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Meromorphic functions with small Schwarzian
derivative

Vibhuti Arora and Swadesh Kumar Sahoo

Abstract. We consider the family of all meromorphic functions f of the form

f(z) =
1

z
+ b0 + b1z + b2z

2 + · · ·

analytic and locally univalent in the puncture disk D0 := {z ∈ C : 0 < |z| < 1}.
Our first objective in this paper is to find a sufficient condition for f to be
meromorphically convex of order α, 0 ≤ α < 1, in terms of the fact that the
absolute value of the well-known Schwarzian derivative Sf (z) of f is bounded
above by a smallest positive root of a non-linear equation. Secondly, we consider
a family of functions g of the form g(z) = z + a2z

2 + a3z
3 + · · · analytic and

locally univalent in the open unit disk D := {z ∈ C : |z| < 1}, and show that g is
belonging to a family of functions convex in one direction if |Sg(z)| is bounded
above by a small positive constant depending on the second coefficient a2. In
particular, we show that such functions g are also contained in the starlike and
close-to-convex family.
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1. Introduction

Recall that a function f which is analytic in a region, except possibly at poles,
is said to be meromorphic in that region. Hence, analytic functions are by default
meromorphic without poles. In this paper, we consider the family of all meromorphic
functions f of the form

f(z) =
1

z
+ b0 + b1z + b2z

2 + · · ·

defined in the open unit disk D := {z ∈ C : |z| < 1}. Clearly, f has a simple pole at
the origin, and hence it is analytic in the puncture disk D0 := {z ∈ C : 0 < |z| < 1}.
Let us denote this family of meromorphic functions by B. The set of all univalent
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functions in B is usually denoted by Σ. We also consider the family A, of functions g
analytic in D of the form

g(z) = z + a2z
2 + a3z

3 + · · · .

A quick observation which can easily be verified that

f ∈ B ⇐⇒ g = 1/f ∈ A. (1.1)

A single valued function f is said to be univalent (or schlicht) in a domain
D ⊂ C if it never takes the same value twice: f(z1) 6= f(z2) for all z1 6= z2 in D. The
family of all univalent functions in A is denoted by S. Such functions g are of interest
because they appear in the Riemann mapping theorem. The study of the family S
became popular when the Bieberbach conjecture was first posed in 1916 and remained
as a challenge to all mathematicians until 1985 when it was solved by de Branges.
Since then the conjecture is known as the de Branges Theorem. This problem has
been attracted to many mathematicians in introducing certain subclasses of S and
developing important new methods in geometric function theory. The de Branges
theorem gives a necessary condition for a function g to be in S in terms of its Taylor’s
coefficient. On the other hand, several important sufficient conditions for functions to
be in S were also introduced by several researchers to generate its subclasses having
interesting geometric properties. Part of this development is the family of convex
functions, starlike functions, close-to-convex functions, etc. Later, counterpart of this
development for the family Σ of meromorphic univalent functions were also studied
extensively. We refer to the standard books by Duren [3], Goodman [5], Lehto [8],
and Pommerenke [17] for the literature on the topic. Therefore, the study of sufficient
conditions for functions to be in S, in particular, in its subfamilies are important
in this context. In this paper, we mainly deal with such properties in terms of the
well-known Schwarzian derivative of locally univalent functions.

First let us recall the definition of the Schwarzian derivative. Let f be a mero-
morphic function and f ′(z) 6= 0 in D := {z ∈ C : |z| < 1} (in other words, we say, f
is locally univalent in D), then the Schwarzian derivative of f at z is defined as

Sf (z) =

(
f ′′

f ′

)′
−

1

2

(
f ′′

f ′

)2

.

It is appropriate here to recall from texts that Sf = 0 if and only if f is a Möbius
transformation (see for instance, [8, p 51]). A simple computation through (1.1) yields
the useful relation

Sf (z) = Sg(z)

for all locally univalent meromorphic functions f ∈ B and g = 1/f ∈ A.

