
Stud. Univ. Babeş-Bolyai Math. 61(2016), No. 4, 473–488

Coupled fixed point theorems for rational type
contractions

Anca Oprea and Gabriela Petruşel
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Abstract. In this paper, we will consider the coupled fixed problem in b-metric
space for single-valued operators satisfying a generalized contraction condition of
rational type. First part of the paper concerns with some fixed point theorems,
while the second part presents a study of the solution set of the coupled fixed
point problem. More precisely, we will present some existence and uniqueness
theorems for the coupled fixed point problem, as well as a qualitative study of
it (data dependence of the coupled fixed point set, well-posedness, Ulam-Hyers
stability and the limit shadowing property of the coupled fixed point problem)
under some rational type contraction assumptions on the mapping.
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1. Introduction and preliminaries

The notion of b-metric spaces and discussion on the topological structure of it
appeared in several papers, such as L.M. Blumenthal [2], S. Czerwik [6], N. Bourbaki
[5], Heinonen [10].

On the other hand, the concept of coupled fixed point problem, was considered,
for the first time, by Opoitsev in [14]-[15], but a very fruitful approach in this field
was proposed by D. Guo, V. Lashmikantham [9] and T. Gnana Bhaskar and V. Lash-
mikantham [7]. Later on, many results related to this kind of problem appeared (see,
for example [8], [13],. . . ).

Moreover, starting with the paper of Dass and Gupta [9], several extensions of
the contraction principle considered the case of self mappings satisfying some rational
type contraction assumptions, see, for example, [7].
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Our aim is to consider both of the above research directions. More precisely,
we will prove, using some adequate fixed point theorems for monotone rational con-
tractions in ordered b-metric spaces, some coupled fixed point theorems for operators
T : X ×X → X satisfying some rational type assumptions on comparable elements.

We shall recall some well known notions and definition of the b-metric spaces.

Definition 1.1. Let X be a set and let s ≥ 1 be a given real number. A functional
d : X ×X → R+ is said to be a b-metric if the following axioms are satisfied:

1. if x, y ∈ X, then d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x) for all x, y ∈ X;

3. d(x, z) ≤ s[d(x, y) + d(y, z)], for all x, y, z ∈ X.

A pair (X, d) with the above properties is called a b-metric space.

Let (X,≤) be a partially ordered set and d a metric on X. Notice that we can
endow the product space X ×X with the partial order ≤p given by

(x, y) ≤p (u, v)⇔ x ≤ u, y ≥ v.

Definition 1.3. Let (X,≤) be a partially ordered set and let T : X × X → X. We
say that T has the mixed monotone property if T (·, y) is monotone increasing for any
y ∈ X and T (x, ·) is monotone decreasing for any x ∈ X.

Lemma 1.4. Let (X, d) be a b-metric space. Then the sequence (xn)n∈N ⊂ X is called:

i) convergent if and only if there exists x ∈ X such that d(xn, x)→ 0 as n→∞.
In this case we write lim

n→∞
xn = x;

ii) Cauchy if and only if d(xn, xm)→ 0 as n,m→∞.

If (X, d) is a metric space and T : X×X → X is an operator, then by definition,
a coupled fixed point for T is a pair (x∗, y∗) ∈ X ×X satisfying{

x∗ = T (x∗, y∗)
y∗ = T (y∗, x∗)

(P1)

We will denote by CFix(T ) the coupled fixed point set for T .

The aim of this paper is to present, in the framework of complete ordered b-metric
spaces, some existence and uniqueness theorems for the coupled fixed point problem,
as well as, a qualitative study of this problem (data dependence of the coupled fixed
point set, well-posedness, Ulam-Hyers stability and the limit shadowing property of
the coupled fixed point problem) under some rational type contraction assumptions
on the mapping. Our results extend and complement some theorems given in the
recent literature, see e.g. [21], [22].

2. Fixed point theorems

In this part of the paper, we will present a fixed point theorems in ordered
b-metric spaces for a single-valued operstor satisfying a rational type contraction
condition.

Theorem 2.1. Let (X,≤) be a partially ordered set and d : X×X → R+ be a complete
b-metric with constant s ≥ 1. Let f : X → X be an operator which has closed graph
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with respect to d and it is increasing with respect to ” ≤ ”. Suppose that there exists
α, β ≥ 0 with α+ βs < 1 satisfying

d(f(x), f(y)) ≤ α · d(y, f(y))[1 + d(x, f(x))]

1 + d(x, y)
+ β · d(x, y), (2.1)

for x, y ∈ X with x ≤ y .
If there exists x0 ∈ X such that x0 ≤ f(x0), then there exists x∗ ∈ X such that

x∗ = f(x∗) and (fn(x0))n∈N → x∗, as n→∞.
Proof. We have two cases:
Case 1. If f(x0) = x0, then Fix(f) 6= ∅.
Case 2. Suppose that x0 < f(x0).

Using that f is an increasing operator and by mathematical induction, we have

x0 < f(x0) ≤ f2(x0) ≤ . . . ≤ fn(x0) ≤ fn+1(x0) ≤ . . .

By this method we get a sequence (xn)n⊂N ∈ X defined by

xn+1 = f(xn) = f(f(xn−1)) = f2(xn−1) = . . . = fn(x1) = fn+1(x0).

