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1. Introduction

Let Ω be a bounded domain in Rn, n ≥ 2 with a smooth boundary Γ = ∂Ω.
We consider the following quasi linear parabolic equations with nonlocal boundary
conditions:

∂u

∂t
−

n∑
i=1

∂

∂xi

(
|u|p(x)−2 ∂u

∂xi

)
+ |u|p(x)−2

u = f (x, t) in QT = Ω× (0, T ) , (1.1)

u(x, 0) = u0(x), x ∈ Ω, (1.2)

u (x, t) =

∫
Ω

K (x, y)u (y, t) dy, x ∈ Γ, t ∈ (0, T ) , (1.3)

where the exponent p(·) is a given measurable function on Ω such that:

2 ≤ n < p1 ≤ p (x) ≤ p2 ≤ ∞, (1.4)

where

p2 = ess sup
x∈Ω

p (x) , p1 = ess inf
x∈Ω

p (x) .
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We also assume that p(·) satisfies the following Zhikov-Fan uniform local continuity
condition :

|p (x)− p (y)| ≤ M

|log |x− y||
, for all x, y in Ω with |x− y| < 1

2
, M > 0. (1.5)

In recent years, many authors have paid attention to the study of nonlinear hyper-
bolic, parabolic and elliptic equations with nonstandard growth condition. For in-
stance, modeling of physical phenomena such as flows of electro-rheological fluids or
fluids with temperature-dependent viscosity, thermoelasticity, nonlinear viscoelastic-
ity, filtration processes through a porous media and image processing. More details
on these problems can be found in [5, 8, 1, 3, 4, 15, 17, 18] and references therein.

Constant exponent. In (1.1), when p(·) = p is constant, local, global existence
and long-time behavior have been considered by many authors.

For instance, in the absence of the term |u|p−2
u and when the kernel datum

function K (x, y) = 0, using the compactness method and Faedo-Galerkin techniques,
the existence and uniqueness of a weak solution has been proved see [16].

Baili Chen in [7] generalized the result of Lions to the situation when the pres-

ence of |u|p−2
u and when K (x, y) 6= 0 in problem (1.1), applying exactly the same

technique introduced in [16, Problème 12, page 140.], the author by constructing the
approximate Galerkin solution, he proved the existence of generalized solution, the
uniqueness questions are still open.

Problem (1.1)-(1.3) is the extension of the problems in Lion’s book [16, p.140]
in which the boundary conditions are homogeneous and in [7] in which the variable-
exponent is constant. The uniqueness questions in problem (1.1)-(1.3) are more com-
plicated than in [7] and are still open.

The main difficulty of this problem, concerns the weak converging approximate
solution, is related to the presence of the quasilinear terms in (1.1) in the variable-
exponent.

In this paper a class of quasi linear generalized parabolic equation with nonlocal
boundary conditions for an elliptic operator involving the variable-exponent nonlin-
earities was considered. Hence by using Faedo-Galerkin arguments and compactness
method as in [16], we will show the local existence of problem (1.1)-(1.3).

2. Preliminaries

In this section we list and recall some well-known results and facts from the
theory of the Sobolev spaces with variable exponent. (For the details see [9, 11, 10,
12, 13, 14]).

Throughout the rest of the paper we assume that Ω is a bounded domain of Rn,
n ≥ 2 with smooth boundary Γ, Let p : Ω → [1,∞] be a measurable function. We
denote by Lp(·)(Ω) the set of measurable functions u on Ω such that

Ap(·) (u) =

∫
Ω

|u (x)|p(x)
dx <∞.
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The variable-exponent space Lp(·) (Ω) equipped with the Luxemburg norm

‖u‖p(·),Ω = ‖u‖p(·) = ‖u‖Lp(·)(Ω) = inf
{
λ > 0, Ap(·)

(u
λ

)
≤ 1
}

is a Banach space.
In general, variable-exponent Lebesgue spaces are similar to classical Lebesgue

spaces in many aspects, see the first discussed the Lp(x)(Ω) spaces and W k,p(x)(Ω)
spaces by Kovàcik and Rákosnik in [14].

Let us list some properties of the spaces Lp(·)(Ω) which will be used in the study
of the problem (1.1)-(1.3).

• It follows directly from the definition of the norm that (see [9]),

min
(
‖u‖p1

p(·) , ‖u‖
p2

p(·)

)
≤ Ap(·) (u) ≤ max

(
‖u‖p1

p(·) , ‖u‖
p2

p(·)

)
.

• Let p, q, s ≥ 1 be measurable functions defined on Ω such that

1

s (x)
=

1

p (x)
+

1

q (x)
, for a.e. x ∈ Ω.

if u ∈ Lp(·)(Ω), v ∈ Lq(·)(Ω) then u.v ∈ Ls(·)(Ω) and the following generalized
Hölder inequality

‖uv‖s(·) ≤ 2 ‖u‖p(·) ‖v‖q(·) .

holds.