The study of necessary and sufficient conditions for functions to be univalent, in
particular to be starlike, convex, close-to-convex, in terms of Schwarzian derivatives
are attracted by a number of mathematicians. It is a surprising fact is that most of
such necessary conditions are proved using standard theorems in complex variables,
whereas sufficient conditions are proved through initial value problems of differential
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equations; see for instance [3, 8]. The conditions of the form

|Sg(z)| ≤
C0

(1− |z|2)2
, (1.2)

for a positive constant C0, have been most popular to many mathematicians. For
instance, Nehari in 1949 first proved that if g is an analytic and locally univalent
function in D satisfying (1.2) with C0 = 2 then g is univalent in D. This condition
becomes necessary when the constant C0 = 6; see [12]. Hille [6] showed that the
constant 2 in the sufficient condition of Nehari is the best possible constant. Related
problems are also investigated in [13, 14, 16]. Thus, applications of the Schwarzian
derivative can be seen in second order linear differential equations, univalent functions,
and also in Teichmüller spaces [3, 17]. Note that if g ∈ A is univalent then (1.1) leads
to the useful coefficient relation |a22 − a3| = |Sg(0)|/6; see [3, p. 263].

Another form of sufficient condition for univalency in terms of Schwarzian de-
rivative attracted by many researchers in this field is

|Sg(z)| ≤ 2C1, (1.3)

for some positive constant C1. If g ∈ A satisfies (1.3) with C1 = π2/4, then it is proved
by Nehari [12] that g is univalent in D. Gabriel [4] studied a sufficient condition for a
function g ∈ A to be starlike in the form (1.3) for some optimal constant C1. Sufficient
condition in the form (1.3) for convexity of order α is investigated by Chiang in [2].
However, the best possible constant is not yet known in this case. Kim and Sugawa
in [7] obtained the sufficient condition in the form (1.3) for starlikeness of order α by
fixing the second coefficient of the function.

Our main objective in this paper is to study the sufficient conditions of the form
(1.3) for meromorphically convex functions of order α and for functions in a family
that are convex in one direction, in particular in the starlike and close-to-convex
family. Rest of the structure of this paper is as follows. Section 2 is devoted to the
definitions of the classes of functions and statements of our main results. Section 3
deals with some preliminary results those are used to prove our main results. Finally,
the proof of our main results are given in Section 4 followed by examples of functions
satisfying these results.

2. Definitions and main results

This section is divided into two subsections. The first subsection concerns about
the definition of a subclass of the class B, namely, the meromorphically convex func-
tions of order α having simple pole at z = 0, and the main results associated with
these functions. The second subsection deals with some well-known analytic functions
convex in one direction, in particular, functions in the starlike and close-to-convex
families. Sufficient conditions in the form (1.3) for functions to be in these families
are also stated.
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2.1. Meromorphic functions in D with a simple pole at z = 0

If f ∈ B satisfies f(z) 6= 0 in D0 and

−Re
(zf ′(z)
f(z)

)
> α (z ∈ D, 0 ≤ α < 1),

then f is said to be meromorphically starlike of order α. A function f ∈ B is said to
be meromorphically starlike (of order 0) if and only if complement of f(D0) is starlike
with respect to the origin (see [5, p. 265, Vol. 2]). Note that meromorphically starlike
functions are univalent and hence they lie on the class Σ. Similarly, if f ∈ B satisfies
f(z) 6= 0 in D0 and

−Re
(

1 +
zf ′′(z)

f ′(z)

)
> α (z ∈ D, 0 ≤ α < 1), (2.1)

then f is said to be meromorphically convex of order α. If α = 0, the inequality (2.1)
is equivalent to the definition of meromorphically convex functions. That is, f maps
D onto the complement of a convex region [4, 15]. In this case, we say f is meromor-
phically convex. Note that meromorphically convex functions are also univalent and
hence they lie in the class Σ. For more geometric properties of these classes, we refer
to the standard books [5, 10].

