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”Homogeneous” second order differential
equation: zeros separation principles

Ioan A. Rus

Abstract. In this paper we study the following problems:

Problem 1. Let I ⊂ R be an open interval and F : R3 × I → R be a continuous
function with, F (0, 0, 0, x) = 0, for all x ∈ I. We consider the following differential
equations

F (y′′, y′, y, x) = 0. (0.1)

Let y ∈ C2(I) be a nontrivial solution of (0.1). In which conditions we have that:
(1) the zeros of y and y′ separate each other?
(2) the zeros of y and y′′ separate each other?
(3) the zeros of y′ and y′′ separate each other?

Problem 2. Let y1, y2 ∈ C2(I) be two linearly independent solutions of (0.1).
In which conditions we have that:

(1) the zeros of y1 and y2 separate each other?
(2) the zeros of y′

1 and y′
2 separate each other?

(3) the zeros of y′′
1 and y′′

2 separate each other?

Problem 3. Let F,G : R3×I→R be two continuous functions with F (0, 0, 0, x)=0,
G(0, 0, 0, x) = 0, for all x ∈ I. We consider the following system of differential
equations,

F (y′, y, z, x) = 0,

G(z′, y, z, x) = 0.
(0.2)

Let (y, z) ∈ C1(I,R2) be a nontrivial solution of (0.2). In which conditions we
have that:

(1) the zeros of y and z separate each other?
(2) the zeros of y′ and z′ separate each other?

Problem 4. Let (y1, z1) and (y2, z2) be two linearly independent solutions of (0.2).
In which conditions we have that:

(1) the zeros of y1 and y2 separate each other?
(2) the zeros of z1 and z2 separate each other?
(3) the zeros of y′

1 and y′
2 separate each other?

(4) the zeros of z′1 and z′2 separate each other?

Some other problems are formulated.
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1. Introduction and Preliminaries

Let I ⊂ R be an open interval (bounded or not!) of R. For a function y : I → R
we denote by Zy the zero set of y.

Definition 1.1. The zeros of two functions y1, y2 ∈ C(I) separate each other iff:

(1) Zy1
∩ Zy2

= ∅;
(2) all zeros of y1 and y2 are simple;
(3) if x1 and x2 are two consecutive zeros of y1, then y2 has one zero in ]x1, x2[, and

if x1, x2 are two consecutive zeros of y2, then y1 has one zero in ]x1, x2[.

The following results are well known:

Wronskian Lemma (1962; [49], [54], [8]). Let y1, y2 ∈ C1(I) be two functions. If

W (y1, y2)(x) :=

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ (x) 6= 0, for all x ∈ I,

then the zeros of y1 and y2 separate each other.

Tonelli Lemma (1963; [50], [63], [39], [28]). Let y1, y2 ∈ C1[a, b] be such that

(1) y1(a) = y1(b) = 0 and y1(x) > 0, for all x ∈]a, b[;
(2) y2(x) > 0, for all x ∈ [a, b].

Then there exist x0 ∈]a, b[ and λ > 0 such that:

(i) y2(x0) = λy1(x0);
(ii) y′2(x0) = λy′1(x0).

Let F,G : R3 × I → R be two continuous functions with F (0, 0, 0, x) = 0,
G(0, 0, 0, x) = 0, for all x ∈ I. We consider the following differential equation

F (y′′, y′, y, x) = 0 (1.1)

and the following differential system

F (y′, y, z, x) = 0

G(z′, y, z, x) = 0
(1.2)

There are many results for the zeros of the solutions y ∈ C2(I) of (1.1) and of the
components y and z of the solutions (y, z) ∈ C1(I,R2) of (1.2) (see the books: [57],
[58], [24], [25], [47], [61], [2], [4], [6], [10], [13], [15], [22], [23], [26], [27], [30], [31], [32],



”Homogeneous” second order differential equation 247

[34], [35], [40], [41], [45], [55], [62], [64], [68], [17], . . . and articles: [1], [3], [5], [7], [8],
[14], [16]-[21], [28], [37], [39], [42], [43], [48]-[54], [63], . . . ).