Let us consider the following variable-exponent Lebesgue Sobolev space (see [9]),

W 1,p(·)(Ω) =
{
v ∈ Lp(·)(Ω) : such that |∇v| exists and |∇v| ∈ Lp(·)(Ω)

}
.

This space is a Banach space with respect to the norm

‖u‖
W

1,p(·)
0 (Ω)

= ‖u‖p(·) +
∑
i

‖∇ui‖p(·) .

Furthermore, we set W
1,p(·)
0 (Ω), to be the closure of C∞0 (Ω) in W 1,p(·)(Ω). Here we

note that the space W
1,p(·)
0 (Ω) is usually defined in a different way for the variable

exponent case. However (see Diening et al [9]), both definitions are equivalent under

(1.5). The
(
W

1,p(·)
0 (Ω)

)′
is the dual space of W

1,p(·)
0 (Ω) with respect to the inner

product in L2(Ω) and is defined as W−1,p′(·)(Ω), in the same way as the classical
Sobolev spaces, where 1

p(.)
+ 1

p′(·) = 1, the function p′(·) is called the dual variable

exponent of p(·).
• Let p, q : Ω → [1,+∞) be measurable functions satisfying condition (1.5). If
p(x) ≤ q(x) almost everywhere in Ω, then the embedding Lq(·)(Ω) ↪→ Lp(·)(Ω) is
continuous.

Lemma 2.1. ([9]) Let Ω be a bounded domain in Rn, n ≥ 1 with a smooth boundary
Γ = ∂Ω, p(·) is a given measurable function on Ω satisfy conditions (1.5) and q =
const ≥ 1. If q ≤ p(x) a.e. in Ω, then

‖v‖q ≤ Cq,Ω ‖v‖p(·) with the constant Cq,Ω = (1 + |Ω|)
1
q . (2.1)
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3. Notations and preliminaries

In this article, on f , u0 and K (x, y) we make the following assumptions

f ∈ Lp′2(0, T ;Lp′2 (Ω)),
1

p2
+

1

p′2
= 1, (3.1)

u0 ∈ L∞(Ω), (3.2)

for any x ∈ Γ, K (x) <∞, Ki (x) <∞, (3.3)
n∑

i=1

∫
Γ

K (x)
p2−1

Ki (x) dΓ <∞,
n∑

i=1

∫
Γ

K (x)
p1−1

Ki (x) dΓ <∞, (3.4)

γ = max

 Cp2

p1,Ω

(∑n
i=1

∫
Γ
K (x)

p2−1
Ki (x) dΓ

)
,(

Cp1

p1,Ω

∑n
i=1

∫
Γ
K (x)

p1−1
Ki (x) dΓ

)
 ≤ p1 − 1

p2
, (3.5)

for any x ∈ Γ, where

K (x) =

(∫
Ω

|K (x, y)|p
′
1 dy

) 1
p′1

:

norm of k(x, y) in Lp′1 (Ω) with respect to y,
1

p1
+

1

p′1
= 1

Ki (x) =

(
n∑

i=1

∫
Ω

∣∣∣∣ ∂∂xiK (x, y)

∣∣∣∣p′1 dy
) 1

p′1

:

norm of
∂

∂xi
k(x, y) in Lp′1 (Ω) with respect to y,

1

p1
+

1

p′1
= 1

and Cp1,Ω defined in (2.1).
Moreover, we assume that

r >
n

2
+ 2. (3.6)

Let

α1 =

(
p2

p1

(
γ +

1

p2

)) p2
p1−p2

. (3.7)

We define the polynomial Q by

Q (α) = min
(
α, α

p1
p2

)
−
(
γ +

1

p2

)
max

(
α, α

p1
p2

)
∀α ∈ [0,+∞] .

Let

h (α) = α
p1
p2 −

(
γ +

1

p2

)
α.

Notice that h (α) = Q (α) , for 1 ≤ α ≤ ∞. It is easy to check that the function h(α)
is increasing for 1 ≤ α < α1 and decreasing for α1 < α ≤ +∞, where α1 is its unique
local maximum defined by (3.7). We will assume that:

1 ≤ ‖u0‖p2

p(·) = α0 < α1 (3.8)
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and
1

2
|u0|2 + C

p2
p2−1

2,Ω

p2 − 1

p2
|Ω|

1
2

∫ T

0

|f |
p2

p2−1
p2 dt <

∫ T

0

Q (α1) dt. (3.9)

The classical formulation of the problem is as follows. Find a displacement field u :
Ω× (0, T )→ R, such that:

(u′, v)−

(
n∑

i=1

∂

∂xi

(
|u|p(x)−2 ∂u

∂xi

)
, v

)
+
(
|u|p(x)−2

u, v
)

= (f, v) , ∀v ∈ V (3.10)

u(x, 0) = u0(x), x ∈ Ω.