Main results of this paper deal with functions whose Schwarzian derivatives are
bounded above by some constant, that is, functions satisfy (1.3). Note that if Sf (z)
is uniformly bounded in C, then the Schwarzian derivative is still well defined. Hence
the assumption that f is locally univalent at a point z (or f ′(z) 6= 0), in (1.3) is not
chosen; see also Tichmarsh [22, p. 198].

Gabriel modified Nehari’s technique to show univalency and convexity property
of functions f ∈ B and proved the following:

Theorem A. [4, Theorem 1] If f ∈ B satisfies

|Sf (z)| ≤ 2c0 for |z| < 1, (2.2)

where c0 is the smallest positive root of the equation

2
√
x− tan

√
x = 0,

then f is univalent in the punctured disk and maps the interior of each circle |z| =
r < 1 onto the exterior of a convex region. The constant c0 is the largest possible
constant satisfying (2.2).

An analog to this result for meromorphically convex functions of order α is one
of our main results which is stated below.

Theorem 2.1. Let 0 ≤ α < 1. If f ∈ B satisfies

|Sf (z)| ≤ 2cα for |z| < 1, (2.3)

where cα is the smallest positive root of the equation

2
√
x− (1 + α) tan

√
x = 0 (2.4)

depending on α, then

a. f is meromorphically convex of order α; and



Meromorphic functions with small Schwarzian derivative 359

b. the quantity cα is the largest possible constant satisfying (2.3).

In particular, if α = 0, Theorem 2.1 reduces to Theorem A.

2.2. Analytic functions in D
A function g ∈ A is said to be convex of order β, 0 ≤ β < 1, if and only if

Re
(

1 +
zg′′(z)

g′(z)

)
> β, z ∈ D.

Chiang proved the following sufficient condition for convex functions of order β in
terms of small Schwarzian derivative:

Theorem B. [2, Theorem 2] Let g ∈ A and |a2| = η < 1/3. Suppose that

sup
z∈D
|Sg(z)| = 2δ,

where δ = δ(η) satisfies the inequality

6η + 5δ(1 + η)eδ/2 < 2.

Then g is convex of order

2− 6η − 5(1 + η)δeδ/2

2− 2η − (1 + η)δeδ/2
.

Our aim in this subsection is to state results similar to Theorem B for certain
functions convex in one direction, in particular, for functions in the family of starlike
and close-to-convex functions.

For β ≥ 3/2, we consider the class Cβ introduced by Shah in [21] as follows:

Cβ =

{
g ∈ A :

−β
2β − 3

< Re
(

1 +
zg′′(z)

g′(z)

)
< β, z ∈ D

}
.

This originally follows from a sufficient condition for a function g to be convex in one
direction studied by Umeraza in [23]. Note that the special cases C3/2 and C∞ are
contained in the family of starlike and close-to-convex functions respectively (see the
detailed discussion below in this section). It is a natural question to ask for functions
belonging to the family Cβ for all β ≥ 3/2. Such functions can be generated in view
of [21, Theorem 12], which says that for all functions g ∈ A satisfying

β

3− 2β
< Re

(zg′(z)
g(z)

)
< β,

the Alexander transform of g belongs to the family Cβ , β ≥ 3/2.
We now state our second main result which provides a sufficient condition for

functions to be in Cβ with respect to its small Schwarzian derivative.

Theorem 2.2. For β ≥ 3/2, set

φ(β) = min

{
β − 1

β + 1
,

6(β − 1)

2(7β − 9)

}
and ψ(β) = max

{
β + 3

β + 1
,

11β − 15

7β − 9

}
.
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Let g ∈ A and |a2| = η < φ(β). Suppose that

sup
z∈D
|Sg(z)| = 2δ,

where δ = δ(η) satisfies the inequality

2η + ψ(β)δ(1 + η)eδ/2 < 2φ(β). (2.5)

Then g ∈ Cβ. In particular, g is convex in one direction.

A function g ∈ A is said to be starlike of order β, 0 ≤ β < 1, if and only if

Re
(zg′(z)
g(z)

)
> β, z ∈ D.