If there exists n ≥ 1 such that xn+1 = xn, then f(xn) = xn. So we get that xn
is a fixed point of f , which implies Fix(f) 6= ∅.

Suppose that xn+1 6= xn for n ≥ 0.
Since xn ≤ xn+1 for any n ∈ N, we have

d(xn, xn+1) = d(f(xn−1), f(xn))

≤ α · d(xn, f(xn))[1 + d(xn−1, f(xn−1))]

1 + d(xn−1, xn)
+ β · d(xn−1, xn)

=
α · d(xn, xn+1)[1 + d(xn−1, xn)]

1 + d(xn−1, xn)
+ β · d(xn−1, xn)

= α · d(xn, xn+1) + β · d(xn−1, xn).

So we obtain

d(xn, xn+1) ≤ β

1− α
· d(xn−1, xn) for any n ∈ N.

Using mathematical induction we get that

d(xn, xn+1) ≤ β

1− α
· d(xn−1, xn) ≤ . . . ≤

(
β

1− α

)n
· d(x0, x1)

or

d(fn(x0), fn+1(x0)) ≤
(

β

1− α

)n
· d(x0, f(x0)) for any n ∈ N.

Let n ∈ N and p ∈ N∗. We will prove that (xn)n∈N defined by xn = fn(x0) is a
Cauchy sequence in X.

d(fn(x0), fn+p(x0)) ≤ s · d(fn(x0), fn+1(x0)) + s2 · d(fn+1(x0), fn+2(x0)) + . . .

+sp−1 · d(fn+p−2(x0), fn+p−1(x0)) + sp−1 · d(fn+p−1(x0), fn+p(x0)).

We denote

A =
β

1− α
.
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So we obtain

d(fn(x0), fn+p(x0)) ≤ s ·An · d(x0, f(x0)) + s2 ·An+1 · d(x0, f(x0)) + . . .

+sp−1 ·An+p−2 · d(x0, f(x0)) + sp ·An+p−1 · d(x0, f(x0))

= s ·An[1 + s ·A+ . . .+ (s ·A)p−1] · d(x0, f(x0)) = s ·An · 1− (s ·A)p

1− s ·A
· d(x0, f(x0)).

But A =
β

1− α
<

1

s
, then we get that

d(fn(x0), fn+p(x0)) ≤ s ·An · 1− (s ·A)p

1− s ·A
· d(x0, f(x0))→ 0 as n→∞.

Hence (fn(x0))n∈N is a Cauchy sequence on X. We also know that (X, d) is
a complete b-metric space. So there exists x∗ ∈ X such that (fn(x0))n∈N → x∗ as
n→∞. Because f has closed graph, then x∗ ∈ Fix(f), which implies Fix(f) 6= ∅.

Or f is continuous, we have

f(x∗) = f( lim
n→∞

xn) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = x∗. �

A uniqueness result concerning the fixed point equation is the following.
Theorem 2.2. Suppose that all the hypotheses of Theorem 2.1. take place. Addition-
ally, suppose that the following condition holds: for all x, y ∈ X there exists z ∈ X
such that z ≤ x and z ≤ y.

Then Fix(f) = {x∗}.
Proof. Suppose that x∗, y∗ ∈ X are two fixed points of f . We have two cases:
Case 1. x∗ and y∗ are comparable. Suppose x∗ ≤ y∗(or y∗ ≤ x∗ is the same)

d(x∗, y∗) = d(f(x∗), f(y∗)) ≤ α · d(y∗, f(y∗))[1 + d(x∗, f(x∗))]

1 + d(x∗, y∗)
+ β · d(x∗, y∗)

= β · d(x∗, y∗).

Since β < 1, this is only possible when d(x∗, y∗) = 0. This implies x∗ = y∗, so
Fix(f) = {x∗}.
Case 2. x∗ and y∗ are not comparable.

By our additional assumption, we have that there exists z ∈ X with z ≤ x∗ and
z ≤ y∗.

Since z ≤ x∗, then fn(z) ≤ fn(x∗) = x∗ for any n ∈ N.
We obtain

d(fn(z), x∗) = d(fn(z), fn(x∗)) ≤ α · d(fn−1(x∗), fn(x∗))[1 + d(fn−1(z), fn(z)]

1 + d(fn−1(z), fn−1(x∗))

+ β · d(fn−1(z), fn−1(x∗)) = β · d(fn−1(z), fn−1(x∗)) = β · d(fn−1(z), x∗)

So we have

d(fn(z), x∗) ≤ β · d(fn−1(z), x∗) ≤ β2 · d(fn−2(z), x∗) ≤ . . . ≤ βn · d(z, x∗)

and since β < 1, βn → 0 then we get that

lim
n→∞

d(fn(z), x∗) = 0
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This implies lim
n→∞

fn(z) = x∗. Using a similar argument, we get that lim
n→∞

fn(z) = y∗.

Then x∗ = y∗.
A global version of the previous result is the following:

Theorem 2.3. Let (X, d) be a complete b- metric space with constant s ≥ 1, f :
X → X be an operator of X with the following condition: there exists α, β ≥ 0 with
max{α, β

1−α} <
1
s such that

d(f(x), f(y)) ≤ α · d(y, f(y))[1 + d(x, f(x))]

1 + d(x, y)
+ β · d(x, y), (2.2)

for x, y ∈ X. Then f has a unique fixed point.
Proof. Let x0 ∈ X be arbitrary chosen. Using the same method as in previous proof,
we can construct a sequence (xn)n∈N given by xn+1 = f(xn) for all n ∈ N, which is a
Cauchy sequence.

