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Constructing large self-small modules

George Ciprian Modoi

Abstract. We give a method for constructing (possible large) self-small modules
via some special homomorphisms of rings, called here weak epimorphisms.
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Various kinds of smallness appear naturally in the study of situations in which
the covariant or contravariant hom functor induces an equivalence, respectively a
duality between some categories of modules. For example Morita theory says that
if R is an arbitrary ring, P is a progenerator in the category Mod-R of right R-
modules and E = EndR(P ) is its endomorphism ring, then the functor HomR(P,−) :
Mod-R → Mod-E is an equivalence, with the inverse the tensor product − ⊗E P .
In these conditions, P has to be small, that is HomR(P,−) has to commute with
arbitrary direct sums.

The smallness notion can be generalized in various ways, by imposing some
restrictions to the class of direct sums which the covariant hom functor has to com-
mute. In this note we deal with the following generalization: A self-small R-module is
a module M such that HomR(M,M (I)) ∼= Hom(M,M)(I), naturally for every set I.
Self-small abelian groups (that is, Z-modules) were introduced by Arnold an Murley
in [2]. The relevance of the study of self-small abelian groups is justified by many
papers (see, for example, [1] and the references therein).

In this note we want to construct a module which is self-small but it is large in
some sense. More precisely, we want this self-small module to be not small. Because
finitely generated modules are always small, the modules we are looking for have to
be infinitely generated. The method is inspired by the construction of the abelian
group of p-adic integers Jp, where p is a prime. In this case, Jp is uncountable, that
is its cardinality is also larger than the cardinality of the ring of integers Z.

Note that another way of constructing large self-small modules can be found in
[8]. More precisely, from [8, Example 2.7] we learn that the direct product

∏
p Z/p

is self-small, but the direct sum
⊕

p Z/p is not, where p runs over all primes and

Z/n = Z/nZ for every n ∈ N. More generally, for a ring R let denote by SR a
representative set of simple modules. Then in [8, Theorem 2.5 and Corollary 1.3] we
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find some sufficient conditions for the direct product
∏
S∈SR S to be, respectively to

be not self-small.
In what follows we consider two rings with one R and J , and we denote by Mod-R

and Mod-J the respective categories of modules (which by default are left modules).
Let ϕ : R → J a unitary ring homomorphism. Thus J has a natural structure of
R − R-bimodule and ϕ induces a pair of adjoint functors (the restriction and the
induction of the scalars):

ϕ∗ = HomJ(J,−) : Mod-J � Mod-R : (J ⊗R −) = ϕ∗.

The restriction functor ϕ∗ acts as follows: ϕ∗(M) = M and ax = ϕ(a)x for all J-
modules M and all x ∈ M and a ∈ R. Henceforth it is obviously faithful, since it
sends a J-linear map in itself, but seen as R-linear.

Recall that ϕ is called an epimorphism of rings, if for every two parallel homo-
morphisms of rings ψ, ζ : J → J ′ we have

ψ · ϕ = ζ · ϕ⇒ ψ = ζ.

By [7, Ch. XI, Proposition 1.2] this happens exactly if ϕ∗ is full too, therefore if we
have HomR(M,N) ∼= HomJ(M,N) for all M,N ∈ Mod-J . Inspired by this, we call ϕ
weak epimorphism if HomR(J, J) ∼= HomJ(J, J), that is HomR(J, J) ∼= J .

Proposition 1. If ϕ : R → J is a weak epimorphism of rings, then J is self-small as
R-module.

Proof. Let I be a set and denote by πi : J (I) → J the projection of the coproduct
of copies of J into its i-th component (i ∈ I). If f : J → J (I) is an arbitrary R-
linear map, then πif : J → J is R-linear for all i ∈ I. According to our hypothesis
it is J-linear too, therefore it is determined by πif(1) ∈ J . Because πif(1) 6= 0
only for a finite number of i’s, we conclude that πIf = 0 for almost all i ∈ I,
hence f factors through a finite subcoprodct of J (I), what is the same as saying that
HomR

(
J, J (I)

) ∼= Hom(J, J)(I). �

Since epimorphisms of rings are obviously weak epimorphisms too we obtain:

Corollary 2. If ϕ : R → J is an epimorphism of rings, then the R-module J is
self-small.