Where

V =

{
v ∈ Hr (Ω) : v (x) =

∫
Ω

K (x, y) v (y) dy for x ∈ Γ

}
,

With assumption (1.4)-(3.6), using Sobelev embedding theorems, see [2], we have

Hr (Ω) ↪→W 2,p2 (Ω) ↪→W 1,p2 (Ω) ↪→ Lp2 (Ω) ↪→ L2 (Ω)

It is easy to see that V is a subspace of Hr (Ω) .
Whenever it doesn’t cause a confusion, we use the following shorthand notations:
Lq(Ω): Lq space defined on Ω; |.|q = |.|q,Ω: norm in Lq(Ω); |.|q,Γ: norm in Lq(Γ);

H−r (Ω): dual space of Hr (Ω) ; |.|H−r(Ω) norm in H−r (Ω) ; C: nonnegative constant

which may take different values on each occurrence.

4. Local existence

Theorem 4.1. Under hypothesis (1.4)-(3.9), for any finite T > 0, the problem (1.1)-
(1.3) admits a weak solution u such that

u ∈ L∞
(
0, T ;L2(Ω)

)
∩ C

(
[0, T ] ;H−r (Ω)

)
∩ Lp(·) (Ω× (0, T )) , (4.1)

∂u

∂t
∈ Lp′2

(
0, T ;H−r (Ω)

)
, (4.2)

|u|
p(·)−2

2 u ∈ L2
(
0, T ;H1 (Ω)

)
, (4.3)

for all v ∈ V and a.e. t ∈ [0, T ] ,

(u′, v)−

(
n∑

i=1

∂

∂xi

(
|u|p(x)−2 ∂u

∂xi

)
, v

)
+
(
|u|p(x)−2

u, v
)

= (f, v) , (4.4)

u(x, 0) = u0(x), x ∈ Ω.

Proof. Since V is a subspace of Hr (Ω) which is separable. We can choose a countable
set of distinct basis elements wj (j = 1, 2, ...) which generate V and are orthonormal in
L2 (Ω) . Let Vm be the subspace of V generated by the first m elements: w1, w2, ..., wm.
We search u of the form:

um(x, t) =

m∑
i=1

Kim(t)wi (x) , (4.5)
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satisfying: 
(u′m, wj)−

(∑n
i=1

∂
∂xi

(
|um|p(x)−2 ∂um

∂xi

)
, wj

)
+
(
|um|p(x)−2

um, wj

)
= (f (t) , wj) , 1 ≤ j ≤ m,

um(0) = u0m.

(4.6)

with

u0m =

m∑
i=1

αimwi −→ u0 when m −→∞ in Lp(·) (Ω) . (4.7)

Integrating by parts on the second term of left-hand side of (4.6), we have
(u′m, wj) +

(∑n
i=1

(
|um|p(x)−2 ∂um

∂xi

)
, ∂
∂xi

wj

)
+
(
|um|p(x)−2

um, wj

)
=
∫

Γ
|um|p(x)−2 ∂um

∂xi
wjdΓ + (f (t) , wj) , 1 ≤ j ≤ m,
um(0) = u0m.

(4.8)

By Peano’s Theorem, for every finite m the problem (4.6), (4.8) has a solution on
(0, Tm) for each m. The following estimates permit us to confirm that Tm is indepen-
dent of m.

a) A priori estimates
Multiplying the equation (4.8) by Kjm(t), summing over j = 1, ..., m, we obtain

1

2

d

dt
|um (t)|2 +

n∑
i=1

∫
Ω

4

p2 (x)

(
∂

∂xi

(
|um|

p(x)−2
2 um

))2

dx+

∫
Ω

|um|p(x)
dx (4.9)

=

∫
Γ

|um|p(x)−2 ∂um
∂xi

um(t)dΓ + (f (t) , um)

Integrating on (0, T ) on both sides of (4.9), we get

1

2
|um (T )|2 +

∫ T

0

n∑
i=1

∫
Ω

4

p2 (x)

(
∂

∂xi

(
|um|

p(x)−2
2 um

))2

dxdt

+

∫ T

0

min
(
||um||p2

p(·) , ||um||
p1

p(·)

)
dt

≤
∫ T

0

∫
Γ

∣∣∣∣|um|p(x)−2 ∂um
∂xi

um(t)

∣∣∣∣ dΓdt+

∫ T

0

|(f (t) , um)| dt+
1

2
|u0m|2 . (4.10)

The second term in the right-hand side of (4.10) can be estimated as follows

|(f (t) , um)| ≤ |f |2 |um|2 ≤ C2,Ω |f |2 ||um||p(·) (holder’s inequality) and (2.1)

≤ C
p2

p2−1

2,Ω

p2 − 1

p2
|f |

p2
p2−1

2 +
1

p2
||um||p2

p(·) (Young’s inequality)

≤ C
p2

p2−1

2,Ω

p2 − 1

p2
|Ω|

1
2 |f |

p2
p2−1
p2 +

1

p2
max

(
‖um‖p2

p(·) , ‖um‖
p1

p(·)

)
.