In this paper we present new results, new proofs for some known results by tech-
niques of real function theory: Bolzano Theorem, Rolle Theorem, Wronskian Lemma
and Tonelli Lemma. Some research directions are also presented.

The structure of our paper is as follows:
2. Zeros separation of some real functions
3. Linear and homogeneous second order differential equations
4. Nonlinear equations in a normal form
5. Homogeneous nonlinear second order differential equations
6. Some research directions

2. Zeros Separation of Some Real Functions

Let I ⊂ R be an open interval and y, z ∈ C(I) (or y, z ∈ C(I,R2)) be linearly
independent functions. We denote by H(y, z) the linear hull of {y, z} over R. We have:

Theorem 2.1 (Wronskian separation principle for scalar functions). Let y, z ∈ C1(I)
be two functions. We suppose that, W (y, z)(x) 6= 0, for all x ∈ I. Let u, v ∈ H(y, z)
be two linearly independent functions. Then the zeros of u, v separate each other.

Proof. Since W (y, z)(x) 6= 0, for all x ∈ I, implies that W (u, v)(x) 6= 0, for all x ∈ I,
the proof follows from the Wronskian Lemma. �

Theorem 2.2 (Wronskian separation theorem for vectorial functions). Let y, z ∈
C(I,R2) be two vectorial functions. We suppose that:

(1) W (y, z)(x) :=

∣∣∣∣y1 y2
z1 z2

∣∣∣∣ (x) 6= 0, for all x ∈ I.

(2) The zeros of y1 and y2, and z1 and z2 separate each other.

Then the zeros of y1 and z1, and y2 and z2 separate each other. Moreover, if the zero
of each two linearly independent element of H(y1, y2) and of H(z1, z2) separate each
other, then if u ∈ H(y, z) is a nontrivial element, the zeros of u1 and u2 separate each
other.

Proof. First of all we prove that the zeros of y1 and y2, and z1 and z2 separate
each other. Let us prove this property for y1 and z1. Let, for example, x1, x2 ∈
Zy1 be two consecutive zeros. Then, from W (y, z)(x) 6= 0, for all x ∈ I, it follows
that sgn y2(x1)z1(x1) = sgn y2(x2)z1(x2). But y2(x1)y2(x2) < 0. So, from Bolzano
Theorem, Zz1∩]x1, x2[6= 0. Now, let us prove the second part of the conclusions of the
theorem. Let v ∈ H(y, z) be such that the functions u, v are linearly independent.
Then, W (y, z)(x) 6= 0, for all x ∈ I, implies that W (u, v)(x) 6= 0, for all x ∈ I. The
proof follows from the first part of conclusions of the theorem. �

Remark 2.3. From Theorem 2.1 and Theorem 2.2 it follows the following result:

Theorem 2.4. Let y, z ∈ C1(I) be as in Theorem 2.1. If the zeros of y′ and z′ separate
each other, then the zeros of y and y′, and z and z′ separate each other.
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3. Linear and Homogeneous Second Order Differential Equations

In this section we present some well known results in the zero separation theory
for linear and homogeneous second order differential equations as consequence of
Wronskian Lemma and Wronskian Theorems.

For p, q, pi, qi ∈ C(I), i = 1, 2, we consider the differential equation

y′′ + py′ + qy = 0 (3.1)

and the system of differential equations

y′ + p1y + q1z = 0

z′ + p2y + q2z = 0
(3.2)

The basic results in zero separation theory for (3.1) and (3.2) are the following.