In particular, for β = 0, we simply call such functions g as starlike functions. Recall
the sufficient condition for starlike functions g ∈ A from [18, (16)] which tells us that

Re
(

1 +
zg′′(z)

g′(z)

)
<

3

2
=⇒

∣∣∣zg′(z)
g(z)

− 2

3

∣∣∣ < 2

3
.

This generates the following subclass of the class of starlike functions:

C3/2 :=

{
g ∈ A : Re

(
1 +

zg′′(z)

g′(z)

)
<

3

2

}
.

This particular class of functions is also studied in different contexts in [19].

The following corollary immediately follows from Theorem 2.2 for the class C3/2.

Corollary 2.3. Let g ∈ A and |a2| = η < 1/5. Suppose

sup
z∈D
|Sg(z)| = 2δ

where δ = δ(η) satisfies the inequality

10η + 9δ(1 + η)eδ/2 < 2. (2.6)

Then g ∈ C3/2. In particular, g is starlike.

We next recall what is close-to-convex function followed by a subclass of the
class of close-to-convex functions and then state the corresponding result which is
again an easy consequence of Theorem 2.2.

We here adopt the well-known Kaplan characterization for close-to-convex func-
tions. Let g ∈ A be locally univalent. Then g is close-to-convex if and only if∫ θ2

θ1

Re
(

1 +
zg′′(z)

g′(z)

)
dθ > −π, z = reiθ,

for each r (0 < r < 1) and for each pair of real numbers θ1 and θ2 with θ1 < θ2. If a
locally univalent analytic function g defined in D satisfies

Re
(

1 +
zg′′(z)

g′(z)

)
> −1/2,
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then by the Kaplan characterization it follows easily that g is close-to-convex in D
(here θ1 and θ2 are chosen as 0 and 2π respectively) and hence g is univalent in D. This
generates the following subclass of the class of close-to-convex (univalent) functions:

C∞ :=

{
g ∈ A : Re

(
1 +

zg′′(z)

g′(z)

)
> −1

2

}
.

This class of functions is also studied recently by several authors in different contexts;
for instance see [1, 9, 11, 20] and references therein.

Now we are ready to state our sufficient condition for functions g to be in C∞ in
terms of their Schwarzian derivatives bounded by small quantity.

Corollary 2.4. Let g ∈ A and |a2| = η < 3/7. Suppose that

sup
z∈D
|Sg(z)| = 2δ

where δ = δ(η) satisfies the inequality

14η + 11δ(1 + η)eδ/2 < 6. (2.7)

Then g ∈ C∞ and hence g is close-to-convex function.

3. Preliminary results

Connection with a linear differential equation

In this section we study a relationship between Schwarzian derivative of a mero-
morphic function f and solution of a second order linear differential equation depend-
ing on f .

Recall the following lemma from Duren [3, p. 259].

Lemma 3.1. For a given analytic function p(z), a meromorphic function f has the
Schwarzian derivative of the form Sf (z) = 2p(z) if and only if f(z) = w1(z)/w2(z) for
any pair of linearly independent solutions w1(z) and w2(z) of the linear differential
equation

w′′ + p(z)w = 0. (3.1)

Note that an example satisfying Lemma 3.1 is described in the proof of Theo-
rem 2.1(b). Assume now that w1(z) and w2(z) satisfy the following conditions:

w1(0) = 1, w2(0) = 0;

w′1(0) = 0, w′2(0) = 1.

Clearly w1(0) and w2(0) are linearly independent since the Wronskian
W (w1(0), w2(0)) is non-vanishing. Recall that

f(z) =
w1(z)

w2(z)
=

1

z
+ b0 + b1z + · · · . (3.2)

Hence, a simple computation on logarithmic derivative of f ′(z) leads to

f ′′(z)

f ′(z)
=
w2(z)w′′1 (z)− w1(z)w′′2 (z)

w2(z)w′1(z)− w1(z)w′2(z)
− 2

w′2(z)

w2(z)
.
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Since w1(z) and w2(z) satisfy (3.1), it follows that

f ′′(z)

f ′(z)
= −2

w′2(z)

w2(z)
,

and hence we have the relation

Re
(

1 +
zf ′′(z)

f ′(z)

)
= 1− 2Re

(zw′2(z)

w2(z)

)
. (3.3)

The function 2x− (1 + α) tanx

For 0 ≤ α < 1, we set

h(x) := 2x− (1 + α) tanx.