Next, we estimate first term in the right-hand side of (4.10) using (2.1): For x ∈ Γ,
we have

|um (x, t)| ≤ K (x) |um|p1
≤ Cp1,ΩK (x) ‖um‖p(·) . (4.11)
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Similarly, for x ∈ Γ we have∣∣∣∣∣
n∑

i=1

∂

∂xi
um (x, t)

∣∣∣∣∣ ≤ Ki (x) |um|p1
≤ Cp1,ΩKi (x) ‖um‖p(·) (4.12)

Then using holder’s inequality and assumptions (3.3) and (3.5), we have:

n∑
i=1

∫
Γ

∣∣∣∣|um|p(x)−2 ∂um
∂xi

um(t)

∣∣∣∣ dΓ ≤
n∑

i=1

∫
Γ

|um|p(x)−1

∣∣∣∣∂um∂xi

∣∣∣∣ dΓ

≤ max

(
n∑

i=1

∫
Γ

|um|p2−1

∣∣∣∣∂um∂xi

∣∣∣∣ dΓ,

n∑
i=1

∫
Γ

|um|p1−1

∣∣∣∣∂um∂xi

∣∣∣∣ dΓ

)

≤ max

(
Cp2

p1,Ω

∑n
i=1

∫
Γ
K (x)

p2−1 ‖um‖p2−1
p(·) Ki (x) ‖um‖p(·) dΓ,

Cp1

p1,Ω

∑n
i=1

∫
Γ
K (x)

p1−1 ‖um‖p1−1
p(·) Ki (x) ‖um‖p(·) dΓ

)

= max

 Cp2

p1,Ω

(∑n
i=1

∫
Γ
K (x)

p2−1
Ki (x) dΓ

)
‖um‖p2

p(·) ,

Cp1

p1,Ω

(∑n
i=1

∫
Γ
K (x)

p1−1
Ki (x) dΓ

)
‖um‖p1

p(·)


≤ max

 Cp2

p1,Ω

(∑n
i=1

∫
Γ
K (x)

p2−1
Ki (x) dΓ

)
,(

Cp1

p1,Ω

∑n
i=1

∫
Γ
K (x)

p1−1
Ki (x) dΓ

) 
×max

(
‖um‖p2

p(·) , ‖um‖
p1

p(·)

)
This implies that

1

2
|um (t)|2 +

∫ T

0

n∑
i=1

∫
Ω

4

p2 (x)

(
∂

∂xi

(
|um|

p(x)−2
2 um

))2

dxdt+

∫ T

0

Q
(
||um||p2

p(·)

)
dt

≤ 1

2
|u0m|2 + C

p2
p2−1

2,Ω

p2 − 1

p2
|Ω|

1
2

∫ T

0

|f |
p2

p2−1
p2 dt, (4.13)

at this step we will assume that Q
(
||um||p2

p(·)

)
≥ 0, so from (3.9) and (4.13), we have

the following a priori estimates:

|um| ≤ C (C is independent of m); (4.14)∫ T

0

n∑
i=1

∫
Ω

4

p2 (x)

(
∂

∂xi

(
|um|

p(x)−2
2 um

))2

dxdt ≤ C (C independent of m). (4.15)

So the solution um (t) of problem (1.1)-(1.3) exists on [0, T ] for each m, and

um is bounded in L∞
(
0, T ;L2(Ω)

)
; (4.16)

|um|
p(·)−2

2 um is bounded in L2
(
0, T ;H1 (Ω)

)
Claim 4.2. There exists an integer N such that

||um||p2

p(·) < α1 ∀t ∈ [0, Tm) m > N. (4.17)
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Proof of the Claim. Suppose (4.17) false. Then for each m > N , there exists t ∈
[0, Tm) such that ||um (t)||p2

p(·) ≥ α1. We note that from (3.8) and (4.7) there exists

N0 such that
1 ≤ ||um (0)||p2

p(·) < α1 ∀m > N0

Then by continuity there exists a first T ∗m ∈ (0, Tm) such that

||um (T ∗m)||p2

p(·) = α1, (4.18)

from where

Q
(
||um||p2

p(·)

)
= h

(
||um (t)||p2

p(·)

)
≥ 0 ∀t ∈ [0, T ∗m] .

Now from (3.9) and (4.13), there exist N > N0 and β ∈ (1;α1) such that

0 ≤ 1

2
|um (t)|2 +

∫ t

0

n∑
i=1

∫
Ω

4

p2 (x)

(
∂

∂xi

(
|um|

p(x)−2
2 um

))2

dxds

+

∫ t

0

Q
(
||um||p2

p(·)

)
ds ≤

∫ t

0

Q (β) ds ∀t ∈ [0, T ∗m] , ∀m > N

Then the monotonicity of Q implies that

||um (t)||p2

p(·) ≤ β < α1 ∀t ∈ [0, T ∗m]

and in particular, ||um (T ∗m)||p2

p(·) < α1, which is a contradiction to (4.18). And then

the supposition Q
(
||um||p2

p(·)

)
≥ 0 is true. �

From (4.17) the solution um (t) of problem (1.1)-(1.3) satisfies other of (4.16),

um is bounded in Lp(·) (Ω× (0, T )) . (4.19)

Lemma 4.3. Let um, constructed in (4.5), be the approximate solution of (1.1)-(1.3).
Then

