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A dynamic Tresca’s frictional contact problem
with damage for thermo elastic-viscoplastic
bodies

Ilyas Boukaroura and Seddik Djabi

Abstract. We consider a dynamic contact problem between an elastic-viscoplastic
body and a rigid obstacle. The contact is frictional and bilateral, the friction is
modeled with Tresca’s law with heat exchange. We employ the elastic-viscoplastic
with damage constitutive law for the material. The evolution of the damage is
described by an inclusion of parabolic type. We establish a variational formulation
for the model and we prove the existence of a unique weak solution to the problem.
The proof is based on a classical existence and uniqueness result on parabolic
inéqualities, differentiel equations and fixed point argument.
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1. Introduction

The modelization of a contact phenomenon is determined by a set of assumptions
influencing on the form and structure of partial differential equations system or on
boundary conditions of the associated mathematical model.

Among the assumptions influencing the partial differential equations system:
Hypothesis about the geometry of the deformation (small deformation or others),
Hypothesis about the mechanical process (quasi-static or dynamic), Hypothesis about
the laws of material behavior (elastic, viscoelastic,...).

The model equations can be influenced by additional phenomena (thermal, piezo-
electric,...).

The boundary conditions on the contact surface are described in both normal
direction and in the tangential plane, these are called boundary conditions of friction.

In the direction of normal, we have unilateral and bilateral contact (when there
is no separation between the body and the obstacle). The normal compliance (when
the obstacle is deformable).



434 Ilyas Boukaroura and Seddik Djabi

The boundary conditions are also influenced by several phenomena accompany-
ing the contact with friction, such as adhesion, wear, thermal effects, friction threshold
dependence with respect to sliding or the sliding speed.

The contact between deformable bodies are very common in the industry and
everyday life, contact of braking pads with wheels, tires with roads, pistons with skirts
or the complex metal.

Recently we investigated a number of problems related to quasistatic contact for
thermo mechancical models coupled or uncoupled. In particular, models uncoupled
thermo viscoplastic were considered in [10]. In this case the consitutive equation law
depends on two parameters θ, χ, where θ be interpreted as absolute temperature.

Different models have been developed to describe the interaction between the
thermal and mechanical field see [3, 11]. A thermo elastic-viscoplastic body is consid-
ered in [6, 11].

Initial and boundary value problems for termo mechanical models were stud-
ied by many authors. So, existence and uniqueness result concerning the uncoupled
thermo viscoelastic was obtained in [10] using a monotony method.

A quasistatic contact problem with friction and adhesion has been analized in
[12] for viscoelastic body with long memory. The constitutive laws with internal states
variables has been used in various publications see for example [4, 5, 7].

The damage is one of the internal state variable considered by many authors,
we can see [1, 3, 6, 9].

In this paper we consider the processes frictional contact between a termo elastic
viscoplastic body with damage. We assume that the process is dynamic.

This article is organized as follows. In Section 2 we describe the mathematical
model for the problem. In Section 3 we introduce some notation, list the assumptions
on the problem’s data, and derive the variational formulation of the model. Finally
in Section 4 we state our main existence and uniqueness result which is based on
classical result of nonlinear first order evolution inequalities, equations with monotone
operators and the fixed point arguments.

For the mathematical problem we consider a rate-type constitutive equation for
bodies of the form

σ = Aε(u̇)+G
(
ε(u), ξ

)
+

∫ t

0

F
(
σ (s)−Aε(u̇ (s) ),ε(u (s))

)
ds− Ceθ, (1.1)

in which:
u, σ represent, respectively, the displacement field and the stress field where the dot
above denotes the derivative with respect to the time variable;
ξ, θ represent the damage, and the temperature;
A, G and F are, respectively, nonlinear operators describing the purely viscous, the
elastic and the viscoplastic properties of the material;
Ce = (cij) represents the thermal expansion tensor.

The differential inclusion used for the evolution of the damage field is

ξ̇ − k1∆ξ + ∂ϕF (ξ) 3 S(ε(u), ξ), in Ω× (0, T ), (1.2)
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where ϕF (ξ) denotes the subdifferential of the indicator function of the set F of
admissible damage functions defined by

F = {ξ ∈ H1(Ω); 0 ≤ ξ ≤ 1, a.e.in Ω}
and S are given constitutive functions which describe the sources of the damage in
the system. When ξ = 0 the material is completely damaged, when ξ = 1 the material
is undamaged, and for 0 < ξ < 1 there is partial damage.

The evolution of the temperature field θ is governed by the heat equation, ob-
tained from the conservation of energy and defined by the following differential equa-
tion for the temperature

θ̇ − divK(∆θ) = r(u̇, ξ) + q

K represent the thermal conductivity tensor, q(t) represent the density of volume
heat source and r is non linear function of velocity.

