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1. Introduction

Fractional derivation and integration are as old as ordinary derivation and inte-
gration. The history of fractional calculus date back to 1695. In that time, L’Hospital
asked to Leibniz ”what would be the one-half derivative of x?” After this conversation,
many mathematicians tried to give a coherent definition of fractional derivative and
integral operators. By the beginning of 20th century, some definitions of fractional
derivative are introduced called Riemann-Liouville, Caputo, and Grünwald-Letnikov
derivatives and so on. Fractional derivatives and integrals are studied widely in dif-
ferent branches of sciences like engineering, physics etc. For more knowledge about
the history and applications, we refer to [7, 9, 20].

The definitions we considered above mostly use the integral forms to define the
fractional derivative. Riemann-Liouville and Caputo fractional derivatives use the
Riemann-Liouville fractional integral defined by

Jαa f(x) =
1

Γ(α)

x∫
a

(x− t)α−1f(t)dt, m− 1 < α < m, α ∈ R.

And so, Riemann-Liouville and Caputo fractional derivatives are defined as

Dα
a f(x) = DmJm−αa f(x),

and
CDα

a f(x) = Jm−αa Dmf(x),
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respectively, where m = dαe , and in the right hand of the definitions operator
Dm represents the ordinary derivative order m.

Apart from the linearity property, Riemann-Liouville or any of other fractional
derivatives do not satisfy all properties of ordinary derivative. For example, Caputo
derivative does not satisfy well-known formula of the product of two functions

D(f(t)g(t)) = g(t)Df(t) + f(t)Dg(t),

and Riemann-Liouville derivative does not satisfy

D[c] = 0, c is constant.

Because of this facts, recently some mathematicians gave their efforts to give new
definitions for fractional derivatives. To handle these difficulties, in 2014 Khalil et al.
[15] gave a new definition of fractional derivative as

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
.

This definition, called conformable fractional derivative, satisfies many properties of
ordinary derivatives like product rule, chain rule etc.

Because of inequalities were often used in the theoretical and applied mathemat-
ics, mathematicians studied about their extensions, generalizations and discretiza-
tions, see [2, 3, 12, 17, 18] and references cited therein. And in the last decade authors
started to transfer those inequalities known in the classical settings into fractional set-
tings, both continuous and discrete cases, to make contributions to the development
of fractional calculus theory [4, 5, 8, 10, 11, 21].

In this paper, we shall give the fractional analogues of Wirtinger type inequalities
given below:

Theorem 1.1 (Wirtinger’s Inequality). For any function y ∈ C1[0, 1] such that

y(0) = y(1) = 0,

we have
1∫

0

(y′(t))2dt ≥ π2

1∫
0

y2(t)dt.

Remark 1.2. Although Fourier series are used for the proof of Theorem 1.1, this proof
also can be made with Schwarz inequality. Then, in the second case, we have inequality

1∫
0

(y′(t))2dt ≥
1∫

0

y2(t)dt, (1.1)

where condition y(1) = 0 is not needed.

In 1975, Hinton and Lewis [14] gave a generalized Wirtinger type inequality
using Schwarz inequality:



Wirtinger type inequalities via fractional integral operators 37

Theorem 1.3. For any positive M ∈ C1([a, b]) with M ′(t) 6= 0, and y ∈ C1([a, b]) with
y(a) = y(b) = 0, we have

b∫
a

M2(t)

|M ′(t)|
(y′(t))2dt ≥ 1

4

b∫
a

|M ′(t)| y2(t)dt.

In 1999, Pena [19] gave the discrete analogue of the inequality established by
Hinton and Lewis:

Theorem 1.4. For a positive sequence {Mn}0≤n≤N+1 satisfying either 4M > 0 or

4M < 0 on [0, N ] ∩ Z
N∑
n=0

MnMn+1

|4Mn|
(4yn)2 ≥ 1

ψJ

N∑
n=0

|4Mn| y2n+1

holds for any sequence {yn}0≤n≤N+1 with y0 = yN+1 = 0, where

ψJ =

(
sup

0≤n≤N

Mn

Mn+1

)[
1 +

(
sup

0≤n≤N

|4Mn|
|4Mn+1|

)1/2
]2
.

For more discussion about the Wirtinger inequality, see [13, 16, 22] and references
cited therein.

2. Preliminaries

In this section, we give basic definitions and fundamental results for conformable
fractional operators, so the paper is self-contained.

Definition 2.1. The conformable fractional derivative of a function f : [0,∞)→ R of
order 0 ≤ α ≤ 1 is defined by

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε

for all t > 0.

We note that if the conformable fractional derivative of function f of order α
exists, we say f is α-differentiable.

Theorem 2.2. Let α ∈ (0, 1] and functions f and g be α-differentiable at point t > 0.
Then following properties are hold:

(i) Tα(af + bg)(t) = aTα(f)(t) + bTα(g)(t), for all a, b ∈ R.
(ii) Tα(tm) = mtm−α, for all m ∈ R.
(iii) Tα(c) = 0, for all constant functions f(t) = c.
(iv) Tα(fg)(t) = g(t)Tα(f)(t) + f(t)Tα(g)(t).

(v) Tα

(
f
g

)
(t) =

g(t)Tα(f)(t)− f(t)Tα(g)(t)

(g(t))2

(vi) If, in addition, f is differentiable, then Tα(f)(t) = t1−α
df

dt
.
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Now, we give conformable fractional derivative of some functions:

(1) Tα(tm) = mtm−α, for all m ∈ R.
(2) Tα(1) = 0.

(3) Tα(eat) = at1−αeat, a ∈ R.
(4) Tα(e

1
α t

α

) = e
1
α t

α

.

