# Fekete-Szegö problems for generalized Sakaguchi type functions associated with quasi-subordination 

Trailokya Panigrahi and Ravinder Krishna Raina


#### Abstract

In the present paper, the authors introduce a generalized Sakaguchi type non-Bazilevic function class $\mathcal{M}_{q}^{\lambda, \beta}(\phi, s, t)$ of analytic functions involving quasi-subordination and obtain bounds for the Fekete-Szegö functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for the functions belonging to the above and associated classes. Some important and useful special cases of the main results are also pointed out.


Mathematics Subject Classification (2010): 30C45, 33C50, 30D60.
Keywords: Analytic functions, subordination, quasi-subordination, Fekete-Szegö inequality, Sakaguchi functions.

## 1. Introduction and preliminaries

Let $\mathcal{A}$ be the class of analytic functions in the open unit disk:

$$
\mathbb{U}:=\{z \in \mathbb{C}:|z|<1\}
$$

having the normalized power series expansion given by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \mathbb{U}) \tag{1.1}
\end{equation*}
$$

A function $f(z) \in \mathcal{A}$ is said to be univalent in $\mathbb{U}$ if $f(z)$ is one-to-one in $\mathbb{U}$. As usual, we denote by $\mathcal{S}$ the subclass of $\mathcal{A}$ consisting of univalent functions in $\mathbb{U}$ (see [3]). For two functions $f$ and $g$ in $\mathcal{A}$, we say that $f$ is subordinate to $g$ in $\mathbb{U}$, and write as

$$
f \prec g \text { in } \mathbb{U} \quad \text { or } \quad f(z) \prec g(z) \quad(z \in \mathbb{U}),
$$

if there exists a Schwarz function $w(z)$, analytic in $\mathbb{U}$ with $w(0)=0$ and $|w(z)|<1$, $z \in \mathbb{U}$ such that

$$
\begin{equation*}
f(z)=g(w(z)) \quad(z \in \mathbb{U}) . \tag{1.2}
\end{equation*}
$$

If the function $g$ is univalent in $\mathbb{U}$, then

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Longleftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U})
$$

For a brief survey on the concept of subordination, we refer to the works in $[3,10,13$, 27].

Further, a function $f(z)$ is said to be quasi-subordinate to $g(z)$ in the unit disk $\mathbb{U}$ if there exists the functions $\varphi(z)$ and $w(z)$ (with constant coefficient zero) which are analytic and bounded by one in the unit disk $\mathbb{U}$ such that

$$
\begin{equation*}
\frac{f(z)}{\varphi(z)} \prec g(z) \quad(z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

We denote the quasi-subordination by

$$
\begin{equation*}
f(z) \prec_{q} g(z) \quad(z \in \mathbb{U}) . \tag{1.4}
\end{equation*}
$$

Also, we note that quasi-subordination (1.4) is equivalent to

$$
\begin{equation*}
f(z)=\varphi(z) g(w(z)) \quad(z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

One may observe that when $\varphi(z) \equiv 1(z \in \mathbb{U})$, the quasi-subordination $\prec_{q}$ becomes the usual subordination $\prec$. If we put $w(z)=z$ in (1.5), then the quasi-subordination (1.5) becomes the majorization. In this case, we have

$$
f(z) \prec_{q} g(z) \Longrightarrow f(z)=\varphi(z) g(z) \Longrightarrow f(z) \ll g(z) \quad(z \in \mathbb{U})
$$

The concept of majorization is due to MacGreogor [12] and quasi-subordination is thus a generalization of the usual subordination as well as the majorization. The work on quasi-subordination is quite extensive which includes some recent expository investigations in $[1,7,9,14,21,22]$.

Recently, Frasin [5] introduced and studied a generalized Sakaguchi type classes $\mathcal{S}(\alpha, s, t)$ and $\mathcal{T}(\alpha, s, t)$. A function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{S}(\alpha, s, t)$ if it satisfies

$$
\begin{equation*}
\Re\left[\frac{(s-t) z f^{\prime}(z)}{f(s z)-f(t z)}\right]>\alpha \tag{1.6}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1), s, t \in \mathbb{C},|s-t| \leq 1, s \neq t$ and $z \in \mathbb{U}$.
We also denote by $\mathcal{T}(\alpha, s, t)$, the subclass of $\mathcal{A}$ consisting of all functions $f(z)$ such that $z f^{\prime}(z) \in \mathcal{S}(\alpha, s, t)$. For $s=1$, the class $\mathcal{S}(\alpha, 1, t)$ becomes the subclass $\mathcal{S}^{*}(\alpha, t)$ studied by Owa et al. [17, 18]. If $t=-1$ in $\mathcal{S}(\alpha, 1, t)$, then the class $\mathcal{S}(\alpha, 1,-1)=\mathcal{S}_{s}(\alpha)$ was introduced by Sakaguchi [23] and is called Sakaguchi function of order $\alpha($ see $[2,17])$, whereas $\mathcal{S}_{s}(0) \equiv \mathcal{S}_{s}$ is the class of starlike functions with respect to symmetrical points in $\mathbb{U}$. Further, $\mathcal{S}(\alpha, 1,0) \equiv \mathcal{S}^{*}(\alpha)$ and $\mathcal{T}(\alpha, 1,0) \equiv \mathcal{C}(\alpha)$ are the familiar classes of starlike functions of order $\alpha(0 \leq \alpha<1)$ and convex function of order $\alpha(0 \leq \alpha<1)$, respectively.
Obradovic [16] introduced a class of functions $f \in \mathcal{A}$ which satisfies the inequality:

$$
\begin{equation*}
\Re\left[f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\lambda}\right]>0 \quad(0<\lambda<1 ; z \in \mathbb{U}) \tag{1.7}
\end{equation*}
$$

and he calls such functions as functions of non-Bazilevič type.