∂

∂t
um (t) is bounded in Lp′2(0, T ;H−r (Ω)). (4.20)

Proof. Let v ∈ Hr (Ω), from (4.6) we have(
∂um(t)

∂t
, v

)
+

(
n∑

i=1

(
|um|p(x)−2 ∂um

∂xi

)
,
∂

∂xi
v

)
+
(
|um|p(x)−2

um, v
)

(4.21)

=

n∑
i=1

∫
Γ

|um|p(x)−2 ∂um
∂xi

vdΓ + (f (t) , v) ,

The last term in the left-hand side can be estimated as follows:∣∣∣(|um|p(x)−2
um, v

)∣∣∣≤ ∣∣∣|um|p(x)−1
∣∣∣
p′2

|v|p2
≤ C

∣∣∣|um|p(x)−1
∣∣∣
p′(·)
|v|p2

(p′2 ≤ p′(·) ≤ p′1)

≤ C max

((∫
Ω

|um|p(x)
dx

) 1
p′1
,

(∫
Ω

|um|p(x)
dx

) 1
p′2

)
|v|p2

≤ C max

((∫
Ω

|um|p(x)
dx

) 1
p′1
,

(∫
Ω

|um|p(x)
dx

) 1
p′2

)
|v|Hr
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Hence,∣∣∣|um|p(·)−2
um

∣∣∣
H−r(Ω)

≤ C max

((∫
Ω

|um|p(x)
dx

) 1
p′1
,

(∫
Ω

|um|p(x)
dx

) 1
p′2

)
<∞.

The norm of |um|p(·)−2
um in Lp′2(0, T ;H−r (Ω)) is bounded by

C

∫ T

0

max

(∫
Ω

|um|p(x)
dx

) p′2
p′1
,

∫
Ω

|um|p(x)
dx


1
p′2

<∞

Therefore, |um|p(·)−2
um is bounded in Lp′2(0, T ;H−r (Ω)).

Next, we consider the term

n∑
i=1

∫
Γ

|um|p(x)−2 ∂um
∂xi

vdΓ in the left-hand side of (4.21):∣∣∣∣∣
n∑

i=1

∫
Γ

|um|p(x)−2 ∂um
∂xi

vdΓ

∣∣∣∣∣ ≤
(

n∑
i=1

∣∣∣∣|um|p(x)−2 ∂um
∂xi

∣∣∣∣
p′1,Γ

)
|v(t)|p1,Γ

=

n∑
i=1

∣∣∣∣∣
∣∣∣∣∫

Ω

K (x, y)um (y) dy

∣∣∣∣p(x)−2 ∫
Ω

∂

∂xi
Ki (x, y)um (y) dy

∣∣∣∣∣
p′1,Γ

×
∣∣∣∣∫

Ω

K (x, y) v(y)dy

∣∣∣∣
p1,Γ

≤ C
n∑

i=1

∣∣∣K (x)
p(x)−2

Ki (x) |um (y)|p(x)−1
p1

∣∣∣
p′1,Γ

∣∣∣K (x) |v(y)|p1

∣∣∣
p1,Γ

≤ C
n∑

i=1

∣∣∣K (x)
p(x)−2

Ki (x)
∣∣∣
p′1,Γ
|K (x)|p1,Γ

|um (y)|p(x)−1
p1

|v(y)|p1

≤ C max

(
n∑

i=1

∣∣∣K (x)
p1−2

Ki (x)
∣∣∣
p′1,Γ

,

n∑
i=1

∣∣∣K (x)
p2−2

Ki (x)
∣∣∣
p′1,Γ

)
|K (x)|p1,Γ

×max
(
|um (y)|p1−1

p1
, |um (y)|p2−1

p1

)
|v(y)|Hr(Ω)

≤ C max

(
n∑

i=1

∣∣∣K (x)
p1−2

Ki (x)
∣∣∣
p′1,Γ

,

n∑
i=1

∣∣∣K (x)
p2−2

Ki (x)
∣∣∣
p′1,Γ

)
|K (x)|p1,Γ

×max
(
|um (y)|p1−1

p(·) , |um (y)|p2−1
p(·)

)
|v(y)|Hr

Therefore, ∣∣∣∣∣
n∑

i=1

∫
Γ

|um|p(x)−2 ∂um
∂xi

dΓ

∣∣∣∣∣
H−r(Ω)

≤ C max

(
n∑

i=1

∣∣∣K (x)
p1−2

Ki (x)
∣∣∣
p′1,Γ

,

n∑
i=1

∣∣∣K (x)
p2−2

Ki (x)
∣∣∣
p′1,Γ

)
×max

(
|um (y)|p1−1

p(·) , |um (y)|p2−1
p(·)

)
|K (x)|p1,Γ

<∞.
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Then the norm of
∑n

i=1

∫
Γ
|um|p(x)−2 ∂um

∂xi
dΓ in Lp′2(0, T ;H−r (Ω)) is bounded by

C

 ∫ T

0
max

(∑n
i=1

∣∣∣K (x)
p1−2

Ki (x)
∣∣∣p′2
p′1,Γ

,
∑n

i=1

∣∣∣K (x)
p2−2

Ki (x)
∣∣∣p′2
p′1,Γ

)
×max

(
|um (y)|(p1−1)p′2

p(·) , |um (y)|(p2−1)p′2
p(·)

)
|K (x)|p

′
2

p1,Γ
dt


1
p′2

<∞

Hence

n∑
i=1

∫
Γ

|um|p(x)−2 ∂um
∂xi

dΓ is bounded in Lp′2(0, T ;H−r (Ω)).