Theorem 3.1. Let y, z be two linearly independent solutions of (3.1). Then we have:

(i) (Sturm) The zeros of y and z separate each other.
(ii) (Butlewski [12]) If q(x) 6= 0, for all x ∈ I, then the zeros of y′ and z′ separate

each other.
(iii) (Butlewski [12]) If p, q ∈ C1(I) and [q2 + p′q− q′p](x) 6= 0 for all x ∈ I, then the

zeros of y′′ and z′′ separate each other.

Proof. (i). Follows from Wronskian Lemma.
(ii). Since, W (y′, z′) = qW (y, z), the proof follows from Wronskian Lemma.
(iii). Since,W (y′′, z′′) = (q2+p′q−pq′)W (y, z), the proof follows from Wronskian

Lemma. �

Theorem 3.2 (Nicolescu [42] and Butlewski [12]). Let y be a nontrivial solution of
(3.1). We have:

(i) If q(x) 6= 0, for all x ∈ I, then the zeros of y and y′ separate each other.
(ii) If p, q ∈ C1(I), p(x) 6= 0 and [q2 + p′q− pq′](x) 6= 0, for all x ∈ I, then the zeros

of y and y′′ separate each other.
(iii) If p, q ∈ C1(I), q(x) 6= 0 and [q2 + p′q− q′p](x) 6= 0, for all x ∈ I, then the zeros

of y′ and y′′ separate each other.

Proof. Let u, v be two linearly independent solutions of (3.1). Then y ∈ H(u, v).
(i). Since W (u, v)(x) 6= 0 and W (u′, v′)(x) 6= 0, for all x ∈ I, by Theorem 3.1,

the zeros of u, v, and u′ and v′ separate each other. Now the proof follows from
Remark 3.5.

(ii)+(iii). The proof follows from Theorem 3.1 and Theorem 2.2. �

Theorem 3.3 (Nicolescu [42] and Butlewski [12]). Let (y1, z1) and (y2, z2) be two
linearly independent solutions of (3.2). Then we have:

(i) If q1(x) 6= 0, for all x ∈ I, then the zeros of y1 and y2 separate each other.
(ii) If p2(x) 6= 0, for all x ∈ I, then the zeros of z1 and z2 separate each other.

(iii) If p1, q1 ∈ C1(I) and q1(p1q2 − p2q1)(x) + (q1p
′
1 − p1q′1)(x) 6= 0, for all x ∈ I,

then the zeros of y′1 and y′2 separate each other.
(iv) If p2, q2 ∈ C1(I) and p2(p1q2 − p2q1)(x) + (p2q

′
2 − q2p′2)(x) 6= 0, for all x ∈ I,

then the zeros of z′1 and z′2 separate each other.
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Proof. (i). W (y1, y2)(x) = −q1W ((y1, z1), (y2, z2))(x) 6= 0, for all x ∈ I. The proof
follows from Wronskian Lemma.

(ii). W (z1, z2)(x) = p2W ((y1, z1), (y2, z2))(x) 6= 0, for all x ∈ I. The proof
follows from Wronskian Lemma.

(iii). W (y′1, y
′
2) = [q1(p1q2 − p2q1) + q1p

′
1 − p1q′1](x) W ((y1, z1), (y2, z2))(x) 6= 0,

for all x ∈ I. The proof follows from Wronskian Lemma.
(iv). W (z′1, z

′
2) = [p2(p1q2 − p2q1) + p2q

′
2 − q2p′2](x) W ((y1, z1), (y2, z2))(x) 6= 0,

for all x ∈ I. The proof follows from Wronskian Lemma. �

Theorem 3.4. Let (y, z) be a nontrivial solution of (3.2). Then we have:

(i) (Nicolescu) If q1(x) 6= 0 and p2(x) 6= 0, for all x ∈ I, then the zeros of y and z
separate each other.

(ii) (Butlewski) If pi, qi ∈ C1(I), i = 1, 2, (p1q2 − p2q1)(x) 6= 0, [q1(p1q2 − p2q1) +
q1p
′
1 − p1q′1](x) 6= 0 and [p2(p1q2 − p2q1) + p2q

′
2 − q2p′2](x) 6= 0, for all x ∈ I,

then the zeros of y′ and z′ separate each other.