Example 3. The inclusion Z → Q is known to be an epimorphism of rings, namely
one which is not surjective. Therefore Corollary 2 above gives us a new proof that the
abelian group Q is self-small.

In the sequel we assume that the ring R is commutative. Thus Mod-R coincide
to the category of right R-modules, and HomR(M,N) is an R-module for all M,N ∈
Mod-R. In Mod-R consider an ascending chain of submodules

(DS) Z1
µ1→ Z2

µ2→ Z3 → . . . ,

of the module

Z∞ = lim
→
Zn = lim

→
(Z1

µ1→ Z2
µ2→ Z3 → . . .) =

⋃
Zn,
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the morphisms µn being inclusions. Relative to the above chain consider the following
conditions:

(1) All modules Zm are finitely presented.
(2) HomR(Zm, Zn) ∼= Zm naturally, for all 1 ≤ m ≤ n.
(3) The R-module Z∞ is injective relative to all exact sequences

0→ Zm
µn→ Zm+1 → Zm+1/Zm → 0,

with m ≥ 1.
(4) Z1 is simple, and denote by U the annihilator of Z1 in R, that is U is a maximal

ideal in R and there is a short exact sequence

0→ U → R→ Z1 → 0.

Moreover assume that Zm+1U = Zn, for all m ∈ N∗.
(5) Zm ⊗R Z1

∼= Z1 naturally, for all m ∈ N∗.
Note that the condition (3) is automatically satisfied, if we know that the R-

module Z∞ is injective. On the other hand we can replace (3) with a condition relative
to the direct system (DS), rather than relative to its direct limit Z∞, as in the the
following:

(3’) The R-module Zn is injective relative to all exact sequences

0→ Zm
µn→ Zm+1 → Zm+1/Zm → 0,

with 1 ≤ m < n.

Lemma 4. If (1) and (3’) are satisfied then (3) holds too.

Proof. The condition (3’) implies that the induced homomorphism

HomR(Zm+1, Zn)→ HomR(Zm, Zn)

is surjective for all 1 ≤ m < n. The condition (1) says that all Zi, i ≥ 1 are finitely
generated, and this means the functors HomR(Zi,−) commute with direct limits as we
can see from [7, Ch. V, Proposition 3.4]. We deduce that the induced homomorphism

HomR(Zm+1, Z∞) ∼= lim
→

HomR(Zm+1, Zn)

→ lim
→

HomR(Zm, Zn) ∼= HomR(Zm, Z∞)

is also surjective, therefore (3) holds. �

Lemma 5. If (1) and (2) hold, we have for all m ≥ 1 a natural isomorphism:

HomR(Zm, Z∞) ∼= Zm.

Proof. Using again the property that HomR(Zi,−) commutes with direct limits, for
all i ≥ 1, we get:

HomR(Zm, Z∞) = HomR(Zm, lim→
Zn) ∼= lim

→
HomR(Zm, Zn) ∼= Zm,

where the last isomorphisms follows from the fact that (2) implies that the direct
system {HomR(Zm, Zn)}n≥1 looks like

HomR(Z1, Zm)→ . . .→ HomR(Zm−1, Zm)→ Zm
=→ Zm

=→ Zm
=→ . . . ,
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that is it has a cofinal constant subsystem. �

Assume that (1) and (2) hold. For all n ≥ 1, we denote δn the composed homo-
morphism

Zn+1

∼=→ HomR(Zn+1, Z∞)
(µn)∗→ HomR(Zn, Z∞)

∼=→ Zn,

where the isomorphisms are coming from Lemma 5. We obtain an inverse system of
R-modules

(IS) Z1
δ1← Z2

δ2← Z3 ← . . .

Let now denote J = EndR(Z∞). Thus J is naturally an R-algebra, and let ϕ : R→ J
denote the structure homomorphism of this algebra.