By $\mathcal{P}$, we denote the class of functions $\phi$ analytic in $\mathbb{U}$ such that $\phi(0)=1$ and $\Re(\phi(z))>0$.

Ma and Minda [11] unified various subclasses of starlike and convex functions for which either of the quantity $\frac{z f^{\prime}(z)}{f(z)}$ or $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}$ is subordinate to a more general subordination function. They introduced a class $S^{*}(\phi)$ defined by

$$
\begin{equation*}
S^{*}(\phi)=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \phi(z) \quad(z \in \mathbb{U})\right\} \tag{1.8}
\end{equation*}
$$

where $\phi \in \mathcal{P}$ and $\phi(\mathbb{U})$ is symmetrical about the real axis and $\phi^{\prime}(0)>0$. A function $f \in S^{*}(\phi)$ is called a Ma and Minda starlike function with respect to $\phi$.
Recently, Sharma and Raina [25] introduced and studied a generalized Sakaguchi type non-Bazilevic function class $\mathcal{G}_{q}^{\lambda}(\phi, b)$. A function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{G}_{q}^{\lambda}(\phi, b)$ if it satisfies the condition that

$$
\begin{equation*}
\left[f^{\prime}(z)\left(\frac{(1-b) z}{f(z)-f(b z)}\right)^{\lambda}-1\right] \prec_{q}(\phi(z)-1) \quad(1 \neq b \in \mathbb{C},|b| \leq 1, \lambda \geq 0 ; z \in \mathbb{U}) . \tag{1.9}
\end{equation*}
$$

Motivated by aforementioned works, we introduce here a new subclass of $\mathcal{A}$ which is defined as follows:
Definition 1.1. Let $\phi \in \mathcal{P}$ be univalent and $\phi(\mathbb{U})$ symmetrical about the real axis and $\phi^{\prime}(0)>0$. For $s, t \in \mathbb{C}, s \neq t,|s-t| \leq 1, \lambda, \beta \geq 0$, a function $f \in \mathcal{A}$ is said to be in the class $\mathcal{M}_{q}^{\lambda, \beta}(\phi, s, t)$ if it satisfies the condition that

$$
\begin{equation*}
\left[(1-\beta) f^{\prime}(z)+\beta \frac{f(z)}{z}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]\left[\frac{(s-t) z}{f(s z)-f(t z)}\right]^{\lambda}-1 \prec_{q}(\phi(z)-1)(z \in \mathbb{U}) \tag{1.10}
\end{equation*}
$$

where the powers are considered to be having only principal values.
By specializing the parameters $\lambda, \beta, s$, and $t$ in Definition 1.1 above, we obtain various subclasses which have been studied recently. To illustrate these subclasses, we observe the following:
(i) When $\beta=0, s=1$, then the class $\mathcal{M}_{q}^{\lambda, 0}(\phi, 1, t)=\mathcal{G}_{q}^{\lambda}(\phi, t)$ which was studied recently by Sharma and Raina [25].
(ii) Next, when $\beta=t=0, \lambda=s=1 ; \beta=\lambda=t=0, s=1$ and $\lambda=\beta=s=1, t=0$; then the classes $\mathcal{M}_{q}^{1,0}(\phi, 1,0), \mathcal{M}_{q}^{0,0}(\phi, 1,0)$ and $\mathcal{M}_{q}^{1,, 1}(\phi, 1,0)$ which, respectively, reduce to the classes $\mathcal{S}_{q}^{*}(\phi), \mathcal{R}_{q}(\phi)$ and $\mathcal{C}_{q}(\phi)$ were studied earlier by Mohd and Darus [14].

From the Definition 1.1, it follows that $f \in \mathcal{M}_{q}^{\lambda, \beta}(\phi, s, t)$ if and only if there exists an analytic function $\varphi(z)$ with $|\varphi(z)| \leq 1(z \in \mathbb{U})$ such that

$$
\begin{equation*}
\frac{\left[(1-\beta) f^{\prime}(z)+\beta \frac{f(z)}{z}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]\left[\frac{(s-t) z}{f(s z)-f(t z)}\right]^{\lambda}-1}{\varphi(z)} \prec(\phi(z)-1)(z \in \mathbb{U}) \tag{1.11}
\end{equation*}
$$

If we set $\varphi(z) \equiv 1(z \in \mathbb{U})$ in (1.11), then the class $\mathcal{M}_{q}^{\lambda, \beta}(\phi, s, t)$ is denoted by $\mathcal{M}^{\lambda, \beta}(\phi, s, t)$ satisfying the condition that

$$
\begin{equation*}
\left[(1-\beta) f^{\prime}(z)+\beta \frac{f(z)}{z}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]\left[\frac{(s-t) z}{f(s z)-f(t z)}\right]^{\lambda} \prec \phi(z) \quad(z \in \mathbb{U}) \tag{1.12}
\end{equation*}
$$

It may be noted that for $\beta=0, s=\lambda=1$ and for real $t$, the class $\mathcal{M}^{1,0}(\phi, 1, t)=$ $\mathcal{S}^{*}(\phi, t)$ which was studied by Goyal and Goswami [6].