2. Problem statement

We consider an elasto-viscoplastic body which occupies a bounded domain Ω of
the space Rd(d = 2, 3). For Ω, the boundary Γ is assumed to be Lipschitz continuous,
and is partitioned into three disjoint measurable parts Γ1, Γ2 and Γ3, such that
measΓ1 > 0. Let T > 0 and let [0, T ] denotes the time interval of interest. The
body Ω is clamped on Γ1× (0, T ), and therfore, the displacement field vanishes there.
Surface traction of density f2 act on Γ2× (0, T ) and a body force of density f0 acts on
Ω×(0, T ). Morever the process is dynamic, and thus the inertial terms are included in
the equation of motion. The material is assumed to behave according to the general
elasto-viscoplastic constitutive law with damage and thermal effects given by (1.1)

With the assumption above, the classical formulation of a dynamic contact be-
tween an elasto-viscoplastic body and an obstacle with damage and thermal effects is
the following.
Problem P. Find a displacement field u : Ω × (0, T ) → Rd, a stress field σ : Ω ×
(0, T )→ Sd, a temperature θ : Ω×(0, T )→ R, and the damage field ξ : Ω× [0, T ]→ R
such that

σ = Aε(u̇)+G
(
ε(u), ξ

)
+

∫ t

0

F
(
σ (s)−Aε(u̇ (s) ),ε(u (s))

)
ds− Ceθ (2.1)

θ̇ − divK(∆θ) = r(u̇, ξ) + q, on Ω× (0, T ), (2.2)

ξ̇ − k1∆ξ + ∂ϕF (ξ) 3 S(ε(u), ξ), in Ω× (0, T ), (2.3)

divσ + f0 = ρü in Ω× (0, T ), (2.4)

u = 0 on Γ1 × (0, T ), (2.5)

σ · ν = f2 on Γ2 × (0, T ), (2.6)

−kij
∂θ

∂xi
nj = ke (θ − θR) + hτ (|u̇τ |) , on Γ3 × (0, T ), (2.7)

∂ξ

∂ν
= 0 on Γ× (0, T ), (2.8)
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|στ | < g ⇒ u̇τ = 0, on Γ3 × (0, T ),

|στ | = g ⇒ ∃λ ≥ 0 such that στ = −λu̇τ
(2.9)

θ = 0, on (Γ1 ∪ Γ2)× (0, T ), (2.10)

u(0) = u0, u̇(0) = v0, ξ(0) = ξ0, θ(0) = θ0, , in Ω, (2.11)

First, equations (2.1), (2.2) and (2.3) represent the elastic-viscoplastic constitutive law
with damage and thermal effects, equation (2.4) represents the equation of motion
where ρ represents the mass density. Equations (2.5) and (2.6) represent the displace-
ment and traction boundary condition, respectively. (2.7), (2.8) represent, respectively
on Γ, a Fourier boundary condition for the temperature and an homogeneous Neu-
mann boundary condition for the damage field on Γ. We assume that the contact is
bilateral, therfore, the normal displacement uν vanishes on Γ3 × (0, T ). We involve
the friction process with Tresca’s friction law, where the friction yield limit is g, which
is assumed to depend only on each point of Γ3, u̇τ denotes the tangential velocity
and στ represent the tangential stress. The strong inequality holds in stick zone and
the equality in slip zone. To simplify the notation, we do not indicate explcitely the
dependence of various functions on the variable x ∈ Ω ∪ Γ and t ∈ [0, T ] . Equation
(2.10) means that the temperature vanishes on (Γ1 ∪ Γ2)× (0, T ). The functions u0,
v0, ξ0and θ0 in (2.11) are the initial data.

3. Variational formulation and preliminaries

In this section, we list the assumptions on the data and derive a variational
formulation for the contact problem. To this end, we need to introduce some notations
and preliminary material. For more details, we refer the reader to [2, 8]. We denote
by Sd the space of second order symmetric tensors on Rd (d = 2, 3), while ‖·‖ denotes
the Euclidean norm.

Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary Γ and let ν denote
the unit outer normal on ∂Ω = Γ. We shall use the notations

H = L2(Ω)d =
{
u = (ui) : ui ∈ L2(Ω)

}
, H =

{
σ = (σij) : σij = σji ∈ L2(Ω)

}
,

H1(Ω)d = {u = (ui) ∈ H : ui ∈ H1(Ω)}, H1 = {σ ∈ H : divσ ∈ H}.

Here ε : H1(Ω)d → H and div : H1 → H are the deformation and divergence
operators, respectively, defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), divσ = (σij,j).

Here and below, the indices i and j run from 1 to d, the summation convention
over repeated indices is used and the index that follows a comma indicates a partial
derivative with respect to the corresponding component of the independent variable.
The spaces H, H, H1(Ω)d and H1 are real Hilbert spaces endowed with the canonical
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inner products given by:

(u,v)H =

∫
Ω

uividx, u,v ∈ H, (σ, τ )H =

∫
Ω

σijτijdx, ∀σ, τ ∈ H

(u,v)H1(Ω)d =

∫
Ω

u.vdx+

∫
Ω

∇u.∇vdx ∀u,v ∈H1(Ω)d,

where

∇v = (vi,j), ∀v ∈H1(Ω)d.

(σ, τ )H1 = (σ, τ )H + (divσ, divτ )H ∀σ, τ ∈ H1,

The associated norms are denoted by ‖ · ‖H , ‖ · ‖H, ‖ · ‖H1 and ‖ · ‖H1 , respectively.
Let HΓ = (H1/2(Γ))d and γ : H1(Γ))d → HΓ be the trace map. For every element
v ∈ H1(Ω)d, we also use the notation v to denote the trace map γv of v on Γ, and
we denote by vν and vτ the normal and tangential components of v on Γ given by

vν = v · ν, vτ = v−vνν. (3.1)

Similarly, for a regular (say C1) tensor field σ : Ω → Sd we define its normal and
tangential components by

σν = (σν) · ν, στ = σν − σνν,
and for all σ ∈ H1 the following Green’s formula holds

(σ, ε(v))H + (divσ,v)H =

∫
Γ

σν.vda ∀v ∈ H1(Ω)d. (3.2)