Lemma 6. If (1) and (2) hold, we have a natural isomorphism in Mod-R:

J ∼= lim
←
Zn = lim

←
(Z1

δ1← Z2
δ2← Z3 ← . . .).

Proof. The chain of isomorphisms (the last one coming from Lemma 5)

J = HomR(Z∞, Z∞) ∼= HomR(lim
→
Zn, Z∞) ∼= lim

←
HomR(Zn, Z∞) ∼= lim

←
Zn.

proves our lemma. �

For the inverse system (IS) we denote δjj = 1Zj
and δji = δj . . . δi, for all

1 ≤ j ≤ i. With these notations, the inverse system is called Mittag-Leffler if for each
k ≥ 1 there is j > k such that Im(δki) = Im(δkj) for all j ≤ i. In particular this is
always true, provided that the homomorphisms δi are surjective, for all i ≥ 1.

Lemma 7. If (1), (2) and (3) hold, then the inverse system (IS) is Mittag-Leffler.

Proof. The homomorphism (µn)∗ is surjective by (3), so the same property is true for
δn, and the conclusion follows. �

From now on, we assume that all conditions (1)-(5) hold.

Lemma 8. We have Zn+m/Zm ∼= Zn for all n,m ∈ N∗.

Proof. First we will show that Zn+1/Zn ∼= Z1 for all n ∈ N∗. Indeed, applying the
functor Zn+1⊗R− to the short exact sequence 0→ U → R→ Z1 → 0, keeping in the
mind that Zn = Zn+1U is the image of the map Zn+1 ⊗R U → Zn+1 ⊗R R and using
condition (5) for the isomorphism in the last vertical arrow, we get a commutative
diagram with exact rows

Zn+1 ⊗R U //

��

Zn+1 ⊗R R //

∼=
��

Zn+1 ⊗R Z1
//

∼=
��

0

0 // Zn // Zn+1
// Z1

// 0

which proves our claim.
Fix n ∈ N∗ and proceed by induction on m. For m = 1, we apply the func-

tor HomR(−, Z∞) to the exact sequence from the second row of the last diagram.
According to (3), we get an exact sequence too, which by Lemma 5 looks like:

0→ Z1 → Zn+1 → Zn → 0,
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proving our desired isomorphism Zn+1/Z1
∼= Zn.

Suppose now that Zn+m/Zn ∼= Zm. Then construct the diagram having exact
rows and columns (the exactness of the rows is shown in the first part of this proof, the
induction hypothesis gives exactness of the first column, and for the second column
it is obvious):

0

��

0

��
0 // Zm

��

// Zm+1

��

// Z1
// 0

0 // Zn+m

��

// Zn+m+1

��

// Z1
// 0

Zn

��

Zn+m+1/Zm+1

��
0 0

Now the Ker-Coker lemma gives us the isomorphism Zn+m+1/Zm+1
∼= Zn. �

Remark 9. Puttig together above lemmas, we deduce that for all n,m ∈ N∗ we have
the short exact sequences

0→ Zn → Zn+m → Zm → 0 and 0→ Zn → Zn+m → Zm → 0

and the functor HomR(−, Z∞) sends them to each other.

Lemma 10. There is a short exact sequence

0→ J
u→ J → Z1 → 0

such that Imu = UJ .

Proof. Consider the diagram with exact columns:

0

��

0

��

0

��
0

��

Z1
oo

��

Z2
oo

��

· · ·oo

Z1

��

Z2
oo

��

Z3
oo

��

· · ·oo

Z1

��

Z1
=oo

��

Z1
=oo

��

· · ·oo

0 0 0
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Note that the involved inverse systems are Mittag Leffler by Lemma 7, therefore the
their inverse limits are exact by [4, Theorem 5]. Therefore the inverse limit gives us
the desired short exact sequence.
By its construction the homomorphism u acts as follows: for all (x1, x2, x3, . . .) ∈ J
(that is (x1, x2, x3, . . .) ∈

∏
n≥1 Zn such that δn(xn+1) = xn, for all n) we have

u(x1, x2, x3, . . .) = (0, x1, x2, . . .), so UZn+1 = Zn, for all n ≥ 1 implies UJ = Imu.
�

Lemma 11. The following sentences hold:

(a) For all n ≥ 1 we have Zn ⊗R J ∼= Zn as (left) J-modules.
(b) For all n ≥ 1 we have HomR(J, Zn) ∼= Zn as R-modules.