It is well-known (see [3]) that for $f \in \mathcal{S}$ given by (1.1), there holds a sharp inequality for the functional $\left|a_{3}-a_{2}^{2}\right|$. Fekete-Szegö [4] obtained sharp upper bounds for $\left|a_{3}-\mu a_{2}^{2}\right|$ for $f \in \mathcal{S}$ when $\mu$ is real and thus the determination of the sharp upper bounds for such a nonlinear functional for any compact family $\mathcal{F}$ of functions in $\mathcal{S}$ is popularly known as the Fekete-Szegö problem for $\mathcal{F}$. Fekete-Szegö problems for several subclasses of $\mathcal{S}$ have been investigated by many authors including [19, 20, 24]; see also [26].

The aim of this paper is to obtain the coefficient estimates including a FeketeSzegö inequality of functions belonging to the classes $\mathcal{M}_{q}^{\lambda, \beta}(\phi, s, t)$ and $\mathcal{M}^{\lambda, \beta}(\phi, s, t)$ and the class involving the majorization. Some consequences of the main results are also pointed out.

We need the following lemma in our investigations.
Lemma 1.2. ([8, p.10]) Let the Schwarz function $w(z)$ be given by

$$
\begin{equation*}
w(z)=w_{1} z+w_{2} z^{2}+w_{3} z^{3}+\cdots \quad(z \in \mathbb{U}) \tag{1.13}
\end{equation*}
$$

then

$$
\left|w_{1}\right| \leq 1,\left|w_{2}-\mu w_{1}^{2}\right| \leq 1+(|\mu|-1)\left|w_{1}\right|^{2} \leq \max \{1,|\mu|\}
$$

where $\mu \in \mathbb{C}$. The result is sharp for the function $w(z)=z$ or $w(z)=z^{2}$.

## 2. Main results

Let $f \in \mathcal{A}$ of the form (1.1), then for $s, t \in \mathbb{C},|s-t| \leq 1, s \neq t$, we may write that

$$
\begin{equation*}
\frac{f(s z)-f(t z)}{s-t}=z+\sum_{n=2}^{\infty} \gamma_{n} a_{n} z^{n} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{n}=\frac{s^{n}-t^{n}}{s-t}=s^{n-1}+s^{n-2} t+\cdots+t^{n-1} \quad(n \in \mathbb{N}) \tag{2.2}
\end{equation*}
$$

Therefore for $\lambda \geq 0$, we have

$$
\begin{equation*}
\left[\frac{(s-t) z}{f(s z)-f(t z)}\right]^{\lambda}=1-\lambda \gamma_{2} a_{2} z+\lambda\left[\frac{\lambda+1}{2} \gamma_{2}^{2} a_{2}^{2}-\gamma_{3} a_{3}\right] z^{2}+\cdots \tag{2.3}
\end{equation*}
$$

Unless otherwise stated, throughout the sequel, we assume that

$$
\lambda \gamma_{n} \neq(n-1)^{2} \beta+n
$$

and that for real $s, t$ :

$$
\lambda \gamma_{n}<(n-1)^{2} \beta+n, n=2,3,4, \ldots
$$

Let the function $\phi \in \mathcal{P}$ be of the form

$$
\begin{equation*}
\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots \quad\left(B_{1} \in \mathbb{R}, B_{1}>0\right) \tag{2.4}
\end{equation*}
$$

and $\varphi(z)$ analytic in $\mathbb{U}$ be of the form

$$
\begin{equation*}
\varphi(z)=c_{0}+c_{1} z+c_{2} z^{2}+\cdots\left(c_{0} \neq 0\right) \tag{2.5}
\end{equation*}
$$

We now state and prove our first main result.
Theorem 2.1. Let the function $f \in \mathcal{A}$ of the form (1.1) be in the class $\mathcal{M}_{q}^{\lambda, \beta}(\phi, s, t)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1}}{\left|2+\beta-\lambda \gamma_{2}\right|} \tag{2.6}
\end{equation*}
$$

and for any $\mu \in \mathbb{C}$ :

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{\left|3+4 \beta-\lambda \gamma_{3}\right|} \max \left\{1,\left|\frac{B_{2}}{B_{1}}-B_{1} R\right|\right\} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
R=\frac{\left(3+4 \beta-\lambda \gamma_{3}\right) \mu}{\left(2+\beta-\lambda \gamma_{2}\right)^{2}}-\frac{\lambda\left(4+2 \beta-(1+\lambda) \gamma_{2}\right) \gamma_{2}+4 \beta}{2\left(2+\beta-\lambda \gamma_{2}\right)^{2}} \tag{2.8}
\end{equation*}
$$

and $\gamma_{n}(n \in \mathbb{N})$ is given by (2.2). The result is sharp.
Proof. Let $f \in \mathcal{M}_{q}^{\lambda, \beta}(\phi, s, t)$. In view of Definition 1.1, there exists then a Schwarz function $w(z)$ given by (1.13) and an analytic function $\varphi(z)$ given by (2.5) such that

$$
\begin{equation*}
\left[(1-\beta) f^{\prime}(z)+\beta \frac{f(z)}{z}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]\left[\frac{(s-t) z}{f(s z)-f(t z)}\right]^{\lambda}-1=\varphi(z)(\phi(w(z))-1) \tag{2.9}
\end{equation*}
$$

which can be expressed as

$$
\begin{align*}
\varphi(z)(\phi(w(z))-1) & =\left(c_{0}+c_{1} z+c_{2} z^{2}+\cdots\right)\left(B_{1} w_{1} z+\left(B_{1} w_{2}+B_{2} w_{1}^{2}\right) z^{2}+\cdots\right) \\
& =c_{0} B_{1} w_{1} z+\left\{c_{0}\left(B_{1} w_{2}+B_{2} w_{1}^{2}\right)+c_{1} B_{1} w_{1}\right\} z^{2}+\cdots \tag{2.10}
\end{align*}
$$