Proof. Let (y1, z1) and (y2, z2) be two linearly independent solutions of (3.2). Then,
(y, z) ∈ H((y1, z1), (y2, z2)).

(i). Since, W ((y1, z1), (y2, z2))(x) 6= 0, for all x ∈ I, the proof follows from
Theorem 3.3 and Theorem 2.2.

(ii). Since,W ((y′1, z
′
1), (y′2, z

′
2))(x) = (p1q2−p2q1)(x)W ((y1, z1), (y2, z2))(x) 6= 0,

for all x ∈ I, the proof follows from Theorem 3.3 and Theorem 2.1. �

Remark 3.5. Let us consider the quasilinear equation

y′′ + p(y′, y, x)y′ + q(y′, y, x)y = 0 (3.3)

and the quasilinear system

y′ + p1(y, z, x)y + q1(y, z, x)z = 0

z′ + p2(y, z, x)y + q2(y, z, x)z = 0
(3.4)

From the Theorem 3.2 and Theorem 3.4 we have the following results:

Theorem 3.6. We suppose that:

(1) p, q ∈ C(R2 × I).
(2) q(t) 6= 0, for all t ∈ R2 × I.

If y ∈ C2(I) is a nontrivial solution of (3.3), then the zeros of y and y′ separate each
other.

Proof. We remark that y is a solution of the following linear equation

u′′ + p(y′, y, x)u′ + q(y′, y, x)u = 0. �

Theorem 3.7. We suppose that:

(1) pi, qi ∈ C(R2 × I), i = 1, 2.
(2) q1(t) 6= 0, p2(t) 6= 0, for all t ∈ R2 × I.

If (y, z) ∈ C1(I,R2) is a nontrivial solution of (3.4), then the zeros of y and z separate
each other.
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Proof. We remark that (y, z) is a solution of the following linear system

u′ + p1(y, z, x)u+ q1(y, z, x)v = 0,

v′ + p2(y, z, x)u+ q2(y, z, x)v = 0.
(3.5)

�

Remark 3.8. For similar results, as above, using linearization principle, see [52].

4. Nonlinear Equations in a Normal Form

For f, p, q ∈ C(R2 × I) with, f(0, 0, x) = 0, p(0, 0, x) = 0 and q(0, 0, x) = 0, for
all x ∈ I, we consider the following equation

y′′ + f(y′, y, x) = 0 (4.1)

and the following system,

y′ + p(y, z, x) = 0,

z′ + q(y, z, x) = 0.
(4.2)

In this case we have the following results.

Theorem 4.1. We suppose that:

(1) For all x ∈ I, sgn f(0, t, x) = sgn t, for all t ∈ R or sgn f(0, t, x) = −sgn t,
for all t ∈ R.

(2) All Cauchy problems for (4.1) have at most a solution.

In this conditions if y is a nontrivial solution of (4.1), then the zeros of y and y′

separate each other.

Proof. First of all we remark that, in the conditions of our theorem, the zeros of y
and y′ are all simple. Now, let x1, x2 ∈ I be two consecutive zeros of y′. For example,
for the first part of (1), we have that,

sgn y′′(xi) = −sgn y(xi), i = 1, 2.

But y′′(x1)y′′(x2) < 0. from this we have that y(x1)y(x2) < 0. Now the proof follows
from Bolzano Theorem. �

Example 4.2 (see [1]). Let us consider the following nonlinear equation

y′′ + y′2 + ety3 = 0, t ∈ R+.

This equation satisfies the condition in Theorem 4.1. So, if y ∈ C2(R+) is a solution
of this equation, then the zeros of y and y′ separate each other.

A similar result we have for the equation (see [57])

y′′ + a|y′|y′ + by = 0, a, b ∈ R∗+.