Next, we consider the second term in the left-hand side of (4.21). Integrating by parts
gives(

n∑
i=1

(
|um|p(x)−2 ∂um

∂xi

)
,
∂v

∂xi

)
=

∫
Ω

n∑
i=1

1

p (x)− 1

(
∂

∂xi

(
|um|p(x)−2

um

)) ∂v

∂xi
dx

(4.22)

=

∫
Γ

n∑
i=1

1

p (x)− 1
|um|p(x)−2

um
∂v

∂xi
dΓ−

∫
Ω

1

p (x)− 1
|um|p(x)−2

um∆vdx.

First, we have∣∣∣∣∣
∫

Γ

n∑
i=1

1

p (x)− 1
|um|p(x)−2

um
∂v

∂xi
dΓ

∣∣∣∣∣ ≤ 1

p2 − 1

n∑
i=1

∣∣∣|um|p(x)−2
um

∣∣∣
p′1,Γ

∣∣∣∣ ∂v∂xi
∣∣∣∣
p1,Γ

=
1

p2 − 1

n∑
i=1

∣∣∣∣∣
(∫

Ω

K (x, y)um (y) dy

)p(x)−1
∣∣∣∣∣
p′1,Γ

∣∣∣∣∫
Ω

∂

∂xi
K (x, y) v (y) dy

∣∣∣∣
p1,Γ

≤ C
n∑

i=1

∣∣∣K (x)
p(x)−1 |um|p(x)−1

p1

∣∣∣
p′1,Γ

∣∣∣Ki (x) |v|p1

∣∣∣
p1,Γ

≤ C
n∑

i=1

∣∣∣K (x)
p(x)−1

∣∣∣
p′1,Γ
|Ki (x)|p1,Γ

|um|p(x)−1
p1

|v|p1

≤ C max

(
n∑

i=1

∣∣∣K (x)
p1−1

∣∣∣
p′1,Γ

,

n∑
i=1

∣∣∣K (x)
p2−1

∣∣∣
p′1,Γ

)
×max

(
|um|p1−1

p1
, |um|p2−1

p1

)
|Ki (x)|p1,Γ

|v(y)|Hr

So we have ∣∣∣∣∣
∫

Γ

n∑
i=1

1

p (x)− 1
|um|p(x)−2

umdΓ

∣∣∣∣∣
H−r(Ω)

≤ C max

(
n∑

i=1

∣∣∣K (x)
p1−1

∣∣∣
p′1,Γ

,

n∑
i=1

∣∣∣K (x)
p2−1

∣∣∣
p′1,Γ

)
×max

(
|um|p1−1

p1
, |um|p2−1

p1

)
|Ki (x)|p1,Γ

<∞

consequently,
∫

Γ

∑n
i=1

1
p(x)−1 |um|

p(x)−2
umdΓ is bounded in Lp′2(0, T ;H−r (Ω)).
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Next, consider
∫

Ω
1

p(x)−1 |um|
p(x)−2

um∆vdx, by the same manner, we have∣∣∣∣∫
Ω

1

p (x)− 1
|um|p(x)−2

um∆vdx

∣∣∣∣ ≤ 1

p1 − 1

∣∣∣|um|p(x)−1
∣∣∣
p′2

|∆v|p2

≤ C
∣∣∣|um|p(x)−1

∣∣∣
p′(·)
|∆v|p2

≤ C max

((∫
Ω

|um|p(x)
dx

) 1
p′1
,

(∫
Ω

|um|p(x)
dx

) 1
p′2

)
|v|Hr

therefore, ∫
Ω

1

p (x)− 1
|um|p(x)−2

um∆vdx

is bounded in Lp′2(0, T ;H−r (Ω)). Since f ∈ Lp′2(0, T ;Lp′2 (Ω)) ⊂ Lp′2(0, T ;H−r (Ω)),

from this discussion and (4.21) it yields that ∂
∂tum is bounded in Lp′2(0, T ;H−r (Ω)).