Using now the series expansions for $f^{\prime}(z)$ and $f^{\prime \prime}(z)$ from (1.1), we obtain that

$$
\begin{equation*}
(1-\beta) f^{\prime}(z)+\beta \frac{f(z)}{z}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]=1+(2+\beta) a_{2} z+\left((3+4 \beta) a_{3}-2 \beta a_{2}^{2}\right) z^{2}+\cdots \tag{2.11}
\end{equation*}
$$

Thus, it follows from (2.3) and (2.11) that

$$
\begin{gather*}
{\left[(1-\beta) f^{\prime}(z)+\beta \frac{f(z)}{z}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]\left[\frac{(s-t) z}{f(s z)-f(t z)}\right]^{\lambda}-1} \\
=\left(2+\beta-\lambda \gamma_{2}\right) a_{2} z+\left[\left(3+4 \beta-\lambda \gamma_{3}\right) a_{3}-\lambda\left(2+\beta-\frac{1+\lambda}{2} \gamma_{2}\right) \gamma_{2} a_{2}^{2}-2 \beta a_{2}^{2}\right] z^{2}+\cdots \tag{2.12}
\end{gather*}
$$

Making use of (2.10) and (2.12) in (2.9) and equating the coefficients of $z$ and $z^{2}$ in the resulting expression, we get

$$
\begin{equation*}
\left(2+\beta-\lambda \gamma_{2}\right) a_{2}=c_{0} B_{1} w_{1} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(3+4 \beta-\lambda \gamma_{3}\right) a_{3}-\lambda\left[2+\beta-\frac{1+\lambda}{2} \gamma_{2}\right] \gamma_{2} a_{2}^{2}-2 \beta a_{2}^{2}=c_{0}\left(B_{1} w_{2}+B_{2} w_{1}^{2}\right)+c_{1} B_{1} w_{1} \tag{2.14}
\end{equation*}
$$

Now (2.13) yields that

$$
\begin{equation*}
a_{2}=\frac{c_{0} B_{1} w_{1}}{2+\beta-\lambda \gamma_{2}} \tag{2.15}
\end{equation*}
$$

From (2.14), we have

$$
\begin{align*}
a_{3} & =\frac{B_{1}}{3+4 \beta-\lambda \gamma_{3}}\left[c_{1} w_{1}\right. \\
& \left.+c_{0}\left\{w_{2}+\left(\frac{c_{0} \lambda\left(1+\frac{2+\beta-\gamma_{2}}{2+\beta-\lambda \gamma_{2}}\right) \gamma_{2} B_{1}}{2\left(2+\beta-\lambda \gamma_{2}\right)} \frac{2 \beta c_{0} B_{1}}{\left(2+\beta-\lambda \gamma_{2}\right)^{2}}+\frac{B_{2}}{B_{1}}\right) w_{1}^{2}\right\}\right] . \tag{2.16}
\end{align*}
$$

Hence, for any complex number $\mu$, we have

$$
\begin{gather*}
a_{3}-\mu a_{2}^{2}=\frac{B_{1}}{3+4 \beta-\lambda \gamma_{3}}\left[c_{1} w_{1}\right. \\
\left.+c_{0}\left\{w_{2}+\left(\frac{\lambda\left(4+2 \beta-(1+\lambda) \gamma_{2}\right) \gamma_{2}+4 \beta}{2\left(2+\beta-\lambda \gamma_{2}\right)^{2}} c_{0} B_{1}+\frac{B_{2}}{B_{1}}\right) w_{1}^{2}\right\}\right]-\mu \frac{c_{0}^{2} B_{1}^{2} w_{1}^{2}}{\left(2+\beta-\lambda \gamma_{2}\right)^{2}} \\
=\frac{B_{1}}{3+4 \beta-\lambda \gamma_{3}}\left[c_{1} w_{1}+\left(w_{2}+\frac{B_{2}}{B_{1}} w_{1}^{2}\right) c_{0}-B_{1} c_{0}^{2} w_{1}^{2} R\right], \tag{2.17}
\end{gather*}
$$

where $R$ is given by (2.8).
Since $\varphi(z)$ given by (2.5) is analytic and bounded in the open unit disk $\mathbb{U}$, hence upon using [15, p. 172], we have for some $y(|y| \leq 1)$ :

$$
\begin{equation*}
\left|c_{0}\right| \leq 1 \text { and } c_{1}=\left(1-c_{0}^{2}\right) y \tag{2.18}
\end{equation*}
$$

Putting the value of $c_{1}$ from (2.18) into (2.17), we finally get

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{B_{1}}{3+4 \beta-\lambda \gamma_{3}}\left[y w_{1}+\left(w_{2}+\frac{B_{2}}{B_{1}} w_{1}^{2}\right) c_{0}-\left(B_{1} w_{1}^{2} R+w_{1} y\right) c_{0}^{2}\right] . \tag{2.19}
\end{equation*}
$$

If $c_{0}=0$, then (2.19) gives

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{\left|3+4 \beta-\lambda \gamma_{3}\right|} \tag{2.20}
\end{equation*}
$$

On the other hand, if $c_{0} \neq 0$, then we consider

$$
\begin{equation*}
T\left(c_{0}\right)=y w_{1}+\left(w_{2}+\frac{B_{2}}{B_{1}} w_{1}^{2}\right) c_{0}-\left(B_{1} w_{1}^{2} R+w_{1} y\right) c_{0}^{2} \tag{2.21}
\end{equation*}
$$