Finally, for any real Hilbert space X, we use the classical notation for the spaces
Lp(0, T ;X) and W k,p(0, T ;X), where 1 6 p 6 ∞ and k > 1. For T > 0 we denote
by C(0, T ;X) and C1(0, T ;X) the space of continuous and continuously differentiable
functions from [0, T ] to X, respectively, with the norms

‖f‖C(0,T ;X) = max
t∈[0,T ]

‖f (t) ‖X ,

‖f‖C1(0,T ;X) = max
t∈[0,T ]

‖f (t) ‖X + max
t∈[0,T ]

‖ḟ (t) ‖X ,

respectively. Moreover, we use the dot above to indicate the derivative with respect
to the time variable and if X1 and X2 are real Hilbert spaces then X1 ×X2 denotes
the product Hilbert space endowed with the canonical inner product (·,·)X1×X2

.
Now, let E denote the closed subspace of H1(Ω) given by

E = {γ ∈ H1(Ω) : γ = 0 on Γ1 ∪ Γ2}
Let V denote the closed subspace of H1 defined by

V = {v ∈ H1 : v = 0 on Γ1 and vν = 0 on Γ3}
Since measΓ1 > 0, the following Korn’s inequality holds:

‖ε(v)‖H ≥ cK‖v‖H1
∀v ∈ V, (3.3)

where the constant cK denotes a positive constant which may depends only on Ω, Γ1

Over the space V we consider the inner product given by

(u,v)V = (ε(u), ε(v))H, ∀u,v ∈ V. (3.4)
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Let ‖ · ‖V be the associated norm. It follows from Korn’s inequality (3.3) that the
norms ‖ · ‖H1

and ‖ · ‖V are equivalent on V . Then (V, ‖ · ‖V ) is a real Hilbert space.
Moreover, by the Sobolev trace theorem and (3.3), there exists a constant c0 > 0,
depending only on Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ c0‖v‖V ∀v ∈ V. (3.5)

The mechanical problem may be formulated as follows.

In the study of the Problem P, we consider the following assumptions:

The viscosity function A : Ω× Sd → Sd satisfies:

(a) There exists LA > 0 such that
|A(x, ε1)−A(x, ε2)| ≤ LA|ε1 − ε2| for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(b) There exists mA > 0 such that
(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) ≥ mA|ε1 − ε2|2 for all ε1, ε2 ∈ Sd,
a.e. x ∈ Ω.
(c) The mapping x 7→ A(x, ε) is Lebesgue measurable on Ω,
for any ε ∈ Sd.
(d) The mapping x 7→ A(x,0) is continuous on Sd, a.e. x ∈ Ω.

(3.6)

The elasticity operator G : Ω× Sd × R→ Sd satisfies:

(a) There exists LG > 0 such that
|G(x, ε1, ξ1)− G(x, ε2, ξ2)| ≤ LG

(
|ε1 − ε2|+ |ξ1 − ξ2|

)
,

for all ε1, ε2 ∈ Sd, for all ξ1, ξ2 ∈ R, a.e. x ∈ Ω.
(b) The mapping x 7→ G(x, ε, ξ) is Lebesgue measurable on Ω,
for any ε ∈ Sd, and for all ξ ∈ R.
(c) The mapping x 7→ G(x,0,0) belongs to H.

(3.7)

The visco-plasticity operator F : Ω× Sd × Sd → Sd satisfies:

(a) There exists LF > 0 such that
|F(x,σ1, ε1)−F(x,σ2, ε2)| ≤ LF

(
|σ1 − σ2|+ |ε1 − ε2|

)
,

for all σ1,σ2, ε1, ε2 ∈ Sd a.e. x ∈ Ω,
(b) The mapping x 7→ F(x,σ, ε) is Lebesgue measurable on Ω,
for any σ, ε ∈ Sd
(c) The mapping x 7→ F(x,0,0) belongs to H.

(3.8)

The damage source function S : Ω× Sd × R→ Sd satisfies:

(a) There exists LS > 0 such that
|S(x, ε1, ξ1)− S(x, ε2, ξ2)| ≤ LS

(
|ε1 − ε2|+ |ζ1 − ζ2|

)
,

for all ε1, ε2 ∈ Sd, ξ1, ξ2 ∈ R, a.e. x ∈ Ω.
(b) The mapping x 7→ S(x, ε, ξ) is Lebesgue measurable on Ω,
for any ε ∈ Sd,and for all ξ ∈ R.
(c) The mapping x 7→ S(x,0,0) belongs to H.

(3.9)
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The thermal expansion operator Ce : Ω× R→ R satisfies:

(a) There exists LCe
> 0 such that

|Ce(x,θ1)− Ce(x,θ2)| ≤ LCe
|θ1 − θ2| for all θ1,θ2 ∈ R,

a.e. x ∈ Ω.
(b) Ce = (cij) , cij = cji ∈ L∞ (Ω).
(c) The mapping x 7→ Ce(x,θ) is Lebesgue measurable on Ω,
for any θ ∈ R.
(d) The mapping x 7→ Ce(x,0) ∈ H.

(3.10)

The thermal conductivity operator K : Ω× R→ R satisfies:

(a) There exists LK > 0 such that
|K(x, r1)−K(x, r2)| ≤ LK |r1 − r2|, for all r1, r2 ∈ R, a.e. x ∈ Ω.
(b) kij = kji ∈ L∞ (Ω) , kijαiαj ≤ ckαiαj for some ck > 0,
for all (αi) ∈ R.
(c) The mapping x 7→ k(x,0) belongs to L2 (Ω).