Since (X, d) is a complete b-metric space, we get that there exists x∗ ∈ X such
that lim

n→∞
xn = x∗. Then, we have

d(x∗, f(x∗)) ≤ s · d(x∗, f(xn)) + s · d(f(xn), f(x∗))

≤ s · d(x∗, f(xn)) + s · α · d(x∗, f(x∗))[1 + d(xn, f(xn))]

1 + d(xn, x∗)
+ s · β · d(xn, x

∗)

= s · d(x∗, xn+1) + s · α · d(x∗, f(x∗))[1 + d(xn, xn+1)]

1 + d(xn, x∗)
+ s · β · d(xn, x

∗).

Thus, we obtain

d(x∗, f(x∗))

[
1 + d(xn, x

∗)− s · α− s · α · d(xn, xn+1)

1 + d(xn, x∗)

]
≤ s · d(x∗, xn+1) + s · β · d(xn, x

∗).

Letting n → ∞ we have d(x∗, f(x∗))(1 − s · α) ≤ 0. Thus d(x∗, f(x∗)) = 0, i.e.,
x∗ ∈ Fix(f).

We prove that x∗ is the unique fixed point of f . Suppose that y∗ is a fixed point
of f , i.e. f(y∗) = y∗. Then

d(y∗, x∗) = d(f(y∗), f(x∗)) ≤ α · d(x∗, f(x∗))[1 + d(y∗, f(y∗))]

1 + d(x∗, y∗)
+ β · d(y∗, x∗)

Hence d(y∗, x∗) ≤ β · d(y∗, x∗) and thus y∗ = x∗.

Therefore x∗ is the unique fixed point of f .

3. Coupled fixed point theorems

In this section, using the fixed point theorems proved in Section 2, we will obtain
some existence and uniqueness theorems for the coupled fixed point problem.
Theorem 3.1. Let (X,≤) be a partially ordered set and d : X×X → R+ be a complete
b-metric on X with constant s ≥ 1. Let T : X ×X → X be an operator with closed
graph (or in particular, it is continuous) which has the mixed monotone property on
X ×X. Assume that the following conditions are satisfied:
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i) Suppose that there exists α, β ≥ 0 with β
1−α <

1
s such that

d(T (x, y), T (u, v)) + d(T (y, x), T (v, u))

≤ α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+β · [d(x, u) + d(y, v)], (3.1)

for all (x, y), (u, v) ∈ X ×X with x ≤ u, y ≥ v ;
ii) there exists x0, y0 ∈ X such that x0 ≤ T (x0, y0), y0 ≥ T (y0, x0), i.e.

(x0, y0) ≤p (T (x0, y0), T (y0, x0)).
Then, the following conclusions hold:
a) there exists (x∗, y∗) ∈ X ×X a solution of the coupled fixed point problem

(P1), such that the sequences (xn)n∈N, (yn)n∈N in X defined by{
xn+1 = T (xn, yn),

yn+1 = T (yn, xn), for all n ∈ N.

have the property that (xn)n∈N → x∗, (yn)n∈N → y∗ as n→∞.
b) in particular, if d is a continuous b-metric on X, then

d(xn, x
∗) + d(yn, y

∗) ≤ s ·An

1− s ·A
[d(x0, x1) + d(y0, y1)]

where A = 2β
1−2α and

{
x1 = T (x0, y0)

y1 = T (y0, x0).

Proof. By ii) we have that z0 = (x0, y0) ≤p (T (x0, y0), T (y0, x0)) = (x1, y1) = z1. So
we have z0 ≤p z1.

If we consider x2 = T (x1, y1) and y2 = T (y1, x1), then we get x2 = T (x1, y1) =
T 2(x0, y0) and y2 = T (y1, x1) = T 2(y0, x0). Using the mixed monotone property of
T , we get

x2 = T (x1, y1) ≥ T (x0, y0) = x1 implies x1 ≤ x2
y2 = T (y1, x1) ≤ T (y0, x0) = y1 implies y1 ≥ y2

Hence z1 = (x1, y1) ≤p (x2, y2) = z2.
By this approach we obtain the sequences (xn)n∈N, (yn)n∈N in X with{

xn+1 = T (xn, yn)

yn+1 = T (yn, xn)

and by mathematical induction we obtain zn = (xn, yn) ≤p (xn+1, yn+1) = zn+1,
which implies (zn)n∈N is a monotone increasing sequence in (Z,≤p), where Z = X×X.

Consider the metric d̃ : Z × Z → R+ , defined by

d̃((x, y), (u, v)) = d(x, u) + d(y, v).

Then, d̃ is a b-metric on Z with the same constant s ≥ 1 and if (X, d) is complete,

we have (Z, d̃) is complete, too.
Let F : Z → Z be an operator defined by F (x, y) = (T (x, y), T (y, x)), ∀(x, y) ∈ Z.
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We have zn+1 = F (zn), for n ≥ 0 where z0 = (x0, y0). Using the mixed monotone
property of T , then the operator F is monotone increasing with respect to ” ≤p ” i.e.
(x, y), (u, v) ∈ Z, with (x, y) ≤p (u, v)⇒ F (x, y) ≤p F (u, v).

