, V.A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR, 113(1957), 249-251 (in Russian).
[5] DeVore, R.A., Lorentz, G.G., Constructive Approximation, Springer, Berlin, 1993.
[6] Finta, Z., Note on a Korovkin-type theorem, J. Math. Anal. Appl., 415(2014), 750-759.
[7] Finta, Z., Korovkin type theorem for sequences of operators depending on a parameter, Demonstratio Math., 48(2015), no. 3, 381-403.
[8] Gadjiev, A.D., A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P.P. Korovkin's theorem, Dokl. Akad. Nauk SSSR, 218(1974), 1001-1004 (in Russian); English translation: Soviet Math. Dokl., 15(1974), no. 5, 1433-1436.
[9] Gadjiev, A.D., Theorems of the type of P.P. Korovkin's theorems, Mat. Zametki, 20(1976), no. 5, 781-786 (in Russian); English translation: Soviet Math. Dokl., 20(1976), no. 5-6, 995-998.
[10] Il'inskii, A., Ostrovska, S., Convergence of generalized Bernstein polynomials, J. Approx. Theory, 116(2002), 100-112.
[11] Kac, V., Cheung, P., Quantum Calculus, Springer, New York, 2002.
[12] Phillips, G.M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4(1997), 511-518.
[13] Radu, C., On statistical approximation of a general class of positive linear operators extended in q-calculus, Appl. Math. Comput., 215(2009), 2317-2325.
[14] Wang, H., Korovkin-type theorem and application, J. Approx. Theory, 132(2005), 258264.

Zoltán Finta
Babeş-Bolyai University
Faculty of Mathematics and Computer Sciences
1, Kogălniceanu Street
400084 Cluj-Napoca, Romania
e-mail: fzoltan@math.ubbcluj.ro