(3.11)

We assume that the tangential function hτ : Γ3 × R→ R+ satisfies:

(a) There exists Lτ > 0 such that
|hτ (x, r1)−hτ (x, r2)| ≤ Lτ |r1− r2| for all r1, r2 ∈ R+, a.e. x ∈ Ω.
(b) The mapping x 7→ hτ (x, r) is Lebesgue measurable on Γ3 for
all r ∈ R+.
(c) The mapping x 7→ hτ (x, 0) belongs to L2(Γ3).

(3.12)

A concrete example of a tangential function hτ is given by

hτ (x, r) = λ (x) r, ∀r ∈ R+, a.e x ∈ Γ3,

where λ ∈ L∞ (Γ3,R+) represents some rate coefficient for the gradient of the tem-
perature.

The masse density satisfies

ρ ∈ L∞ (Ω) , there exists ρ∗ > 0 such that ρ (x) ≥ ρ∗, a.e x ∈ Ω (3.13)

and

g ∈ L∞(Γ3), g ≥ 0, a.e. on Γ3 (3.14)

We also suppose the following regularities

f0 ∈ L2(0, T ;H), f2 ∈ L2(0, T ;L2(Γ2)d), q ∈ L2
(
0, T ;L2 (Ω)

)
. (3.15)

The boundary and initial data satisfy

u0 ∈ V,v0 ∈ H (3.16)

ξ0 ∈ F (3.17)

θ0 ∈ E (3.18)

θR ∈ L2
(
0, T ;L2 (Γ3)

)
(3.19)

ke ∈ L∞ (Ω,R+) (3.20)
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The function r : V → L2 (Ω) satisfies that there exists a constant Lr > 0 such that

|r(v1, ξ1)−r(v2, ξ2)|
L2(Ω)

≤ Lr (|v1−v2|V + |ξ1−ξ2)|) (3.21)

∀ v1,v2 ∈ V, ξ1,ξ2 ∈ R

We use a modified inner product on H = L2 (Ω)
d

given by

((u,v))H = (ρu,v)H , ∀u,v ∈ H

that is, it is weighted with ρ. We let ‖.‖H be the associated norm, i.e

‖v‖H = (ρv,v)
1
2

H , ∀v ∈ H

The notation (·, ·)V ′×V represent the duality pairing between V ′ and V.
Then, we have

(u,v)V ′×V = ((u,v))H , ∀u ∈ H, ∀v ∈ V

It follows from assumption (3.13) that ‖.‖H and |.|H are equivalent norms on H, and
also the inclusion mapping of (V, |.|V ) into (H, ‖.‖H) is continuous and dense. We
denote by V ′ the dual space of V. Identifying H with its own dual, we can write the
Gelfand triple

V ⊂ H ⊂ V ′.

From assumption (3.15) we define f (t) ∈ V for a.e. t ∈ (0, T ) by

(f (t) ,v)V ′×V =

∫
Ω

f0(t) · v dx+

∫
Γ2

f2(t) · v da ∀v ∈ V , (3.22)

and note that

f ∈ L2 (0, T ;V ) .

We define the bilinear form j : H1 (Ω)×H1 (Ω)→ R

a(ς, ζ) = κ

∫
Ω

∇ς · ∇ζdx. (3.23)

Next we define the functional j : V → R by

j (v) =

∫
Γ3

g |vτ | da, ∀v ∈ V .

By using a standard arguments, we obtain the following variational formulation of
the mechanical problem (2.1)–(2.11).
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Problem PV. Find a displacement field u : [0, T ]→ V , a stress field σ : [0, T ]→ H,
a temperature θ : [0, T ]→ E, a damage ξ : [0, T ]→ E1, such that for a.e. t ∈ (0, T )

σ (t) = Aε(u̇ (t) )+G
(
ε(u (t) , ξ (t))

)
+

∫ t

0

F
(
σ (s)−Aε(u̇ (s) ),ε(u (s))

)
ds− Ceθ (t) (3.24)

(ü (t) , w − u̇ (t))V ′×V + (σ (t) , ε(w−u̇ (t)))H

+j (w)− j (u̇ (t)) ≥ (f (t) , w − u̇ (t))V ′×V , ∀w ∈ V (3.25)

θ̇ (t) +Kθ (t) = Ru̇ (t) +Q (t) , in E′ (3.26)

(ξ̇ (t) , ζ − ξ (t))L2(Ω) + a (ξ (t) , ζ − ξ (t))

≥ (S (ε (u (t)) , ξ (t)) , ζ − ξ (t))L2(Ω)

for all ξ (t) ∈ F, ζ ∈ F and t ∈ (0, T ) (3.27)

u(0) = u0, u̇(0) = v0, θ(0) = θ0, ξ(0) = ξ0, (3.28)

where Q : [0, T ]→ E′, K : E → E′, and R : V → E′ are given by

(Q (t) , η)E′×E =

∫
Γ3

keθR (t) ηda+

∫
Ω

q (t) ηdx, (3.29)

(Kτ, η)E′×E =

d∑
i,j=1

∫
Ω

kij
∂τ

∂xj

∂η

∂xi
dx+

∫
Γ3

keτηda, (3.30)

(Rv, η)E′×E =

∫
Ω

r (v) ηdx+

∫
Γ3

hr (|vr|) ηda, (3.31)

for all v ∈ V, η, τ ∈ E.
We notice that the variational Problem PV is formulated in terms of a displace-

ment field, a stress field, a temperature, and damage. The existence of the unique
solution of problem PV is stated and proved in the next section.