Derivative test for h(x) tells us that h(x) is decreasing in

(arctan(
√

(1− α)/(1 + α)), π/2).

Then the following lemma is useful.

Lemma 3.2. Let β < π/2 be the smallest positive root of h(x) = 2x− (1 +α) tanx = 0
for some α > 0. Then

β ≥ arctan
√

(1− α)/(1 + α)

holds true.

Proof. Given that h(β) = 0 = 2β − (1 + α) tanβ. This gives

α =
2β

tanβ
− 1. (3.4)

On contrary, suppose that 0 < β < arctan
√

(1− α)/(1 + α) < π/2. This implies that

tan2 β <
1− α
1 + α

.

Substituting the value of α in (3.4), we obtain

tan2 β <
tanβ

β
− 1

equivalently,

sec2 β <
tanβ

β
⇐⇒ 2β < sin 2β,

which is a contradiction. Thus, the proof of our lemma is complete. �

Let cα be the smallest positive root of the equation (2.4). Since h(
√
cα) = 0, it

follows by Lemma 3.2 that

h(x)

{
≥ 0, for 0 ≤ x ≤ √cα;
< 0, for

√
cα < x < π/2.

(3.5)

If we replace x by x
√
c, c > 0, in (3.5), we obtain

h(x
√
c) = 2x

√
c− (1 + α) tan(x

√
c) ≥ 0 for 0 ≤ x

√
c ≤ √cα (3.6)
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and
h(x
√
c) = 2x

√
c− (1 + α) tan(x

√
c) < 0 for

√
cα < x

√
c < π/2. (3.7)

We may have the following two cases when h(x
√
c) is negative.

Case 1: If c ≤ cα, then (3.7) gives that h(x
√
c) is also negative in [1, π/2

√
c).

Case 2: If c > cα, then (3.7) gives that h(x
√
c) is also negative in (

√
cα/c, 1).

In the sequel, we collect the following lemmas to be used in the proof of Theorem 2.1.

Lemma 3.3. A function f ∈ B in the form (3.2) is meromorphically convex of order
α if and only if w2(z) is starlike of order (α+ 1)/2.

Proof. Condition (3.3) is equivalent to

−Re
(

1 +
zf ′′(z)

f ′(z)

)
= −1 + 2Re

(zw′2(z)

w2(z)

)
,

which yields

−Re
(

1 +
zf ′′(z)

f ′(z)

)
> α ⇐⇒ Re

(zw′2(z)

w2(z)

)
>
α+ 1

2
.

Since w2(0) = 0 and w′2(0) = 1, w2(z) is starlike of order (α+ 1)/2. Thus, completing
the proof of our lemma. �

Remark 3.4. A simple computation using the identity (3.3) yields

Re
(zw′1(z)

w1(z)

)
=

1

2
+ Re

(zf ′(z)
f(z)

)
− 1

2
Re
(

1 +
zf ′′(z)

f ′(z)

)
.

Therefore, the function w1 is not necessarily starlike when the function f is meromor-
phically convex.

Lemma 3.5. For 0 ≤ α < 1, let cα (0 < c ≤ cα) be the root of the equation given by
(2.4). Then we have

Re(z
√
c cot(z

√
c)) >

α+ 1

2
, |z| < 1. (3.8)

Proof. Substituting z = x+iy in (3.8), we see that the desired inequality is equivalent
to

2Re
(√

c(x+ iy)
cos(
√
c(x+ iy))

sin(
√
c(x+ iy))

)
> α+ 1.