�

Theorem 4.4. Let B, B1 be Banach spaces, and S be a set. Define

M (v) = max

( n∑
i=1

∫
Ω

|v|p1−2

(
∂v

∂xi

)2

dx

) 1
p1

,

(
n∑

i=1

∫
Ω

|v|p2−2

(
∂v

∂xi

)2

dx

) 1
p2


on S with:

a) S ⊂ B ⊂ B1, and M (v) ≥ 0 on S,

M (λv) = max

( n∑
i=1

∫
Ω

|v|p1−2

(
∂v

∂xi

)2

dx

) 1
p1

,

(
n∑

i=1

∫
Ω

|v|p2−2

(
∂v

∂xi

)2

dx

) 1
p2


= |λ|M (v)

b) the set {v | v ∈ S, M (v) ≤ 1} is relatively compact in B.
Define the set

F =

{
v : v is locally summable on [0, T ] with value in B1;∫ T

0
(M (v (t)))

q0 dt ≤ C, v′ bounded in Lq1(0, T ;B1),

}
where 1 < qi < ∞, i = 0, 1. Then F ⊂ Lq0(0, T ;B), and F is relatively compact in
Lq0(0, T ;B).

We need Theorem (4.4) to prove the following lemma (4.5).

Lemma 4.5. Let um, constructed as in (4.5), be the approximate solution of (1.1)-
(1.3), then um → u in Lp2(0, T ;Lp2 (Ω)) strongly and almost everywhere.

Proof. Let

S =
{
v : max

(
|v|

p1−2
2 v, |v|

p2−2
2 v

)
∈ H1 (Ω)

}
Since H1 (Ω) is compactly embedded in L2 (Ω), the proof of [16, Proposition 12.1,p.

143] also works for both |v|
p1−2

2 v and |v|
p2−2

2 v, then (b) holds.
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Let B = Lp2 (Ω) , B1 = H−r (Ω) , q0 = p2, q1 = p′2, we have

∫ T

0

(M (v (t)))
q0 dt ≤ C

∫ T

0

max


(∑n

i=1

∫
Ω
|v|p1−2

(
∂v
∂xi

)2

dx

) p2
p1

,(∑n
i=1

∫
Ω
|v|p2−2

(
∂v
∂xi

)2

dx

)
 dt

≤ C
∫ T

0

max


(∑n

i=1

∫
Ω

(
∂

∂xi

(
|v|

p1−2
2 v

))2

dx

) p2
p1

,(∑n
i=1

∫
Ω

(
∂

∂xi

(
|v|

p2−2
2 v

))2

dx

)
 dt <∞

�

Now with Lemma (4.3) and a priori estimates, conclusion follows easily from
application of Theorem (4.4).

Next, we prove that we can pass the limit in (4.21). Lemmas (4.6)-(4.10), below,
show that we can pass the limit in each term in the left-hand side of (4.21)

Lemma 4.6. Let um, constructed as in (4.5), be the approximate solution of (1.1)-

(1.3), then
(
|um|p(x)−2

um, v
)
→
(
|u|p(x)−2

u, v
)

as m→∞.

Proof. Since um is bounded in Lp(·) (Ω× (0, T )) then |um|p(·)−2
um is bounded in

L
p(·)

p(·)−1 (Ω× (0, T )); hence, using same arguments as in [16, Lemma 1.3], we have

|um|p(·)−2
um → |u|p(·)−2

u weakly in L
p(·)

p(·)−1 (Ω× (0, T )) . �

Lemma 4.7. Let um, constructed as in (4.5), be the approximate solution of (1.1)-
(1.3), then∫

Γ

n∑
i=1

1

p (x)− 1

(
|um|p(x)−2 ∂

∂xi
um

)
vdΓ→

∫
Γ

n∑
i=1

1

p (x)− 1

(
|u|p(x)−2 ∂

∂xi
u

)
vdΓ

as m→∞.

Proof. By a priori estimates, um is bounded in Lp(·)(Ω) for almost every t, then there
exists subsequence of um, still denoted as um, converges to um weak star in Lp(·)(Ω)
(Alaoglu’s Theorem) for almost every t ∈ [0, T ]. Under the assumption that for fixed
x ∈ Γ, we have∫

Ω

K (x, y)um (y) dy →
∫

Ω

K (x, y)u (y) dy as m→∞

Similarly ∫
Ω

∂

∂xi
K (x, y)um (y) dy →

∫
Ω

∂

∂xi
K (x, y)u (y) dy as m→∞

Therefore, for x ∈ Γ, we have

|um|p(·)−2 ∂

∂xi
um → |u|p(·)−2 ∂

∂xi
u a.e.
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Since

max

(∫
Γ

Kp1 (x) dΓ,

∫
Γ

Kp2 (x) dΓ

)
<∞,

and max

(∫
Γ

Kp1

i (x) dΓ,

∫
Γ

Kp2

i (x) dΓ

)
<∞,

we have

|um|p(·),Γ ≤ C max

(∫
Γ

Kp1 (x) dΓ,

∫
Γ

Kp2 (x) dΓ

)
max

(
‖um‖p1

p(·) , ‖um‖
p2

p(·)

)
<∞

and∣∣∣∣ ∂∂xium
∣∣∣∣
p(·),Γ

≤C max

(∫
Γ

Kp1

i (x) dΓ,

∫
Γ

Kp2

i (x) dΓ

)
max

(
‖um‖p1

p(·) , ‖um‖
p2

p(·)

)
<∞.