4. Existence and uniqueness result

The main results are stated by the following theorems.

Theorem 4.1. Assume that (3.6)–(3.21) hold and, then there exists a unique solution
{u,σ, θ, ξ} to problem PV . Moreover, the solution has the regularity

u ∈W 1,2(0, T ;V ) ∩ C1(0, T ;H) ∩W 2,2(0, T ;V ′), (4.1)

σ ∈ L2(0, T ;H), divσ ∈ L2(0, T ;V ′), (4.2)

θ ∈ C(0, T ;L2 (Ω)) ∩ L2(0, T ;E) ∩W 1,2(0, T ;E′), (4.3)

ξ ∈W 1,2(0, T ;L2 (Ω)) ∩ L2(0, T ;H1 (Ω)). (4.4)

We conclude that under the assumptions, the mechanical problem has a unique
weak solution with the regularity.
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The proof of this theorem will be carried out in several steps. It is based on
arguments of first order evolution nonlinear inequalities, evolution equations, and
fixed point arguments.

Let η ∈ L2(0, T ;V ′) be given, in the first step, we consider the following varia-
tional problem.
Problem PV1η. Find a displacement field uη : [0, T ]→ V , such that

(üη (t) , w − u̇η (t))V ′×V + (Aε(u̇η (t)), ε(w−u̇η (t)))H+

(σ (t) , ε(w−u̇ (t)))H + j (w)− j (u̇η (t)) + (η (t) , w − u̇η (t))V ′×V
≥ (f (t) , w − u̇η (t))V ′×V , ∀w ∈ V

(4.5)

uη (0) = u0, u̇η (0) = v0 (4.6)

We define fη (t) ∈ V ′ for a.e.t ∈ [0, T ] by

(fη (t) , w)V ′×V = (f (t)− η (t) , w)V ′×V . (4.7)

we deduce that
fη ∈ L2 (0, T ;V ′) . (4.8)

We define the operator A : V → V ′ by

(Av, w)V ′×V = (Aε(v), ε(w))H, ∀v,w ∈ V. (4.9)

We consider the following variational inequality.
Problem QVη. Find a displacement field vη : [0, T ]→ V , such that

(v̇η (t) , w − vη (t))V ′×V + (Avη (t), w−vη (t))V ′×V + j (w)− j (vη (t))

≥ (fη (t) , w − vη (t))V ′×V ∀w ∈ V, a.e.t ∈ [0, T ] ,
(4.10)

vη (0) = v0. (4.11)

In the study of Problem QVη, we have the following result.

Lemma 4.2. For all η ∈ L2 (0, T ;V ′), QVη has a unique solution with the regularity

vη ∈ C(0, T ;H) ∩ L2 (0, T ;V ) ∩W 1,2 (0, T ;V ′) ,

Proof. We begin by the step of regularization (see[8]). We define

h(t) = fη (t) , t ∈ [0, T ]

and for all ε > 0

jε (w) =

∫
Γ3

g

√
|wr|2 + ε2da, ∀w ∈ V.

After some algebra, for all ε > 0, jε is convex and C1 on V , and its Fréchet derivative
satisfies

∃C > 0, ∀w ∈ V, |j′ε (w)|V ≤ C |g|L2(Γ3) .

From (3.6) and the monotonicity of j′ε, it follows from classical first order evolution
equation that

∀ε > 0,vεη ∈ L2 (0, T ;V ) ∩W 1,2 (0, T ;V ′)

such that{
v̇εη (t) +

(
Avεη (t) + j′ε

(
vεη (t)

))
= h (t) in V ′, a.e.t ∈ [0, T ] ,

vεη (0) = 0
(4.12)
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Then, we obtain(
v̇εη (t) , w − vεη (t)

)
V ′×V +

(
Avεη (t) , w−vεη (t)

)
V ′×V + jε (w)− jε

(
vεη (t)

)
≥
(
h (t) , w − vεη (t)

)
V ′×V , ∀w ∈ V, a.e.t ∈ [0, T ]

(4.13)

From (4.12), we have(
v̇εη (t) ,vεη (t)

)
V ′×V +

(
Avεη (t) ,vεη (t)

)
V ′×V +

(
jε
(
vεη (t)

)
,vεη (t)

)
V ′×V

=
(
h (t) ,vεη (t)

)
V ′×V , a.e.t ∈ [0, T ]

Using (3.6), and the monotony of j′ε, we deduce that

∃C > 0, ∀t ∈ [0, T ] ,
∣∣vεη (t)

∣∣
H
≤ C,

∫ T

0

∣∣vεη (t)
∣∣2
V
dt ≤ C,

∫ T

0

∣∣v̇εη (t)
∣∣2
V
dt ≤ C.