The expression (2.21) is a quadratic polynomial in $c_{0}$ and hence analytic in $\left|c_{0}\right| \leq 1$. The maximum value of $\left|T\left(c_{0}\right)\right|$ is attained at $c_{0}=e^{i \theta}(0 \leq \theta<2 \pi)$, and hence, we have

$$
\begin{aligned}
\max \left|T\left(c_{0}\right)\right| & =\max _{0 \leq \theta<2 \pi} \mid T\left(e^{i \theta)}|=|T(1)|\right. \\
& =\left|w_{2}-\left(B_{1} R-\frac{B_{2}}{B_{1}}\right) w_{1}^{2}\right|
\end{aligned}
$$

Thus from (2.19), we get

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{\left|3+4 \beta-\lambda \gamma_{3}\right|}\left|w_{2}-\left(B_{1} R-\frac{B_{2}}{B_{1}}\right) w_{1}^{2}\right|, \tag{2.22}
\end{equation*}
$$

and in view of Lemma 1.2, we obtain that

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{\left|3+4 \beta-\lambda \gamma_{3}\right|} \max \left\{1,\left|B_{1} R-\frac{B_{2}}{B_{1}}\right|\right\} \tag{2.23}
\end{equation*}
$$

The desired assertion (2.7) follows now from (2.20) and (2.23).
The result is sharp for the function $f(z)$ given by

$$
\left[(1-\beta) f^{\prime}(z)+\beta \frac{f(z)}{z}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]\left[\frac{(s-t) z}{f(s z)-f(t z)}\right]^{\lambda}=\phi(z)
$$

or

$$
\left[(1-\beta) f^{\prime}(z)+\beta \frac{f(z)}{z}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]\left[\frac{(s-t) z}{f(s z)-f(t z)}\right]^{\lambda}=\phi\left(z^{2}\right)
$$

This completes the proof of Theorem 2.1.
By setting $\beta=t=0, \lambda=s=1$ in the Theorem 2.1, we obtain the following sharp results for the subclass $\mathcal{S}_{q}^{*}(\phi)$.
Corollary 2.2. Let $f \in \mathcal{A}$ of the form (1.1) be in the class $\mathcal{S}_{q}^{*}(\phi)$, then

$$
\left|a_{2}\right| \leq B_{1}
$$

and for any $\mu \in \mathbb{C}$ :

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{2} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+(1-2 \mu) B_{1}\right|\right\}
$$

The result is sharp.
Next, putting $\beta=\lambda=s=1$ and $t=0$ in Theorem 2.1, we obtain the following sharp results for the class $\mathcal{C}_{q}(\phi)$.
Corollary 2.3. Let $f \in \mathcal{A}$ of the form (1.1) belong to the class $\mathcal{C}_{q}(\phi)$, then

$$
\left|a_{2}\right| \leq \frac{B_{1}}{2}
$$

and for any $\mu \in \mathbb{C}$ :

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{6} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+\left(1-\frac{3 \mu}{2}\right) B_{1}\right|\right\}
$$

The result is sharp.
Further, by putting $\beta=\lambda=t=0$ and $s=1$ in Theorem 2.1, we get the following sharp results for the class $\mathcal{R}_{q}(\phi)$.
Corollary 2.4. Let $f \in \mathcal{A}$ of the form (1.1) belong to the class $\mathcal{R}_{q}(\phi)$, then

$$
\left|a_{2}\right| \leq \frac{B_{1}}{2}
$$

and for any $\mu \in \mathbb{C}$ :

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{3} \max \left\{1,\left|\frac{B_{2}}{B_{1}}-\frac{3 \mu}{4} B_{1}\right|\right\} .
$$

The result is sharp.
Remark 2.5. The Fekete-Szegö type inequalities mentioned above for the classes $\mathcal{S}_{q}^{*}(\phi), \mathcal{C}_{q}(\phi)$ and $\mathcal{R}_{q}(\phi)$ improve similar results obtained earlier in [14].

The next theorem gives the result for the class $\mathcal{M}^{\lambda, \beta}(\phi, s, t)$.

Theorem 2.6. Let $f \in \mathcal{A}$ of the form (1.1) belong to the class $\mathcal{M}^{\lambda, \beta}(\phi, s, t)$, then

$$
\left|a_{2}\right| \leq \frac{B_{1}}{\left|2+\beta-\lambda \gamma_{2}\right|},
$$

and for any $\mu \in \mathbb{C}$ :

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{\left|3+4 \beta-\lambda \gamma_{3}\right|} \max \left\{1,\left|\frac{B_{2}}{B_{1}}-B_{1} R\right|\right\}
$$

where $R$ is given by (2.8) and $\gamma_{n}(n \in \mathbb{N})$ is given by (2.2). The result is sharp.
Proof. The proof is similar to Theorem 2.1. Let $f \in \mathcal{M}^{\lambda, \beta}(\phi, s, t)$. If $\varphi(z) \equiv 1$, then (2.5) gives $c_{0}=1$ and $c_{n}=0(n \in \mathbb{N})$. Therefore, in view of (2.15), (2.17) and by an application of Lemma 1.2, we obtain the desired assertion. The result is sharp for the function $f(z)$ given by

$$
\left[(1-\beta) f^{\prime}(z)+\beta \frac{f(z)}{z}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]\left[\frac{(s-t) z}{f(s z)-f(t z)}\right]^{\lambda}=\phi(z)
$$

or

$$
\left[(1-\beta) f^{\prime}(z)+\beta \frac{f(z)}{z}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]\left[\frac{(s-t) z}{f(s z)-f(t z)}\right]^{\lambda}=\phi\left(z^{2}\right)
$$