Then∣∣∣∣|um|p(·)−2 ∂

∂xi
um

∣∣∣∣
p′2,Γ

≤ C
∣∣∣∣|um|p(·)−2 ∂

∂xi
um

∣∣∣∣
p′(·),Γ

since (p′2 ≤ p′(·) ≤ p′1)

≤
∣∣∣|um|p(·)−2

∣∣∣
p(·)

p(·)−2
,Γ

∣∣∣∣ ∂∂xium
∣∣∣∣
p(·),Γ

since (
1

p′(·)
=
p(·)− 2

p(·)
+

1

p(·)
)

≤ max

((∫
Γ

|um|p(x)
dΓ

) 1
p1

,

(∫
Ω

|um|p(x)
dΓ

) 1
p2

)

×max

(∫
Ω

∣∣∣∣ ∂∂xium
∣∣∣∣p(x)

dΓ

) 1
p1

,

(∫
Γ

∣∣∣∣ ∂∂xium
∣∣∣∣p(x)

dΓ

) 1
p2

 <∞.

So, applying the same arguments as in [16, Lemma 1.3] to conclude that

|um|p(·)−2 ∂

∂xi
um → |u|p(·)−2 ∂

∂xi
u weakly in Lp′2 (Γ) .

for a.e. t ∈ [0, T ]. Since,

max

(∫
Ω

∣∣∣∣ ∂∂xi v
∣∣∣∣p(x)

dΓ

) 1
p1

,

(∫
Ω

∣∣∣∣ ∂∂xi v
∣∣∣∣p(x)

dΓ

) 1
p2

 <∞,

the proof is complete. �

Lemma 4.8. Let um, constructed as in (4.5), be the approximate solution of (1.1)-
(1.3), then∫

Γ

n∑
i=1

1

p (x)− 1
|um|p(x)−2

um
∂v

∂xi
dΓ→

∫
Γ

n∑
i=1

1

p (x)− 1
|u|p(x)−2

u
∂v

∂xi
dΓ

as m→∞.
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Proof. From the proof of Lemma (4.7), we have, for x ∈ Γ, |um|p(·)−2
um → |u|p(·)−2

u
almost everywhere, and∣∣∣|um|p(·)−2

um

∣∣∣
p′2,Γ
≤ C

∣∣∣|um|p(·)−2
um

∣∣∣
p′(·),Γ

≤ max

((∫
Γ

|um|p(x)
dΓ

) 1
p1

,

(∫
Γ

|um|p(x)
dΓ

) 1
p2

)
<∞.

Therefore, by applying [16, Lemma 1.3] we conclude that

|um|p(·)−2
um → |u|p(·)−2

u weakly in Lp′2 (Γ) .

Since ∂v
∂xi
∈ Lp′2 (Γ), the proof is complete.

Lemma 4.9. Let um, constructed as in (4.5), be the approximate solution of (1.1)-
(1.3), then∫

Ω

1

p (x)− 1

(
|um|p(x)−2

um

)
∆vdx→

∫
Ω

1

p (x)− 1

(
|u|p(x)−2

u
)

∆vdx

as m→∞.

Proof. From lemma ((4.5)), we have |um|p(·)−2
um → |u|p(·)−2

u almost everywhere,
for x ∈ Ω, since ∣∣∣|um|p(·)−2

um

∣∣∣
p′2,Ω
≤ C

∣∣∣|um|p(·)−2
um

∣∣∣
p′(·),Ω

≤ max

((∫
Ω

|um|p(x)
dx

) 1
p1

,

(∫
Ω

|um|p(x)
dx

) 1
p2

)
<∞.

by [16, Lemma 1.3], we have |um|p(·)−2
um → |u|p(·)−2

u weakly in Lp′2 (Ω) . Since
∆v ∈ Lp2 (Ω), the proof is complete. �

Lemma 4.10. Let um, constructed as in (4.5), be the approximate solution of (1.1)-
(1.3), then(

n∑
i=1

(
|um|p(x)−2 ∂um

∂xi

)
,
∂

∂xi
v

)
→

(
n∑

i=1

(
|u|p(x)−2 ∂u

∂xi

)
,
∂

∂xi
v

)
as m→∞.

Proof. Replacing the results of (4.8) and (4.9) in (4.22), the proof is complete. �

Lemma 4.11. Let um, constructed as in (4.5). be the approximate solution of (1.1)-
(1.3), then

(
∂
∂tum, v

)
→
(

∂
∂tu, v

)
and u(t) is continuous on [0, T ].

Proof. Since ∂
∂tum (t) is bounded in Lp′2(0, T ;H−r (Ω)), by Alaoglu’s theorem, there

exists a subsequence, still denoted by ∂
∂tum (t), converging to χ weak star in

Lp′2(0, T ;H−r (Ω)). By slightly modifying the proof of [6, Theorem 1] (with the space

Lp′2(0, T ;H−r (Ω)) instead of L2(0, T ;B1
2 (0, 1)).), we have χ = u′ and u is continuous

on [0, T ] . This ends the proof of Lemma (4.11). �

Combining all above results, the existence theorem (4.1) follows. �
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