This is, using the basic identities

2Rew = w + w, cos(iy) = cosh(y), and sin(iy) = i sinh(y),

we see that it is equivalent to proving

2x
√
c sin(

√
cx) cos(

√
cx) + 2y

√
c sinh(

√
cy) cosh(

√
cy)

> (1 + α)(sin2(
√
cx) + sinh2(

√
cy)).

So, it suffices to prove the inequality

sin(
√
cx) cos(

√
cx)[2

√
cx− (1 + α) tan(

√
cx)]

> sinh(
√
cy) cosh(

√
cy)[(1 + α) tanh(

√
cy)− 2

√
cy] (3.9)
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for 0 < c ≤ cα and x2 + y2 < 1. First consider the points x, y in the first quadrant.
Then we see that sin(

√
cx), cos(

√
cx), sinh(

√
cy) and cosh(

√
cy) are all positive since

c < cα < π2/4. Also 2x
√
c− (1 +α) tan(

√
cx) is positive which follows from (3.6). On

the other hand, (1 + α) tanh(
√
cy)− 2(

√
cy) is non-positive because

g(y) = (1 + α) tanh(
√
cy)− 2(

√
cy)

is decreasing, hence for y ≥ 0 we obtain

g(y) = (1 + α) tanh(
√
cy)− 2

√
cy ≤ 0.

Hence, the inequality (3.9) holds true in the first quadrant. Now if we replace x by
−x and y by −y then the inequality (3.9) remains same in all the other quadrants of
D. The desired inequality thus follows. �

The following results of Gabriel are also useful.

Lemma 3.6. [4, Lemma 4.1] If w(z) satisfies (3.1) with w(0) = 0 and w′(0) = 1, then
for 0 < ρ ≤ r < 1 and for a fixed θ ∈ [0, 2π], we have

|w(reiθ)|2Re
(reiθw′(reiθ)

w(reiθ)

)
= r

∫ r

0

|w′(ρeθ)|2dρ−r
∫ r

0

Re(ρ2e2iθp(ρeiθ))
|w(ρeiθ)|2

ρ2
dρ.

(3.10)

Lemma 3.7. [4, Lemma 4.2] Let y(ρ) and y′(ρ) be continuous real functions of ρ for
0 ≤ ρ < 1. For small values of ρ let y(ρ) = O(ρ). Then

r

∫ r

0

[y′(ρ)]2dρ− cr
∫ r

0

[y2(ρ)]dρ− r
√
c cot(r

√
c) · y2(r) ≥ 0 (3.11)

for 0 < r < 1 and c > 0. Equality holds for

y(ρ) = c−1/2 sin(ρ
√
c), c > 0.

4. Proof of the main results

4.1. Proof of Theorem 2.1

Given that f ∈ B satisfies (2.3) and cα is the smallest positive root of the
equation (2.4). A simple computation yields

α =
2
√
cα − tan

√
cα

tan
√
cα

.

Differentiating α with respect to cα, we obtain

dα

dcα
=

tan
√
cα −

√
cα sec2

√
cα√

cα tan2√cα
.

Since tanx − x sec2 x ≤ 0 is equivalent to sin 2x ≤ 2x, which is always true for all
x ∈ R, it follows that cα increases if and only if α decreases.

Now we proceed for completing the proof of (a) and (b).
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a. In this part we prove that f is meromorphically convex of order α, 0 ≤ α < 1,
that is f satisfies (2.1).
Set Sf (z) = 2p(z) for a given analytic function p(z). Then by (2.3), it follows
that |p(z)| ≤ cα, and hence we have

Re(z2p(z)) ≤ cα|z|2 for |z| < 1.