Because T has a closed graph (or, in particulat it is continuous on X×X), then
F has a closed graph (or respectively is continuous on Z).

F is a contraction in (Z, d̃) on all comparable elements of Z. Let z = (x, y) ≤p
(u, v) = w ∈ Z, so we have

d̃(F (z), F (w)) = d̃((T (x, y), T (y, x)), (T (u, v), T (v, u))

= d(T (x, y), T (u, v)) + d(T (y, x), T (v, u))

≤ α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+β · [d(x, u) + d(y, v)]

=
α · d̃(w,F (w))[1 + d̃(z, F (z))]

1 + d̃(z, w)
+ β · d̃(z, w).

The operator F : Z → Z has the following properties:
1) F : Z → Z has a closed graph;
2) F : Z → Z is increasing on Z;
3) there exist z0 = (x0, y0) ∈ Z such that z0 ≤p F (z0);

4) there exists α, β ≥ 0 with β
1−α <

1
s such that

d̃(F (z), F (w)) ≤ α · d̃(w,F (w))[1 + d̃(z, F (z))]

1 + d̃(z, w)
+ β · d̃(z, w).

We can apply the conclusion of the Theorem 2.1. and we get that F has at least
one fixed point. Hence, there exists z∗ ∈ Z with F (z∗) = z∗. Let z∗ = (x∗, y∗) ∈ Z,
so we have F (x∗, y∗) = (x∗, y∗).

This implies

(T (x∗, y∗), T (y∗, x∗)) = (x∗, y∗)⇒

{
x∗ = T (x∗, y∗)

y∗ = T (y∗, x∗)

and the sequences (xn)n∈N, (yn)n∈N in X defined by{
xn+1 = T (xn, yn)

yn+1 = T (yn, xn)
for n ∈ N

have the property that xn → x∗ and yn → y∗ as n→∞.
We know that zn+1 = F (zn) = F (xn, yn) for n ≥ 0. This yields to

d̃(zn, zn+1) = d̃(F (zn−1), F (zn))

= d̃((T (xn−1, yn−1), T (yn−1, xn−1)), (T (xn, yn), T (yn, xn)))

= d(T (xn−1, yn−1), T (xn, yn)) + d(T (yn−1, xn−1), T (yn, xn))

≤ α[d(xn, T (xn, yn))+d(yn, T (yn, xn))][1+d(xn−1, T (xn−1, yn−1))+d(yn−1, T (yn−1, xn−1))]

1+d(xn−1, xn)+d(yn−1, yn)

+β[d(xn−1, xn) + d(yn−1, yn)]
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=
α · d̃(zn, F (zn))[1 + d̃(zn−1, F (zn−1))]

1 + d̃(zn−1, zn)
+ β · d̃(zn−1, zn)

=
α · d̃(zn, F (zn))[1 + d̃(zn−1, zn)]

1 + d̃(zn−1, zn)
+ β · d̃(zn−1, zn) = α · d̃(zn, zn+1) + β · d̃(zn−1, zn).

This yields to

d̃(zn, zn+1) ≤ β

1− α
· d̃(zn−1, zn) ≤

(
β

1− α

)2

· d̃(zn−2, zn−1)

≤ . . . ≤
(

β

1− α

)n
· d̃(z0, z1)

where β
1−α <

1
s < 1.

We denote A = β
1−α < 1. Moreover, for n ∈ N and p ∈ N∗, we have

d̃(zn, zn+p) ≤ s · d̃(zn, zn+1) + s2 · d̃(zn+1, zn+2) + . . .+ +sp−1 · d̃(zn+p−1, zn+p)

≤ s ·An · d̃(z0, z1) + s2 ·An+1 · d̃(z0, z1) + . . .+ sp−1 ·An+p−1 · d̃(z0, z1)

≤ s ·An · [1 + s ·A+ . . .+ (s ·A)p−1] · d̃(z0, z1)

= s ·An · 1− (s ·A)p−1

1− s ·A
· d̃(z0, z1) ≤ s ·An · 1

1− s ·A
· d̃(z0, z1).

If the b-metric is continuous, letting p→∞ we obtain

d̃(zn, z
∗) ≤ s ·An

1− s ·A
· d̃(z0, z1).

But zn = (xn, yn), so we get

d̃((xn, yn), z∗) ≤ s ·An

1− s ·A
· d̃((x0, y0), (x1, y1))

and, by definition of d̃, we finally get

d(xn, z
∗) + d(yn, z

∗) ≤ s ·An

1− s ·A
· [d(x0, x1) + d(y0, y1)]. �

The following theorem gives the uniqueness of the coupled fixed point.
Theorem 3.2. Consider that we have the hypotheses of Theorem 3.1. and the following
condition holds:

for all (x, y), (u, v) ∈ X ×X there exists (z, w) ∈ X ×X such that

(z, w) ≤p (x, y) and (z, w) ≤p (u, v).