(5) Tα(sin at) = at1−α cos at, a ∈ R.
(6) Tα(cos at) = −at1−α sin at, a ∈ R.
(7) Tα(sin 1

α t
α) = cos 1

α t
α.

(8) Tα(cos 1
α t
α) = − sin 1

α t
α.

Definition 2.3. The conformable fractional integral of a function f : [0,∞) → R of
order 0 ≤ α ≤ 1 is defined by

Iaα(f)(t) = Ia1 (tα−1f)(t) =

t∫
a

f(s)

t1−α
ds,

where the integral is the usual Riemann improper integral, and α ∈ (0, 1).

Theorem 2.4. TαI
a
α(f)(t) = f(t), for t ≥ a, where f is any continuous function in

the domain of Iα.

Example 2.5. For a = 0 and α = 1/2, the conformable integral of function

f(t) =
√
t cos t

is

I01/2(
√
t cos t) =

t∫
0

cos sds = sin t.

For more information and applications on conformable fractional operators, we
refer to [1, 6, 15, 21] and papers cited therein.

3. Wirtinger type inequalities

In this section, we will state Wirtinger type inequalities using conformable frac-
tional operators.

We start giving the fractional analogue of the inequality given in (1.1) .

Theorem 3.1. For any function f ∈ Cα([a, b]) such that f(a) = 0, we have

b∫
a

|Tαf(t)|2 dαt ≥
α2

(bα − aα)
2

b∫
a

|f(t)|2 dαt, (3.1)

where Cα represents the family of α−differentiable functions, and
∫ t
a
g(s)dαs denotes

the conformable fractional integral.
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Proof. From [1], we know

IaαTαf(t) = f(t)− f(a).

Using the condition f(a) = 0, we have f(t) = IaαTαf(t), so on

|f(t)| ≤
t∫
a

|Tαf(s)| dαs. (3.2)

Applying Schwarz inequality to the right side of (3.2), we find

|f(t)| ≤

 t∫
a

dαs

1/2 t∫
a

|Tαf(s)|2 dαs

1/2

=

(
tα − aα

α

)1/2
 t∫
a

|Tαf(s)|2 dαs

1/2

≤ (bα − aα)
1/2

α1/2

 b∫
a

|Tαf(s)|2 dαs

1/2

. (3.3)

After squaring the inequality (3.3) and taking its conformable integral from a to b,
the desired result is obtained. �

Secondly, we state the fractional analogue of the inequality given in Theorem 1.3.

Theorem 3.2. For any positive function M ∈ Cα ([a, b]) satisfying either Tα[M(t)] > 0
or Tα[M(t)] < 0 on [a, b] , we have

b∫
a

M2(t)

|Tα[M(t)]|
(Tα[y(t)])

2
dαt ≥

1

4

b∫
a

|Tα[M(t)]| y2(t)dαt, (3.4)

for any function y ∈ Cα ([a, b]) with y(a) = y(b) = 0.

Proof. Suppose that Tα[M(t)] > 0. Then we have

I1 =

b∫
a

Tα [M(t)] y2(t)dαt = M(t)y2(t)
∣∣b
a
−

b∫
a

M(t)Tα
[
y2(t)

]
dαt

= M(b)y2(b)−M(a)y2(a)− 2

b∫
a

M(t)y(t)Tα[y(t)]dαt = −2

b∫
a

M(t)y(t)Tα[y(t)]dαt

≤ 2

b∫
a

M(t) |y(t)| |Tα[y(t)]| dαt = 2

b∫
a

√
M2(t)

Tα[M(t)]
|Tα[y(t)]|

√
Tα[M(t)] |y(t)| dαt.
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Using Schwarz inequality, we have

I1 =

b∫
a

Tα [M(t)] y2(t)dαt

≤ 2

 b∫
a

M2(t)

Tα[M(t)]
(Tα[y(t)])

2
dαt

1/2 b∫
a

Tα[M(t)]y2(t)dαt

1/2

= 2
√
I1I2,

where

I2 =

b∫
a

M2(t)

Tα[M(t)]
(Tα[y(t)])

2
dαt.

Dividing both sides of the above inequality by
√
I1, we obtain√

I1 ≤ 2
√
I2.

Hence

I2 ≥
1

4
I1.

The proof is complete. �

Remark 3.3. If we take α = 1 in (3.1), we have

b∫
a

|f ′(t)|2 dt ≥ 1

(b− a)
2

b∫
a

|f(t)|2 dt,

a = 0, b = 1 with α = 1, we have

1∫
0

|f ′(t)|2 dt ≥
1∫

0

|f(t)|2 dt,

and this is the inequality given in (1.1).
Secondly, if we take α = 1 in (3.4), we have

b∫
a

M2(t)

|M ′(t)|
(y′(t))

2
dt ≥ 1

4

b∫
a

M ′(t)y2(t)dt,

i.e., we have the inequality given in Theorem 1.3.
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[4] Akin, E., Aslıyüce, S., Güvenilir, A.F., Kaymakcalan, B., Discrete Grüss type inequality
on fractional calculus, J. Inequal. Appl., (2015), 2015:174, 7 pp.

[5] Anastassiou, G.A., Multivariate fractional representation formula and Ostrowski type
inequality, Sarajevo J. Math., 22(2014), no. 1, 27-35.

[6] Atangana, A., Baleanu, D., Alsaedi, A., New properties of conformable derivative, Open
Math., 13(2015), 889-898.

[7] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J., Fractional Calculus. Models and
Numerical Methods. Series on Complexity, Nonlinearity and Chaos, World Scientific
Publishing, 2012.

[8] Budak, H., Sarikaya, M.Z., An inequality of Ostrowski-Grüss type for double integrals,
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