The next theorem gives the result based on majorization.
Theorem 2.7. Let $s, t \in \mathbb{C}, s \neq t,|s-t| \leq 1$.
If a function $f \in \mathcal{A}$ of the form (1.1) satisfies

$$
\begin{equation*}
\left[(1-\beta) f^{\prime}(z)+\beta \frac{f(z)}{z}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]\left[\frac{(s-t) z}{f(s z)-f(t z)}\right]^{\lambda}-1 \ll \phi(z)-1 \quad(z \in \mathbb{U}) \tag{2.24}
\end{equation*}
$$

then

$$
\left|a_{2}\right| \leq \frac{B_{1}}{\left|2+\beta-\lambda \gamma_{2}\right|},
$$

and for any $\mu \in \mathbb{C}$ :

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{\left|3+4 \beta-\lambda \gamma_{3}\right|} \max \left\{1,\left|\frac{B_{2}}{B_{1}}-B_{1} R\right|\right\}
$$

where $R$ is given by (2.8) and $\gamma_{n}(n \in \mathbb{N})$ is defined as (2.2). The result is sharp.
Proof. Assume that (2.24) holds true. Hence, by the definition of majorization there exists an analytic function $\varphi(z)$ given by (2.5) such that for $z \in \mathbb{U}$ we have

$$
\begin{equation*}
\left[(1-\beta) f^{\prime}(z)+\beta \frac{f(z)}{z}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]\left[\frac{(s-t) z}{f(s z)-f(t z)}\right]^{\lambda}-1=\varphi(z)(\phi(z)-1) \tag{2.25}
\end{equation*}
$$

Following similar steps as in the proof of Theorem 2.1 and by setting $w(z) \equiv 1$, so that $w_{1}=1$ and $w_{n}=0, n \geq 2$, we obtain

$$
a_{2}=\frac{c_{0} B_{1}}{2+\beta-\lambda \gamma_{2}}
$$

so that

$$
\left|a_{2}\right| \leq \frac{B_{1}}{\left|2+\beta-\lambda \gamma_{2}\right|}
$$

and

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{B_{1}}{3+4 \beta-\lambda \gamma_{3}}\left[c_{1}+\frac{B_{2}}{B_{1}} c_{0}-B_{1} c_{0}^{2} R\right] . \tag{2.26}
\end{equation*}
$$

On putting the value of $c_{1}$ from (2.18) in (2.26), we get

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{B_{1}}{3+4 \beta-\lambda \gamma_{3}}\left[y+\frac{B_{2}}{B_{1}} c_{0}-\left(B_{1} R+y\right) c_{0}^{2}\right] . \tag{2.27}
\end{equation*}
$$

If $c_{0}=0$, then (2.27) yields

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{\left|3+4 \beta-\lambda \gamma_{3}\right|} \tag{2.28}
\end{equation*}
$$

But if $c_{0} \neq 0$, then we define the function

$$
\begin{equation*}
H\left(c_{0}\right):=y+\frac{B_{2}}{B_{1}} c_{0}-\left(B_{1} R+y\right) c_{0}^{2} \tag{2.29}
\end{equation*}
$$

The expression (2.29) is a polynomial in $c_{0}$ and hence analytic in $\left|c_{0}\right| \leq 1$. The maximum value of $\left|H\left(c_{0}\right)\right|$ occurs at $c_{0}=e^{i \theta}(0 \leq \theta<2 \pi)$, and we have

$$
\max _{0 \leq \theta<2 \pi} H\left(e^{i \theta}\right)=|H(1)| .
$$

From (2.27), we get

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{\left|3+4 \beta-\lambda \gamma_{3}\right|}\left|B_{1} R-\frac{B_{2}}{B_{1}}\right| . \tag{2.30}
\end{equation*}
$$

Thus, the assertion of Theorem 2.7 follows from (2.28) and (2.30). The result is sharp for the function given by

$$
\left[(1-\beta) f^{\prime}(z)+\beta \frac{f(z)}{z}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]\left[\frac{(s-t) z}{f(s z)-f(t z)}\right]^{\lambda}=\phi(z) \quad(z \in \mathbb{U})
$$

This completes the proof of Theorem 2.7.
Next, we determine the bounds for the functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for real $\mu, s$ and $t$ for the class $\mathcal{M}_{q}^{\lambda, \beta}(\phi, s, t)$.
Corollary 2.8. Let the function $f \in \mathcal{A}$ given by (1.1) be in the class $\mathcal{M}_{q}^{\lambda, \beta}(\phi, s, t)$, then (for real values of $\mu, s, t$ ):

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{B_{1}}{3+4 \beta-\lambda \gamma_{3}}\left[B_{1} Q+\frac{B_{2}}{B_{1}}\right] & \mu \leq \alpha_{1}  \tag{2.31}\\ \frac{B_{1}}{3+4 \beta-\lambda \gamma_{3}} & \alpha_{1} \leq \mu \leq \alpha_{1}+2 \rho \\ -\frac{B_{1}}{3+4 \beta-\lambda \gamma_{3}}\left[B_{1} Q+\frac{B_{2}}{B_{1}}\right] & \mu \geq \alpha_{1}+2 \rho\end{cases}
$$

where

$$
\begin{equation*}
\alpha_{1}=\frac{\lambda\left(4+2 \beta-(1+\lambda) \gamma_{2}\right) \gamma_{2}+4 \beta}{2\left(3+4 \beta-\lambda \gamma_{3}\right)}-\frac{\left(2+\beta-\lambda \gamma_{2}\right)^{2}}{\left(3+4 \beta-\lambda \gamma_{3}\right)}\left(\frac{1}{B_{1}}-\frac{B_{2}}{B_{1}^{2}}\right) \tag{2.32}
\end{equation*}
$$