By Lemma 3.1, the function has the form f(z) = w1(z)/w2(z) for any pair of
linearly independent solutions w1(z) and w2(z) of the linear differential equation
(3.1). Clearly, the particular solution w2(z) satisfies the hypothesis of Lemma
3.6. Since Re(z2p(z)) ≤ cα|z|2 holds, (3.10) implies

|w2(reiθ)|2Re
(reiθw′2(reiθ)

w2(reiθ)

)
≥ r

∫ r

0

|w′2(ρeiθ)|2dρ− rcα
∫ r

0

|w2(ρeiθ)|2dρ, (4.1)

for 0 < ρ ≤ r < 1 and for some fixed θ.
Putting w2(ρeiθ) = u2(ρ, θ) + iv2(ρ, θ). For a constant ray θ, w2 will become a
function of ρ only. Note that u2(ρ) and v2(ρ) satisfies the hypothesis of Lemma
3.7. We obtain the following two inequalities after substituting u2(ρ) and v2(ρ)
in (3.11) and replacing c by cα

r

∫ r

0

[u′2(ρ)]2dρ− cαr
∫ r

0

[u22(ρ)]dρ−
√
cαr cot(

√
cαr) · u22(r) ≥ 0, (4.2)

and

r

∫ r

0

[v′2(ρ)]2dρ− cαr
∫ r

0

[v22(ρ)]dρ−
√
cαr cot(

√
cαr) · v22(r) ≥ 0. (4.3)

Since w2(ρeiθ) = u2(ρ, θ) + iv2(ρ, θ), addition of (4.2) and (4.3) leads to

r

∫ r

0

|w′2(ρeiθ)|2dρ− rcα
∫ r

0

|w2(ρeiθ)|2dρ ≥
√
cαr cot(

√
cαr)|w2|2. (4.4)

Comparing (4.1) with (4.4), we obtain

|w2(reiθ)|2Re
(zw′2(reiθ)

w2(reiθ)

)
≥
√
cαr cot(

√
cαr)|w2(reiθ)|2,

that is,

Re
(zw′2(z)

w2(z)

)
≥
√
cαr cot(

√
cαr) for |z| = r < 1. (4.5)

It follows from Lemma 3.5 that

√
cαr cot(

√
cαr) = Re(

√
cαr cot(

√
cαr)) >

α+ 1

2
. (4.6)

Comparison of (4.5) with (4.6) yields

Re
(zw′2(z)

w2(z)

)
>
α+ 1

2
,

and hence it follows from Lemma 3.3 that f is meromorphically convex of order
α.
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b. We prove that the quantity cα is the largest possible constant satisfying (2.3),
i.e. we can not replace cα by a larger quantity. We prove this by contradiction.
If we replace cα by a larger number c = cα + ε for some ε > 0, then we observe
that there exists a function f ∈ B satisfying

|Sf (z)| ≤ 2(cα + ε), |z| < 1, (4.7)

but f is not meromorphically convex of order α. For this, we consider the function

f(z) =
w1(z)

w2(z)
, |z| < 1,

with the two linearly independent solutions

w1(z) = cos(
√
cz) and w2(z) =

sin(
√
cz)

√
c

of the differential equation w′′ + cw = 0. Clearly, by a simple computation, the
function f(z) =

√
c cot(

√
cz) satisfies Sf (z) = 2c. It remains to show that this

function f is not meromorphically convex of order α, equivalently, by definition,
we prove that

−Re
(

1 +
z0f
′′(z0)

f ′(z0)

)
≤ α

for some z0 ∈ D. By Lemma 3.3, it is equivalently to proving

Re
(z0w′2(z0)

w2(z0)

)
= Re

(√cz0 cos(
√
cz0)

sin(
√
cz0)

)
≤
α+ 1

2
. (4.8)

for some non-zero z0 ∈ D, since for z0 = 0 the relation (4.8) contradicts to the
assumption α < 1. Substituting 0 6= z0 = x0 + iy0 ∈ D in (4.8) and simplifying,
we obtain

2x0
√
c sin(

√
cx0) cos(

√
cx0) + 2y0

√
c sinh(

√
cy0) cosh(

√
cy0)

≤ (1 + α)(sin2(
√
cx0) + sinh2(

√
cy0)),

or

sin(
√
cx0) cos(

√
cx0)[2x0

√
c− (1 + α) tan(

√
cx0)]