Then CFix(T ) = {(x∗, y∗)}.
Proof. The operator T verifies the hypotheses of Theorem 3.1. Hence there exists
(x∗, y∗) ∈ Z := X ×X such that{

x∗ = T (x∗, y∗)

y∗ = T (y∗, x∗)

Let (x, y) ∈ CFix(T ) and d̃ : Z × Z → R+, defined by

d̃((x, y), (u, v)) = d(x, u) + d(y, v),
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where Z = X ×X.
We have two cases:

Case 1. (x∗, y∗) ≤p (x, y), which implies

d̃((x∗, y∗), (x, y)) = d̃((T (x∗, y∗), T (y∗, x∗)), (T (x, y), T (y, x)))

= d(T (x∗, y∗), T (x, y)) + d(T (y∗, x∗), T (y, x))

≤ α · [d(x, T (x, y)) + d(y, T (y, x))][1 + d(x∗, T (x∗, y∗)) + d(y∗, T (y∗, x∗))]

1 + d(x∗, x) + d(y∗, y)

+β · [d(x∗, x) + d(y∗, y)] = β · [d(x∗, x) + d(y∗, y)] = β · d̃((x∗, y∗), (x, y))

This yields to

d̃((x∗, y∗), (x, y)) ≤ β · d̃((x∗, y∗), (x, y))

or
(1− β) · d̃((x∗, y∗), (x, y)) ≤ 0 (but 1− β > 0)

Hence, we have
(x∗, y∗) = (x, y).

Case 2. (x∗, y∗), (x, y) are not comparable.
Let F : Z → Z be defined by F (x, y) = (T (x, y), T (y, x)) ∀(x, y) ∈ Z. There

exists (z, w) ∈ Z, such that (z, w) ≤p (x∗, y∗), implies Fn(z, w) ≤p Fn(x∗, y∗) because
F is an increasing operator and (z, w) ≤p (x, y), implies Fn(z, w) ≤p F (x, y), F is an
increasing operator.

We have

d̃(Fn(z, w), (x∗, y∗)) = d̃(Fn(z, w), Fn(x∗, y∗)) = d̃(F (Fn−1(z, w)), F (Fn−1(x∗, y∗)))

≤ α · d̃(Fn−1(x∗, y∗), Fn(x∗, y∗))[1 + d̃(Fn−1(z, w), Fn(z, w))]

1 + d̃(Fn−1(z, w), Fn−1(x∗, y∗))

+β · d̃(Fn−1(z, w), Fn−1(x∗, y∗))

= β · d̃(Fn−1(z, w), Fn−1(x∗, y∗)).

By mathematical induction we get

d̃(Fn(z, w), Fn(x∗, y∗)) ≤ β · d̃(Fn−1(z, w), Fn−1(x∗, y∗))

≤ . . . ≤ βn · d̃((z, w), (x∗, y∗))→ 0, as n→∞.
Hence

lim
n→∞

Fn(z, w) = (x∗, y∗). (3.2)

But, we also know,
(z, w) ≤p (x, y)

implies
Fn(z, w) ≤p Fn(x, y) = (x, y).

Similarly, we obtain that

d̃(Fn(z, w), (x, y)) ≤ βn · d̃((z, w), (x, y))→ 0 as n→∞
Hence,

lim
n→∞

Fn(z, w) = (x, y). (3.3)
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By (3.1)+(3.2) we obtain that

(x∗, y∗) = (x, y). �

A global version of the previous results is the following.
Theorem 3.3. Let (X, d) be a complete b-metric space with constant s ≥ 1 and

T : X ×X → X be an operator such that there exist α, β ≥ 0 with max{α, β
1−α} <

1
s

such that

d(T (x, y), T (u, v)) + d(T (y, x), T (v, u))

≤ α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+β · [d(x, u) + d(y, v)] for (x, y), (u, v) ∈ X ×X.
Then, there exists an unique solution (x∗, y∗) ∈ X × X of the coupled fixed

point problem (P1), and for any initial element (x0, y0) ∈ X×X the sequence zn+1 =
(xn+1, yn+1) = (T (xn, yn), T (yn, xn)) ∈ X ×X converges to (x∗, y∗).

Proof. Let Z = X ×X and the functional d̃ : Z × Z → R+, such that

d̃((x, y), (u, v)) = d(x, u) + d(y, v).

We know that d̃ is a b-metric on Z with the same constant s ≥ 1. Moreover, if
(X, d) is a complete b-metric space, then (Z, d̃) is a complete b-metric space too.

Consider the operator F : Z → Z defined by F (x, y) = (T (x, y), T (y, x)) for
(x, y) ∈ Z.

Let z = (x, y) ∈ Z and w = (u, v) ∈ Z.
We have

d̃(F (z), F (w)) = d̃((T (x, y), T (y, x)), (T (u, v), T (v, u)))

= d(T (x, y), T (u, v)) + d(T (y, x), T (v, u))

≤ α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+β · [d(x, u) + d(y, v)]

=
α · d̃((u, v), (T (u, v), T (v, u)))[1 + d̃((x, y), (T (x, y), T (y, x)))]

1 + d̃((x, y), (u, v))
+ β · d̃((x, y), (u, v))

=
α · d̃(w,F (w))[1 + d̃(z, F (z))]

1 + d̃(z, w)
+ β · d̃(z, w).

Therefore

d̃(F (z), F (w)) ≤ α · d̃(w,F (w))[1 + d̃(z, F (z))]

1 + d̃(z, w)
+ β · d̃(z, w).