$$
\begin{gather*}
\rho=\frac{\left(2+\beta-\lambda \gamma_{2}\right)^{2}}{\left(3+4 \beta-\lambda \gamma_{3}\right) B_{1}},  \tag{2.33}\\
Q=\frac{\lambda\left\{4+2 \beta-(1+\lambda) \gamma_{2}\right\} \gamma_{2}+4 \beta-2 \mu\left(3+4 \beta-\lambda \gamma_{3}\right)}{2\left(2+\beta-\lambda \gamma_{2}\right)^{2}}
\end{gather*}
$$

and $\gamma_{n}(n \in \mathbb{N})$ is given by (2.2). Each of the estimates in (2.31) is sharp.
Proof. For $s, t, \mu \in \mathbb{R}$, the above bounds can be obtained from (2.7), respectively, under the following cases:

$$
B_{1} R-\frac{B_{2}}{B_{1}} \leq-1,-1 \leq B_{1} R-\frac{B_{2}}{B_{1}} \leq 1 \text { and } B_{1} R-\frac{B_{2}}{B_{1}} \geq 1
$$

where R is given by (2.8). We also note the following:
(i) When $\mu<\alpha_{1}$ or $\mu>\alpha_{1}+2 \rho$, then the equality holds if and only if $w(z)=z$ or one of its rotations.
(ii) When $\alpha_{1}<\mu<\alpha_{1}+2 \rho$, then the inequality holds if and only if $w(z)=z^{2}$ or one of its rotation.
(iii) Equality holds for $\mu=\alpha_{1}$ if and only if $w(z)=\frac{z(z+\epsilon)}{1+\epsilon z} \quad(0 \leq \epsilon \leq 1)$ or one of its rotations, while for $\mu=\alpha_{1}+2 \rho$, the equality holds if and only if $w(z)=-\frac{z(z+\epsilon)}{1+\epsilon z}$ ( $0 \leq \epsilon \leq 1$ ), or one of its rotations.

The second part of assertion in (2.31) can be improved further.
Theorem 2.9. Let $f \in \mathcal{A}$ of the form (1.1) belong to the class $\mathcal{M}_{q}^{\lambda, \beta}(\phi, s, t)$, then (for $\left.s, t, \mu \in \mathbb{R}\left(\alpha_{1} \leq \mu \leq \alpha_{1}+2 \rho\right)\right)$

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\alpha_{1}\right)\left|a_{2}\right|^{2} \leq \frac{B_{1}}{3+4 \beta-\lambda \gamma_{3}} \quad\left(\alpha_{1} \leq \mu \leq \alpha_{1}+\rho\right) \tag{2.34}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\alpha_{1}+2 \rho-\mu\right)\left|a_{2}\right|^{2} \leq \frac{B_{1}}{3+4 \beta-\lambda \gamma_{3}} \quad\left(\alpha_{1}+\rho,<\mu<\alpha_{1}+2 \rho\right) \tag{2.35}
\end{equation*}
$$

where $\alpha_{1}$ and $\rho$ are given by (2.32) and (2.33), respectively, and $\gamma_{3}$ is given by (2.2).
Proof. Let $f \in \mathcal{M}_{q}^{\lambda, \beta}(\phi, s, t)$. For $s, t, \mu \in \mathbb{R}$ and $\alpha_{1} \leq \mu \leq \alpha_{1}+\rho$, and in view of (2.15) and (2.22), we get

$$
\begin{gathered}
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\alpha_{1}\right)\left|a_{2}\right|^{2} \leq \frac{B_{1}}{3+4 \beta-\lambda \gamma_{3}} \\
\cdot\left[\left|w_{2}\right|-\frac{B_{1}\left(3+4 \beta-\lambda \gamma_{3}\right)}{\left(2+\beta-\lambda \gamma_{2}\right)^{2}}\left(\mu-\alpha_{1}-\rho\right)\left|w_{1}\right|^{2}+\frac{B_{1}\left(3+4 \beta-\lambda \gamma_{3}\right)}{\left(2+\beta-\lambda \gamma_{2}\right)^{2}}\left(\mu-\alpha_{1}\right)\left|w_{1}\right|^{2}\right] .
\end{gathered}
$$

Hence, by virtue of Lemma 1.2, we have

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\alpha_{1}\right)\left|a_{2}\right|^{2} \leq \frac{B_{1}}{3+4 \beta-\lambda \gamma_{3}}\left[1-\left|w_{1}\right|^{2}+\left|w_{1}\right|^{2}\right]
$$

which yields the assertion (2.34).
If $\alpha_{1}+\rho<\mu<\alpha_{1}+2 \rho$, then again from (2.15) and (2.22) and Lemma 1.2, we obtain

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\alpha_{1}+2 \rho-\mu\right)\left|a_{2}\right|^{2} \leq \frac{B_{1}}{3+4 \beta-\lambda \gamma_{3}}
$$

$$
\begin{gathered}
\cdot\left[\left|w_{2}\right|+\frac{B_{1}\left(3+4 \beta-\lambda \gamma_{3}\right)}{\left(2+\beta-\lambda \gamma_{2}\right)^{2}}\left(\mu-\alpha_{1}-\rho\right)\left|w_{1}\right|^{2}+\frac{B_{1}\left(3+4 \beta-\lambda \gamma_{3}\right)}{\left(2+\beta-\lambda \gamma_{2}\right)^{2}}\left(\alpha_{1}+2 \rho-\mu\right)\left|w_{1}\right|^{2}\right] \\
\leq \frac{B_{1}}{3+4 \beta-\lambda \gamma_{3}}\left[1-\left|w_{1}\right|^{2}+\left|w_{1}\right|^{2}\right]
\end{gathered}
$$

which gives the estimate (2.35).
We conclude this paper by remarking that the above theorems include several previously established results for particular values of the parameters $\lambda, s, t$ and $\beta$. Thus, if we set $\beta=0, s=1$ in Theorems 2.1 and 2.6 above, we arrive at the FeketeSzegö type inequalities for the classes $\mathcal{G}_{q}^{\lambda}(\phi, t)$ and $\mathcal{G}^{\lambda}(\phi, t)$, respectively, studied by Sharma and Raina [25]. Further, the majorization result and improvement of bounds given by Theorems 2.7 and 2.9 provide extensions of similar results due to Sharma and Raina [25].