Proof. Note first that Zn ∼= HomR(Zn, Z∞) is a left J = EndR(Z∞)-module.
(a). We proceed by induction on n. For n = 1 we apply the functor Z1 ⊗R −

to the short exact sequence 0 → UJ → J → Z1 → 0 coming from Lemma 10. Since
U is the annihilator of Z1 we deduce Z1 ⊗R UJ = 0, so we get an isomorphism

Z1 ⊗R J
∼=→ Z1 ⊗R Z1, so Z1 ⊗R J ∼= Z1.

Now suppose Zn ⊗R J ∼= Zn. Starting from the short exact sequence 0→ Zn →
Zn+1 → Z1 → 0 given by Lemma 8) we construct the commutative diagram with
exact rows:

Zn ⊗R J //

∼=
��

Zn+1 ⊗R J //

��

Z1 ⊗R J //

∼=
��

0

0 // Zn // Zn+1
// Z1

// 0

whose vertical maps are obtained from the natural homomorphism

−⊗R J ∼= HomJ(J,−)⊗R J = ϕ∗ · ϕ∗ → 1Mod-J ,

the last arrow coming from the adjunction. Then the middle vertical arrow is an
isomorphism too, proving the conclusion.

(b). Using first the (proof of the) point (a), and second the adjunction isomor-
phism we obtain an isomorphism of R-modules

HomJ(Zn, Zn) ∼= HomJ((ϕ∗ · ϕ∗)(Zn), Zn)

∼= HomR(ϕ∗(Zn), ϕ∗(Zn)) = HomR(Zn, Zn) ∼= Zn.

Combining it with the adjunction isomorphism between the functors

HomJ(Zn,−) : Mod- � Mod-R : Zn ⊗R −
and the isomorphism of part (a) we get the isomorphisms of R-modules:

HomR(J, Zn) ∼= HomR(J,HomJ(Zn, Zn))

∼= HomJ(Zn ⊗R J, Zn) ∼= HomJ(Zn, Zn) ∼= Zn

concluding the proof. �

Theorem 12. With the notations above, if all conditions (1)-(5) are true, then
ϕ : R→ J is a weak epimorphism of rings. Consequently J is a self-small R-module.
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Proof. Using the isomorphism from the point (b) of Lemma 11 we get

HomR(J, J) = HomR(J, lim
←
Zn) ∼= lim

←
HomR(J, Zn) ∼= lim

←
Zn ∼= J,

therefore the ring homomorphism ϕ : R → J is a weak epimorphism. Then J is
self-small as R-module, by Proposition 1. �

Example 13. Let R = Z and let p be a prime. The direct system

Z/p1 → Z/p2 → Z/p3 → . . . ,

whose direct limit is the cocyclic abelian group Z/p∞, satisfies the conditions
(1)-(5). Thus Theorem 12 gives a proof that the group of p-adic integers Jp =
HomZ(Z/p∞,Z/p∞) is self-small (for details, see also [5]).

Example 14. Let R be a Dedekind ring, and let m be a maximal ideal. Put Zi = R/mi,
for all i ≥ 1. Then S = Z1 is a simple R-module, and modules Zi are indecomposable,
uniserial, with the composition series of the form

0 ⊆ Z1 ⊆ . . . ⊆ Zi−1 ⊆ Zi
whose factors are all isomorphic to S. Moreover for every i ≥ 1 there is an exact
sequence

0→ S → Zi+1 → Zi → 0.

For more details concerning these modules we refer to [6, 1.4]. Then we obtain a direct
system (DS) satisfying the conditions (1)-(5), so its inverse limit, the so called m-adic
module, J = lim

←
R/mi is self-small as R-module.
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