In a similar way we have,

Theorem 4.3. We suppose that:
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(1) For all x ∈ I, sgn p(0, t, x) = sgn t, for all t ∈ R and sgn q(t, 0, x) = sgn t, for
all t ∈ R+.

(2) All Cauchy problems for (4.2) have at most a solution.

Then, if (y, z) ∈ C1(I,R2) is a solution of (4.2), then the zeros of y and z separate
each other.

5. Homogeneous Nonlinear Second Order Differential Equations

Let F,G ∈ C(R3×I) be two functions with F (0, 0, 0, x) = 0 and G(0, 0, 0, x) = 0,
for all x ∈ I. We consider the following differential equation

F (y′′, y′, y, x) = 0 (5.1)

and the following system of differential equations

F (y′, y, z, x) = 0,

G(z′, y, z, x) = 0.
(5.2)

We have the following results:

Theorem 5.1 (Tonelli [63]; see also [50] and [37]). We suppose that:

(1) For each x ∈ I, the function, F (·, ·, ·, x) : R3 → R is a homogeneous function.
(2) All Cauchy problems for (5.1) have at most a solution.

In this conditions, if y1 and y2 are two linearly independent solutions of (5.1), then
the zeros of y1 and y2 separate each other.

Proof. First we remark that, y = 0 is a solution of (5.1). If y is a nontrivial solution
of (5.1), then the zeros of y are simple and if y1 and y2 are two solutions such that
Zy1
∩ Zy2

6= ∅, then y1 and y2 are linearly dependent. Now let y1 and y2 be two
linearly independent solutions. Let for example x1, x2 ∈ Zy1

be two consecutive
zeros. If Zy2

∩]x1, x2[= ∅, then, y2(x) 6= 0, for all x ∈ [x1, x2]. Since if y is a solution
then, −y is also a solution, we can suppose that: y1(x) > 0, for all x ∈]x1, x2[ and
y2(x) > 0, for all x ∈ [x1, x2]. Now the proof follows from Tonelli Lemma. �

Theorem 5.2 (Tonelli [63]; see also [28]). We suppose that:

(1) For each x ∈ I, F (·, ·, ·, x) : R3 → R is a homogeneous function.
(2) If y1 and y2 are solutions of (5.1) and for some x0 ∈ I, y1(x0) = y2(x0) > 0

and y′1(x0) = y′2(x0), then, y1 = y2.

In these conditions, if y1 and y2 are two linearly independent solutions of (5.1) then:

(i) if x1, x2 ∈ I are two consecutive zeros of y1, then Zy2
∩ [x1, x2] 6= ∅;

(ii) if x1, x2 ∈ I are two consecutive zeros of y2, then Zy1
∩ [x1, x2] 6= ∅.

Proof. The proof follows from Tonelli Lemma. �

Theorem 5.3 (see [28]). We suppose that:

(1) For each x ∈ I, F (·, ·, ·, x) : R3 → R is a homogeneous function.
(2) If y1 and y2 are two solutions of (5.1) and for some x0 ∈ I, y′1(x0) = y′2(x0) > 0

and y′′1 (x0) = y′′2 (x0), then, y1 = y2.
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In these conditions, if y1 and y2 are two linearly independent solutions of (5.1) then:

(i) if x1, x2 ∈ I are two consecutive zeros of y′1, then Zy′
2
∩ [x1, x2] 6= ∅;

(ii) if x1, x2 ∈ I are two consecutive zeros of y′2, then Zy′
1
∩ [x1, x2] 6= ∅.

Proof. The proof follows from Tonelli Lemma (see [28]). �

Theorem 5.4. We suppose that:

(1) For each x ∈ I, the functions F,G : R3 → R are homogeneous.
(2) If (y1, z1) and (y2, z2) are two solutions of (5.2), then:

(a) if for some x0 ∈ I, y1(x0) = y2(x0) and y′1(x0) = y′2(x0), then, (y1, z1) =
(y2, z2);

(b) if for some x0 ∈ I, z1(x0) = z2(x0) and z′1(x0) = z′2(x0), then, (y1, z1) =
(y2, z2).