Acknowledgement. The authors would like to thank the editor and the referees for their useful suggestions. Further, the present investigation of the first-named author is supported by CSIR research project scheme no: 25(0278)/17/EMR-II, New Delhi, India.

## References

[1] Altintas, O., Owa, S., Majorizations and quasi-subordinations for certain analytic functions, Proc. Japan Acad. Ser. A, 68(1992), no. 7, 181-185.
[2] Cho, N.E., Kwon, O.S., Owa, S., Certain subclasses of Sakaguchi functions, Southeast Asian Bull. Math., 17(1993), 121-126.
[3] Duren, P.L., Univalent Functions, Graduate Texts in Mathematics; 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[4] Fekete, M., Szegö, G., Eine bemerkung über ungerade schlichte funktionen, J. London Math. Soc., 8(1983), 85-89.
[5] Frasin, B.A., Coefficient inequalities for certain classes of Sakaguchi type functions, Int. J. Nonlinear Sci., 10(2010), no. 2, 206-211.
[6] Goyal, S.P., Goswami, P., Certain coefficient inequalities for Sakaguchi type functions and applications to fractional derivative operator, Acta Univ. Apulensis Math. Inform., 19(2009), 159-166.
[7] Goyal, S.P., Singh, O., Fekete-Szegö problems and coefficient estimates of quasisubordination classes, J. Rajasthan Acad. Phys. Sci., 13(2014), no. 2, 133-142.
[8] Keogh, F.R., Merkes, E.P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8-12.
[9] Lee, S.Y., Quasi-subordinate functions and coefficient conjectures, J. Korean Math. Soc., 12(1975), no. 1, 43-50.
[10] Littlewood, J.E., Lectures on the Theory of Functions, Oxford University Press, 1944.
[11] Ma, W.C., Minda, D., A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, Conference Proceedings Lecture Notes Analysis, International Press, Cambridge, Mass, USA, 1(1994), 157-169.
[12] MacGregor, T.H., Majorization by univalent functions, Duke Math. J., 34(1967), 95-102.
[13] Miller, S.S., Mocanu, P.T., Differential Subordinations: Theory and Applications, in: Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, 2000.
[14] Mohd, M.H., Darus, M., Fekete-Szegö problems for quasi-subordination classes, Abstr. Appl. Anal., 2012, Art. ID 192956, 14 pages.
[15] Nehari, Z., Conformal Mapping, McGraw-Hill, New York, 1952.
[16] Obradovic, M., A class of univalent functions, Hokkaido Math. J., 2(1988), 329-335.
[17] Owa, S., Sekine, T., Yamakawa, R., Notes on Sakaguchi type functions, RIMS, Kokyuroku, 1414(2005), 76-82.
[18] Owa, S., Sekine, T., Yamakawa, R., On Sakaguchi type functions, Appl. Math. Comput., 187(2007), 356-361.
[19] Ravichandran, V., Darus, M., Khan, M.K., Subramanian, K.G., Fekete-Szegö inequality for certain class of analytic functions, Austral. J. Math. Anal. Appl., 4(2004), no. 1, 1-7.
[20] Ravichandran, V., Gangadharan, A., Darus, M., Fekete-Szegö inequality for certain class of Bazilevic functions, Far East J. Math. Sci., 15(2004), 171-180.
[21] Ren, F.Y., Owa, S., Fukui, S., Some inequalities on quasi-subordinate functions, Bull. Austral. Math. Soc., 43(1991), no. 2, 317-324.
[22] Robertson, M.S., Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc., 76(1970), 1-9.
[23] Sakaguchi, K., On a certain univalent mapping, J. Math. Soc. Japan, 11(1959), 72-75.
[24] Shanmugam, T.N., Sivasubramanian, T.N., On the Fekete-Szegö problems for some subclasses of analytic functions, J. Inequal. Pure Appl. Math., 6(2005), no. 3, art. 1, 6 pages.
[25] Sharma, P., Raina, R.K., On a Sakaguchi type class of analytic functions associated with quasi-subordination, Comment. Math. Univ. St. Pauli, 64(2015), no. 1, 59-70.
[26] Srivastava, H.M., Mishra, A.K., Das, M.K., The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Var. Theory Appl., 44(2001), 145-163.
[27] Srivastava, H.M., Owa, S., Current Topics in Analytic Function Theory, World Scientific, Singapore, 1992.

Trailokya Panigrahi
Department of Mathematics
School of Applied Sciences
KIIT Deemed to be University
Bhubaneswar-751024
Odisha, India
e-mail: trailokyap6@gmail.com
Ravinder Krishna Raina
M. P. University of Agri. \& Technology

Present address: 10/11, Ganpati Vihar
Opposite Sector 5, Udaipur-313002,
Rajasthan, India
e-mail: rkraina_7@hotmail.com