Using a subsequence to find that{
vεη → vη weakly in L2 (0, T ;V ) and star weakly in L2 (0, T ;H) ,
v̇εη → v̇η star weakly in L2 (0, T ;V ′) . (4.14)

It follows that

vη ∈ C (0, T ;H) and vεη (t)→ vη (t) weakly in H, ∀t ∈ [0, T ] (4.15)

Integrating (4.13), we have ∀w ∈ L2 (0, T ;V )∫ T
0

(
v̇εη, w

)
V ′×V dt+

∫ T
0

(
Avεη, w

)
V ′×V dt+

∫ T
0
jε (w) dt

≥
∫ T

0

(
v̇εη,v

ε
η

)
V ′×V dt+

∫ T
0

(
Avεη,vεη

)
V ′×V dt

+
∫ T

0
jε
(
vεη
)
dt+

∫ T
0

(
h,w − vεη

)
V ′×V dt

≥ 1
2

∣∣vεη (T )
∣∣2
H
− 1

2

∣∣vεη (0)
∣∣2
H

+
∫ T

0

(
Avεη,vεη

)
V ′×V dt

+
∫ T

0
jε
(
vεη
)
dt+

∫ T
0

(
h,w − vεη

)
V ′×V dt

(4.16)

From (4.14), (4.15) and the weak lower semicontinuity, we obtain that for all w ∈
L2 (0, T ;V ):∫ T

0
(v̇η, w − vη)V ′×V dt+

∫ T
0

(Avη, w−vη)V ′×V dt+
∫ T

0
j (w)− j (vη) dt

≥
∫ T

0
(h,w − vη)V ′×V .

The previous inequality implies (see [8]) that

(v̇η (t) , w − vη (t))V ′×V + (Avη (t) , w−vη (t))V ′×V + j (w)− j (vη (t))

≥ (h (t) , w − vη (t))V ′×V , ∀w ∈ V, a.e.t ∈ [0, T ] .

We conclude that Problem QVη has at least a solution vη ∈ C (0, T ;H)∩L2 (0, T ;V )∩
W 1,2 (0, T ;V ′). For the uniqueness, let v1

η, v
2
η be two solutions of QVη. We use (4.10)

to obtain for a.e.t ∈ [0, T ] ,(
v̇2
η (t)− v̇1

η (t) ,v2
η (t)− v1

η (t)
)
V ′×V +

(
Av2

η (t)−Av1
η (t) ,v2

η (t)− v1
η (t)

)
V ′×V ≤ 0
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Integrating the previous inequality, using (3.6)and (4.9), we find

1

2

∣∣v2
η (t)− v1

η (t)
∣∣2
H

+mA

∫ t

0

∣∣v2
η (s)− v1

η (s)
∣∣2
V
ds ≤ 0

which implies

v1
η = v2

η.

�

Let now uη : [0, T ]→ V be the function defined by

uη (t) =

∫ t

0

vη (s) ds+ u0, ∀t ∈ [0, T ] . (4.17)

In the study of Problem PV1η, we have the following result.

Lemma 4.3. PV1η has a unique solution satisfying the regularity expressed in (4.1)

Proof. The proof of Lemma 4.3 is a consequence of Lemma 4.2 and the relation
(4.17). �

In the second step, we use the displacement field uη obtained in Lemma 4.3 to
consider the following variational problem.

Problem PV2η. Find a temperature field θη : [0, T ]→ E, such that

θ̇η (t) +Kθη (t) = Ru̇η (t) +Q (t) , in E′, a.e.t ∈ [0, T ] (4.18)

θη (0) = θ0 (4.19)

In the study of Problem PV2η, we have the following result.

Lemma 4.4. PV 2η has a unique solution satisfying

θη ∈ C
(
0, T ;L2 (Ω)

)
∩ L2 (0, T ;E) ∩W 1,2 (0, T ;E′) . (4.20)

Moreover, ∃C > 0 such that ∀η1, η2 ∈ L2 (0, T ;V ′)

|θη1 (t)− θη2 (t)|2L2(Ω) ≤ C
∫ t

0

|η1 (s)− η2 (s)|2V ds, ∀t ∈ [0, T ] . (4.21)

Proof. The result follows from classical first order evolution equation given in [2].

Here the Gelfand triple is given by

E ⊂ L2 (Ω) =
(
L2 (Ω)

)′ ⊂ E′.
The operator K is linear and coercive. By Korn’s inequality, we have

(Kτ, τ)E′×E ≥ C |τ |
2
E .

Here and below, C > 0 denotes a generic constant whose value may change from line
to line. �
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Let η ∈ C
(
0, T ;L2 (Ω)

)
be given and consider the following variational problem

for the damage filed.
Problem PV3η. Find the damage field ξη : [0, T ]→ H1(Ω) such that ξη(t) ∈ F and

(ξ̇η (t) , ζ − ξη (t))L2(Ω) + a (ξη (t) , ζ − ξη (t))
≥ (S (ε (u (t)) , ξη (t)) , ζ − ξη (t))L2(Ω)

(4.22)

ξη(0) = ξ0 (4.23)

for all ξ (t) ∈ F, ζ ∈ F and t ∈ (0, T )
Note that if f ∈ H then

(f, v)V ′×V = (f, v)H ,∀v ∈ H.

Theorem 4.5. Let V ⊂ H ⊂ V ′ be a Gelfand triple. Let K be a nonempty, closed,
and convex set of V . Assume that a (·, ·) : V ×V → R is a continuous and symmetric
bilinear form such that for some constants ζ > 0 and c0,

a (v, v) = c0 ‖v‖2H > ζ ‖v‖
2
V ,∀v ∈ H.

Then, for every u0 ∈ K and f ∈ L2 (0, T ;H), there exists a unique function u ∈
H1 (0, T ;H) ∩ L2 (0, T ;V ) such that u (0) = u0, u (t) ∈ K for all t ∈ [0, T ], and for
almost all t ∈ (0, T ),

(u̇ (t) , v − u (t))V ′×V + a (u (t) , v − u (t)) > (f (t) , v − u (t))H ,∀v ∈ K,

We apply this theorem to Problem PV3η.