In the above conditions, if (y1, z1) and (y2, z2) are two linearly independent solutions
of (5.2), then the zeros of y1 and y2, and of z1 and z2 separate each other.

Proof. The proof follows from Tonelli Lemma. �

6. Some Research Directions

6.1. Zero separation theory for nonlinear second order differential equations
Problem 6.1. To complete the results of this paper with some results for (see

Abstract):

(i) Problem 1: (2) and (3);
(ii) Problem 2: (3);

(iii) Problem 3: (2);
(iv) Problem 4: (3) and (4);

References: [1], [28], [31], [32], [34], [49], [50], [52], [67], . . .

6.2. Problem 6.2. To use the implicit function theorem in [11] to study the uniqueness
of solution for the following problem:

F (y′′, y′, y, x) = 0, y′(x0) = y′0, y
′′(x0) = y′′0 .

6.3. Zero separation principles for the solutions of two second order differential equa-
tions

Let pi, qi ∈ C(I), i = 1, 2. We consider the following differential equations:

y′′ + p1y
′ + q1y = 0 (6.1)

z′′ + p2z
′ + q2z = 0 (6.2)

Let y1 and y2 be two linearly independent solutions of (6.1), and z1 and z2 be two
linearly independent solutions of (6.2). From the Theorem 2.2 we have the following
result:

If, W ((y1, z1), (y2, z2))(x) 6= 0, for all x ∈ I, and y is a nontrivial solution of
(6.1) and z is a nontrivial solution of (6.2) such that, (y, z) ∈ H((y1, z1), (y2, z2)),
then the zeros of y and z separate each other.

From this result the following problem appears.
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Problem 6.3. Let y1 and y2 be two linearly independent solutions of (6.1), and
z1 and z2 be two linearly independent solutions of (6.2). In which conditions we have
that,

W ((y1, z1), (y2, z2))(x) 6= 0, for all x ∈ I?

Each solution for this problem has an impact in the zero separation theory for
some special functions: Bessel functions, Legendre functions, Mathieu functions, . . .

References: [59], [60], [38], [32], [57], [62], . . .

6.4. Wronskian Lemma and Wronskian Theorems techniques in zero separation of
polynomial functions

The following Markov Theorem is well known: If the zeros of the polynomial
functions P and Q are all real and separate each other, then the zeros of P ′ and Q′

separate each other.
In [16], F. Constantinescu proves this theorem using the Sturm separation the-

orem.
Problem 6.4. To use Wronskian Lemma and Wronskian Theorems in the zero

separation theory of polynomial functions.
References: [16], [18], [34], [43], [51], [53], [65], [66], . . .

6.5. Problem 6.5. To use the angular function of a planar vector field techniques in
zero separation theory for nonlinear second order equations.

References: [34], [4], [56], [13], [41], . . .

6.6. Problem 6.6. To use the Bor̊uvka theory of functions defined in terms of zeros of
solutions of linear second order equations to study the zero distance functions.

References: [9], [10], [5], [21], [41], [36], . . .

6.7. Zero separation theory in the case of linear and homogeneous second order dif-
ferential equations in the complex domain

Problem 6.7. To give a good notion of zero separation of two complex functions.
In terms of this notion, to construct a Sturm zero separation theory in the complex
domain.

References: [25], [26], [29], [33], [1], [6], [7], [14], [62], . . .

6.8. Problem 6.8. The notion of the category of ordinary linear differential equations
is given in [41]. An object of this category is a linear differential equation and a
morphism for two objects is a global transformation. The problem is to consider some
subcategories of this category which are relevant for zero point theory of solutions of
differential equations.
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Mathematica, 17(1941), 85-110.

[13] Chicone, C., Ordinary Differential Equations with Applications, Springer, 1999.
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