From Theorem 2.3. we have that Fix(F ) = {(x∗, y∗)}, so the coupled fixed point
problem (P1) has a unique solution (x∗, y∗) ∈ Z.

An existence and uniqueness result for the fixed point of T is given now.
Theorem 3.4. If we suppose that we have the hypotheses of Theorem 3.2., then for
the unique coupled fixed point (x∗, y∗) of T we have that x∗ = y∗ i.e. T (x∗, x∗) = x∗.
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Proof. From Theorem 3.2., there exists an unique coupled fixed point of T , (x∗, y∗) ∈
X ×X.

We have two cases:
Case 1. If x∗ and y∗ are comparable, x∗ ≤ y∗.

Then we have

d(T (x, y), T (u, v)) + d(T (y, x), T (v, u))

≤ α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, u)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+β · [d(x, u) + d(y, v)].

Let
x = v = x∗ and y = u = y∗.

Thus we obtain
2 · d(T (x∗, y∗), T (y∗, x∗))

≤ α · [d(y∗, T (y∗, x∗)) + d(x∗, T (x∗, y∗))][1 + d(x∗, T (x∗, y∗)) + d(y∗, T (y∗, x∗))]

1 + 2d(x∗, y∗)

+β · 2 · d(x∗, y∗).

This yields to
d(x∗, y∗) ≤ β · d(x∗, y∗).

So
(1− β) · d(x∗, y∗) ≤ 0,

follows that x∗ = y∗.
Case 2. Suppose that x∗ and y∗ are not comparable.

Hence, there exists z ∈ X such that z ≤ x∗ and z ≤ y∗. Thus, the following
relations are satisfied:

(z, y∗) ≤p (y∗, z), (z, y∗) ≤p (x∗, y∗), (y∗, x∗) ≤p (y∗, z).

Let F : Z → Z be defined by F (x, y) = (T (x, y), T (y, x)) ∀(x, y) ∈ Z. Then,

d(x∗, y∗) =
1

2
· d̃((y∗, x∗), (x∗, y∗)) =

1

2
· d̃(Fn(y∗, x∗), Fn(x∗, y∗))

≤ s

2
· d̃(Fn(y∗, x∗), Fn(y∗, z)) +

s

2
· d̃(Fn(y∗, z), Fn(x∗, y∗))

≤ s

2
·d̃(Fn(y∗, x∗), Fn(y∗, z))+

s2

2
·d̃(Fn(y∗, z), Fn(z, y∗))+

s2

2
·d̃(Fn(z, y∗), Fn(x∗, y∗)).

But we know that

d̃(Fn(y∗, x∗), Fn(y∗, z)) ≤ βn · d̃((y∗, x∗), (y∗, z)) = βn · d(x∗, z)

d̃(Fn(y∗, z), Fn(z, y∗)) ≤ βn · d̃((y∗, z), (z, y∗)) = 2βn · d(y∗, z)

d̃(Fn(z, y∗), Fn(x∗, y∗)) ≤ βn · d̃((z, y∗), (x∗, y∗)) = βn · d(z, x∗).

Using this assumptions, we get that

d(x∗, y∗) ≤ s

2
· βn · d(x∗, z) +

s2

2
· βn · 2 · d(y∗, z) +

s2

2
· βn · d(z, x∗)

=
s

2
· βn · [(1 + s)d(x∗, z) + 2 · s · d(y∗, z)]→ 0 as n→∞.
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Hence, we have that x∗ = T (x∗, x∗).

4. Properties of the coupled fixed point problem

This section presents data dependence, well-posedness, Ulam-Hyers stability and
limit shadowing property for the coupled fixed point problem.

The following theorem is a data dependence result of a coupled fixed point
problem.
Theorem 4.1. Let (X, d) be a complete b-metric space with constant s ≥ 1 and
Ti : X×X → X (i ∈ {1, 2}) be two operators which satisfy the following conditions:

i) there exist α, β ≥ 0 with max{α, β
1−α} <

1
s such that

d(T1(x, y), T1(u, v)) + d(T1(y, x), T1(v, u))

≤ α · [d(u, T1(u, v)) + d(v, T1(v, u))][1 + d(x, T1(x, y)) + d(y, T1(y, x))]

1 + d(x, u) + d(y, v)

+β · [d(x, u) + d(y, v)] all for (x, y), (u, v) ∈ X ×X;

ii) CFix(T2) 6= ∅;
iii) there exists η > 0 such that d(T1(x, y), T2(x, y)) ≤ η for all (x, y) ∈ X ×X.
In the above conditions, if (x∗, y∗) ∈ X × X is the unique coupled fixed point

for T1, then d(x∗, x) + d(y∗, y) ≤ 2s(1+α)
1−sβ · η, where (x, y) ∈ CFix(T2).

Proof. By Theorem 3.3, there exists (x∗, y∗) ∈ X ×X such that{
x∗ = T1(x∗, y∗)

y∗ = T1(y∗, x∗).

Let (x, y) ∈ CFix(T2), i.e.

{
x = T2(x, y)

y = T2(y, x).