Lemma 4.6. There exists a unique solution ξη to the auxiliary problem PV3η such
that:

ξη ∈W 1,2
(
0, T ;L2 (Ω)

)
∩ L2

(
0, T ;H1 (Ω)

)
. (4.24)

The above lemma follows from a standard result for parabolic variational inequalities.

Proof. The inclusion mapping of (H1 (Ω) , ‖ .‖H1(Ω)) into (L2 (Ω) , ‖ .‖L2(Ω) is contin-

uous and its range is dense. We denote by
(
H1 (Ω)

)′
the dual space of H1 (Ω) and,

identifying the dual of L2 (Ω) with itself, we can write the Gelfand triple

H1 (Ω) ⊂ L2 (Ω) ⊂
(
H1 (Ω)

)′
.

We use the notation (·, ·)(H1(Ω))′×H1(Ω) to represent the duality pairing between(
H1 (Ω)

)′
and H1 (Ω) . we have

(ξ, β)(H1(Ω))′×H1(Ω) = (ξ, β)L2(Ω) ,∀ξ ∈ L
2 (Ω) , β ∈ H1 (Ω)

and we note that F is a closed convex set in H1 (Ω). Then, using the definition (3.23)
of the bilinear form a, and the fact that ξη ∈ F . �

In the fourth step, we use the displacement field uη obtained in Lemma 4.3, θη
obtained in Lemma 4.4 and the damage ξη obtained in Lemma 4.6 to construct the
following Cauchy problem for the stress field.
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Problem PV4η. Find a stress field ση : [0, T ]→ H such that

ση (t) = G
(
ε(uη (t) , ξη (t))

)
+

∫ t

0

F
(
ση (s) , ε(uη (s))

)
ds− Ceθ (t)

∀t ∈ [0, T ] . (4.25)

In the study of Problem PV4η, we have the following result.

Lemma 4.7. PV4ηhas a unique solutions ση ∈W 1,2 (0, T ;H). Moreover, if σi,ui, θi
and ξi represent the solutions of Problems PV 4η, PV 1η, PV 2η and, PV 3η respec-
tively, for ηi ∈ L2 (0, T ;V ′) , i = 1, 2 then there exists C > 0 such that

|σ1(t)−σ2(t)|2H ≤ C(|u1 (t)−u2 (t)|2V + |θ1 (t)−θ2 (t)|2L2(Ω) +

|ξ1 (t)−ξ2 (t)|2L2(Ω) +

∫ T

0

|u1 (s)−u2 (s)|2V ds) ∀t ∈ [0, T ] (4.26)

Proof. Let Λη : L2 (0, T ;H)→ L2 (0, T ;H) be the operator given by

Λησ(t) =G
(
ε(uη (t) , ξη (t))

)
+

∫ t

0

F
(
σ (s) , ε(uη (s))

)
ds− Ceθ (t) (4.27)

for all ση ∈ L2 (0, T ;H) and t ∈ [0, T ]. For σ1,σ2 ∈ L2 (0, T ;H), we use (4.27) and
(3.8) to obtain for all t ∈ [0, T ]:

|Λησ1(t)−Λησ2(t)|H ≤ LF |σ1(s)−σ2(s)|H ds.
It follows from this inequality that for large p enough, the operator Λpη is a

contraction on the Banach space L2 (0, T ;H), and therefore there exists a unique
element ση ∈ L2 (0, T ;H) such that Ληση(t) =ση. Moreover, ση is the unique solution
of Problem PV4η, and using (4.25), the regularity of uη, the regularity of ξη, the
regularity of θη, and the properties of the operators G, F , and Ce, it follows that
ση ∈ W 1,2 (0, T ;V ′). Consider now η1,η2 ∈ L2 (0, T ;V ′) and for i = 1, 2 denote
uηi = ui, σηi = σi, ξηi = ξi and θηi = θi. We have

σi(t) =G
(
ε(ui (t) , ξi (t))

)
+

∫ t

0

F
(
σi (s) , ε(ui (s))

)
ds− Ceθi (t)

and using the properties (3.7), (3.8), (3.10) and of G, F and Ce we find

|σ1(t)−σ2(t)|2H ≤ C(|u1 (t)−u2 (t)|2V + |θ1 (t)−θ2 (t)|2L2(Ω) + |ξ1 (t)−ξ2 (t)|2L2(Ω)

+
∫ T

0
|σ1(s)−σ2(s)|2H ds) +

∫ T
0
|u1 (s)−u2 (s)|2V ds, ∀t ∈ [0, T ] .

We use Gronwall argument in the previous inequality to deduce (4.26), which con-
cludes the proof of Lemma 4.7. �

Finally, we define the operator

Λ : L2 (0, T ;V ′)→ L2 (0, T ;V ′)

by
(Λη(t),w)V ′×V = (Gε(uη (t) , ξη (t))), ε(w))H
+
( ∫ t

0
F
(
ση (s) , ε(uη (s))

)
ds− Ceθη (t) , ε(w)

)
H, ∀t ∈ [0, T ]

(4.28)
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Here, for every η ∈ L2 (0, T ;V ′) uη, θη, ξη and ση represent the displacement field,
the temperature field, the damage and the stress field obtained in Lemmas 4.3, 4.4,
4.6 and 4.7 respectively. We have the following result.

Lemma 4.8. The operator Λ has a unique fixed point η ∈ L2 (0, T ;V ′) such that
Λη = η.