Consider the b-metric d̃ : Z × Z → R+, defined by

d̃((x, y), (u, v)) = d(x, u) + d(y, v)

for (x, y), (u, v) ∈ Z, where Z = X ×X.
Consider two operators Fi : Z → Z defined by Fi(x, y) = (Ti(x, y), Ti(y, x)), for

(x, y) ∈ Z, i ∈ {1, 2}.
We denote by z = (x∗, y∗) ∈ Z, which means F1(z) = z and w = (x, y) ∈ Z,

which means F2(w) = w. Then,

d̃(F1(z), F1(w)) =
α · d̃(w,F1(w))[1 + d̃(z, F1(z))]

1 + d̃(z, w)
+ β · d̃(z, w)

=
α · d̃(w,F1(w))

1 + d̃(z, w)
+ β · d̃(z, w) ≤ α · d̃(w,F1(w)) + β · d̃(z, w) ≤ 2α · η + β · d̃(z, w).

Since

d̃(z, w) = d̃(F1(z), F2(w)) ≤ s · [d̃(F1(z), F1(w)) + d̃(F1(w), F2(w))]

≤ s · [2α · η + β · d̃(z, w)] + 2s · η,
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we will obtain that (1− sβ) · d̃(z, w) ≤ 2s · (1 + α) · η.
Since max{α, β

1−α} <
1
s , we get that 1− sβ > 0. Therefore d̃(z, w) ≤ 2s(1+α)

1−sβ · η
and by definition of the metric d̃, we have

d(x∗, x) + d(y∗, y) ≤ 2s(1 + α)

1− sβ
· η. �

Definition 4.2. Let (X, d) be a b-metric space with constant s ≥ 1 and T : X×X → X
be an operator. By definition, the coupled fixed point problem (P1) is said to be well-
posed if:

i) CFix(T ) = {(x∗, y∗)};
ii) for any sequence (xn, yn)n∈N ∈ X × X for which d(xn, T (xn, yn)) → 0 and

d(yn, T (yn, xn)) → 0 as n → ∞, we have that (xn)n∈N → x∗ and (yn)n∈N → y∗ as
n→∞.
Theorem 4.3. Assume that all the hypotheses of Theorem 3.3. take place. Then the
coupled fixed problem (P1) is well-possed.
Proof. We denote by Z = X ×X. By Theorem 3.3. we have CFix(T ) = {(x∗, y∗)}.

Let (xn, yn)n∈N be a sequence on Z. We know that d(xn, T (xn, yn)) → 0 and
d(yn, T (yn, xn))→ 0 as n→∞.

Consider the b-metric d̃ : Z × Z → R+, such that d̃((x, y), (u, v)) = d(x, u) +
d(y, v) for all (x, y), (u, v) ∈ Z.

Let F : Z → Z be an operator defined by F (x, y) = (T (x, y), T (y, x)) for all
(x, y) ∈ Z. We know that F (x∗, y∗) = (x∗, y∗), so we have

d̃((xn, yn), (x∗, y∗)) = d(xn, x
∗) + d(yn, y

∗)

≤ s · d(xn, T (xn, yn)) + s · d(T (xn, yn), T (x∗, y∗))

+s · d(yn, T (yn, xn)) + s · d(T (yn, xn), T (y∗, x∗))

= s · [d(xn, T (xn, yn)) + d(yn, T (yn, xn))]

+s · [d(T (xn, yn), T (x∗, y∗)) + d(T (yn, xn), T (y∗, x∗))]

≤ s · [d(xn, T (xn, yn)) + d(yn, T (yn, xn))]

+s · α · [d(x∗, T (x∗, y∗)) + d(y∗, T (y∗, x∗))][1 + d(xn, T (xn, yn)) + d(yn, T (yn, xn))]

1 + d(xn, x∗) + d(yn, y∗)

+s · β · [1 + d(xn, x
∗) + d(yn, y

∗)]

≤ s · [d(xn, T (xn, yn)) + d(yn, T (yn, xn))] + s · β · d̃((xn, yn), (x∗, y∗)).

We obtain that

(1− sβ) · d̃((xn, yn), (x∗, y∗)) ≤ s · [d(xn, T (xn, yn)) + d(yn, T (yn, xn))]

d̃((xn, yn), (x∗, y∗)) ≤ s

1− sβ
· [d(xn, T (xn, yn))+d(yn, T (yn, xn))]→ 0 as n→∞.

Therefore, (xn, yn)→ (x∗, y∗) as n→∞.
Definition 4.4. Let (X, d) be a b-metric space with constant s ≥ 1 and T : X×X → X

be an operator. Let d̃ any b-metric on X×X generated by d By definition, the coupled
fixed point problem (P1) is said to be Ulam-Hyers stable if there exists a function
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ψ : R+ → R+ increasing, continuous in 0 with ψ(0) = 0, such that for each ε > 0 and
for each solution (x, y) ∈ X ×X of the inequality

d̃((x, y), (T (x, y), T (y, x))) ≤ ε,
there exists a solution (x∗, y∗) ∈ X ×X of the coupled fixed point problem (P1) such
that

d̃((x, y), (x∗, y∗)) ≤ ψ(ε).

Theorem 4.5. Assume that all the hypotheses of Theorem 3.3. take place. Then the
coupled fixed point problem (P1) is Ulam-Hyers stable.
Proof. Let Z = X × X. By Theorem 3.3., we have CFix(T ) = {(x∗, y∗)}. Let any
ε > 0 and let (x, y) ∈ Z such that d(x, T (x, y)) + d(y, T (y, x)) ≤ ε.

Consider the b-metric d̃ : Z × Z → R+ given by

d̃((x, y), (u, v)) = d(x, u) + d(y, v), ∀(x, y), (u, v) ∈ Z
and F : Z → Z an operator defined by F (x, y) = (T (x, y), T (y, x)) for all (x, y) ∈ Z.

We have

d̃((x, y), (x∗, y∗)) = d(x, x∗) + d(y, y∗) = d(x, T (x∗, y∗)) + d(y, T (y∗, x∗))

≤ s · [d(x, T (x, y)) + d(T (x, y), T (x∗, y∗))] + s · [d(y, T (y, x)) + d(T (y, x), T (y∗, x∗))]

≤ s · [d(x, T (x, y)) + d(y, T (y, x))]

+s · α · [d(x∗, T (x∗, y∗)) + d(y∗, T (y∗, x∗))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, x∗) + d(y, y∗)

+s · β · [d(x, x∗) + d(y, y∗)].

Thus

d̃((x, y), (x∗, y∗)) ≤ s

1− sβ
· [d(x, T (x, y)) + d(y, T (y, x))] ≤ s

1− sβ
· ε.

Therefore the coupled fixed point problem (P1) is Ulam-Hyers stable, with a mapping
ψ : R+ → R+, ψ(t) := ct, where c = s

1−sβ > 0.

Definition 4.6. Let (X, d) be a b-metric space with constant s ≥ 1 and T :
X × X → X be an operator. By definition, the coupled fixed point problem (P1)
has the limit shadowing property, if for any sequence (xn, yn)n∈N ∈ X × X for
which d(xn+1, T (xn, yn)) → 0 and respectively d(yn+1, T (yn, xn)) → 0 as n → ∞,
there exists a sequence (Tn(x, y), Tn(y, x))n∈N such that d(xn, T

n(x, y)) → 0 and
d(yn, T

n(y, x))→ 0 as n→∞.
Theorem 4.7. Assume that the hypotheses from Theorem 3.3. take place. Then the
coupled fixed point problem (P1) for T has the limit shadowing property.
Proof. By Theorem 3.3, we have CFix(T ) = {(x∗, y∗)} and for any initial point
(x, y) ∈ X×X the sequence zn+1 = (Tn(x, y), Tn(y, x)) ∈ X×X converge to (x∗, y∗)
as n→∞.

Let (xn, yn)n∈N be a sequence on Z = X ×X such that d(xn+1, T (xn, yn))→ 0
and d(yn+1, T (yn, xn))→ 0 as n→∞.

We consider the b-metric d̃ : Z × Z → R+, defined by

d̃((x, y), (u, v)) = d(x, u) + d(y, v) for all (x, y), (u, v) ∈ Z.
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Let F : Z → Z be an operator defined by F (u, v) = (T (u, v), T (v, u)) for all
(u, v) ∈ Z. We know that F (x∗, y∗) = (x∗, y∗). Then for every (x, y) ∈ Z we have:

d̃((xn+1, yn+1), (Tn+1(x, y), Tn+1(y, x)))

≤ s · [d̃((xn+1, yn+1), (x∗, y∗)) + d̃((x∗, y∗), (Tn+1(x, y), Tn+1(y, x)))])

But

d̃((xn+1, yn+1), (x∗, y∗)) ≤ s · [d̃((xn+1, yn+1), F (xn, yn)) + d̃(F (xn, yn), F (x∗, y∗))]

≤ s·d̃((xn+1, yn+1), F (xn, yn))+s·α · d̃((x∗, y∗), F (x∗, y∗))[1 + d̃((xn, yn), F (xn, yn))]

1 + d̃((xn, yn), (x∗, y∗))

+s · β · d̃((xn, yn), (x∗, y∗))

= s · [d(xn+1, T (xn, yn)) + d(yn+1, T (yn, xn))] + s · β · d̃((xn, yn), (x∗, y∗)).

This yields to

d̃((xn+1, yn+1), (x∗, y∗)) ≤ s · [d(xn+1, T (xn, yn)) + d(yn+1, T (yn, xn))]

+s·β ·{s·[d(xn, T (xn−1, yn−1))+d(yn, T (yn−1, xn−1))]+s·β ·d̃((xn−1, yn−1), (x∗, y∗))}.
Therefore,

d̃((xn+1, yn+1), (x∗, y∗)) ≤ s · [d(xn+1, T (xn, yn)) + d(yn+1, T (yn, xn))]

+s·(s·β)·[d(xn, T (xn−1, yn−1))+d(yn, T (yn−1, xn−1))]+(s·β)2·d̃((xn−1, yn−1), (x∗, y∗))

≤ . . . ≤ (s ·β)n+1 · d̃((x0, y0), (x∗, y∗))+s ·

[
n∑
p=0

(s · β)n−p · d̃((xp+1, yp+1), F (xp, yp))

]
.

From Cauchy’s Lemma we have d̃((xn+1, yn+1), (x∗, y∗))→ 0 as n→∞.

Thus d̃((xn+1, yn+1), (Tn+1(x, y), Tn+1(y, x))) → 0 as n →∞, so there exists a
sequence (Tn(x, y), Tn(y, x)) ∈ Z with

d̃((xn, yn), (Tn(x, y), Tn(y, x))) = d(xn, T
n(x, y))+d(yn, T

n(y, x))→ 0 as n→∞.
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