Proof. Let now η1,η2 ∈ L2 (0, T ;V ′). We use the notation that uηi = ui, u̇ηi = vηi =
vi, σηi = σi,ξηi = ξi and θηi = θi, for i = 1, 2. Using (3.4),(3.6),(3.8), (3.15), and
(4.28) to find

|Λη1(t)−Λη2(t)|2V ′ ≤ C(|u1 (t)−u2 (t)|2V + |θ1 (t)−θ2 (t)|2L2(Ω) + |ξ1 (t)−ξ2 (t)|2L2(Ω)

+
∫ T

0
|σ1(s)−σ2(s)|2H ds+

∫ T
0
|u1 (s)−u2 (s)|2V ds)

(4.29)
We use the estimate (4.26) to obtain

|Λη1(t)−Λη2(t)|2V ′ ≤ C(|u1 (t)−u2 (t)|2V + |θ1 (t)−θ2 (t)|2L2(Ω) + |ξ1 (t)−ξ2 (t)|2L2(Ω)

+
∫ T

0
|u1 (s)−u2 (s)|2V +

∫ T
0
|θ1 (s)−θ2 (s)|2L2(Ω) ds)

(4.30)
Moreover, from (4.10) we obtain

(v̇1 − v̇2,v1 − v2)V ′×V + (Av1 −Av2,v1 − v2)V ′×V
≤ − (η1 − η2,v1 − v2)V ′×V

We integrate this equality with respect to time.
We use the initial conditions v1 (0) = v2 (0) = v0, the relation (4.9) and (3.6) to find
that

mA

∫ T

0

|v1 (s)−v2 (s)|2V ds ≤ C
∫ T

0

|η1(t)−η2(t)|V |v1 (s)−v2 (s)|V ds

For all t ∈ [0, T ]. Then, using the inequality 2ab ≤ a2

mA
+mAb

2 we obtain∫ T

0

|v1 (s)−v2 (s)|2V ds ≤ C
∫ T

0

|η1(s)−η2(s)|V ds, ∀t ∈ [0, T ] (4.31)

Since u1 (0) = u2 (0) = u0 we have

|u1 (t)−u2 (t)|2V ≤ C
∫ T

0

|v1 (s)−v2 (s)|2V ds

We use the previous inequality and (4.30) to obtain

|Λη1(t)−Λη2(t)|2V ′ ≤ C(
∫ T

0
|v1 (s)−v2 (s)|2V ds+

|θ1 (t)−θ2 (t)|2L2(Ω) + |ξ1 (t)−ξ2 (t)|2L2(Ω) +
∫ T

0
|θ1 (s)−θ2 (s)|2L2(Ω) ds)

The estimates (4.31) and (4.21) imply that

|Λη1(t)−Λη2(t)|2V ′ ≤
∫ T

0

C |η1(s)−η2(s)|2V ′ ds
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Reiterating this inequality m times leads to

|Λmη1−Λmη2|
2
L2(0,T ;V ′) ≤

CmTm

m!
|η1−η2|

2
L2(0,T ;V ′)

For m sufficiently large, Λm is a contraction on the Banach space L2 (0, T ;V ′), and
so Λ has a unique fixed point. �

Now, we have all the ingredients needed to prove Theorem 4.1.

Proof. Let η∗ ∈ L2 (0, T ;V ′) be the fixed point of Λ defined by (4.28) and denote

u= uη∗ , θ=θη∗ , ξ=ξη∗ , σ = ση∗ (4.32)

σ = Aε(u̇) + σ∗ (4.33)

We prove that (u, σ, ξ, θ) , satisfies (3.24)-(3.28) and (4.1)-(4.4). Indeed, we write
(4.25) for η = η∗ and use (4.32)-(4.33), we obtain that (3.24) is satisfied. We consider
(4.5) for η = η∗ and use the first equality in (4.32) to find

(ü (t) , w − u̇ (t))V ′×V + (Aε(u̇), ε(w−u̇ (t))H + j (w)− j (u̇ (t))
+ (η∗ (t) , w−u̇ (t))V ′×V ≥ (f (t) , w − u̇ (t))V ′×V , ∀w ∈ V (4.34)

Equation Λη∗ = η∗ combined with (4.28), (4.32) and (4.33) shows that

(η∗ (t) , w)V ′×V = G (ε (u (t)) , ε (w))H+( ∫ t
0
F
(
σ (s)−Aε(u̇ (s) ),ε(u (s))

)
ds− Ceθ (t) , ε (w)

)
∀w ∈ V (4.35)

We now substitute (4.35) into (4.34) and use (4.33) to see that (3.25) is satisfied. We
write (4.18) for η = η∗ and use (4.32) to find that (3.26) is also satisfied. Next, (3.28)
is satisfied when the regularities (4.1) and (4.4) follow from Lemmas 4.3 and 4.4. The
regularity σ ∈ L2 (0, T ;H) follows from Lemmas 4.3 and 4.4, the assumptions (3.6)
and (4.33). Finally (3.25) implies that

divσ + f0 (t) = ρü (t) in V ′, a.e.t ∈ [0, T ]

and therefore by (3.13) and (3.15), we find divσ ∈ L2 (0, T ;V ′). We deduce that
the regularity (4.3) holds which concludes the existence part of Theorem 4.1. The
uniqueness of Theorem 4.1 is a consequence of the uniqueness of the fixed point of the
operator Λ defined by (4.28) and the unique solvability of Problems PV1η, PV2η,
PV3η and PV4η. �
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