≤ sinh(
√
cy0) cosh(

√
cy0)[(1 + α) tanh(

√
cy0)− 2(

√
cy0)],

for 0 < c = cα + ε and x20 + y20 < 1. Choose y0 = 0. Then to obtain our desired
inequality, we have to find x0 ∈ (−1, 1), x0 6= 0, such that

sin(
√
cx0) cos(

√
cx0)[2x0

√
c− (1 + α) tan(

√
cx0)] ≤ 0 (4.9)

holds. Now, we see that sin(
√
cx0) and cos(

√
cx0) are positive in (0, π/2

√
c),

and 2x0
√
c− (1 +α) tan(

√
cx0) is negative in (

√
cα/
√
c, 1), where the latter part

follows by (3.7). Therefore, (4.9) holds true for some x0 in the intersection

(0, π/2
√
c) ∩ (

√
cα/
√
c, 1) ⊂ (0, 1),

since cα < c. This completes the proof of our first main theorem. �

In the following example, we construct a function meromorphically convex of order α
satisfies the hypothesis of Theorem 2.1.
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Example 4.1. For a constant c > 0, consider the function f defined by

f(z) =
w1(z)

w2(z)
=
√
c cot(

√
cz),

where w1(z) = cos(
√
cz) and w2(z) = (1/

√
c) sin(

√
cz) that satisfy the differential

equation
w′′ + cw = 0.

By Lemma 3.1, it follows that Sf (z) = 2c. Now, for any such constant c ≤ cα, where
cα is the smallest positive root of the equation (2.4), one clearly sees that

|Sf (z)| ≤ 2cα.

Next, by comparing with Lemma 3.5, we see that

Re
(zw′2(z)

w2(z)

)
= Re(z

√
c cot(

√
cz)) >

1 + α

2
.

This is equivalent to saying that f is meromorphically convex of order α, by
Lemma 3.3. Thus, Theorem 2.1 is satisfied by the function f(z) =

√
c cot(

√
cz).

4.2. Proof of Theorem 2.2

We adopt the idea from the proof of [2, Theorem 2]. Suppose that u(z) and
v(z) are two linearly independent solutions of the differential equation (3.1) with
Sg(z) = 2p(z), where u(0) = v′(0) = 0 and u′(0) = v(0) = 1. Then by a similar
analysis as in the proof of [2, Theorem 2], we obtain

g(z) =
u(z)

cu(z) + v(z)
,

where c = −a2. An easy computation yields

1 +
zg′′(z)

g′(z)
= 1− 2z

cu′(z) + v′(z)

cu(z) + v(z)
. (4.10)

Now, by the hypothesis, it is easy to see that

φ(β) = min

{
β − 1

β + 1
,

6(β − 1)

2(7β − 9)

}
< 1 and ψ(β) = max

{
β + 3

β + 1
,

11β − 15

7β − 9

}
> 1.

Also, we note that

2η + (1 + η)δeδ/2 < 2η + ψ(β)δ(1 + η)eδ/2 < 2φ(β) < 2

follows from the assumption (2.5). Hence η + (1 + η)δeδ/2/2 < 1. Now [2, (13)] also
satisfied by our hypothesis. Thus, it follows from the similar argument as in the proof
of [2, Theorem 2] that∣∣∣cu′(z) + v′(z)

cu(z) + v(z)

∣∣∣ ≤ 2(η + (1 + η)δeδ/2)

2− 2η − (1 + η)δeδ/2
,

which yields

Re
(z(cu′(z) + v′(z))

cu(z) + v(z)

)
> −

∣∣∣z(cu′(z) + v′(z))

cu(z) + v(z)

∣∣∣ > − 2(η + (1 + η)δeδ/2)

2− 2η − (1 + η)δeδ/2
, (4.11)
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and

Re
(z(cu′(z) + v′(z))

cu(z) + v(z)

)
≤
∣∣∣z(cu′(z) + v′(z))

cu(z) + v(z)

∣∣∣ < 2(η + (1 + η)δeδ/2)

2− 2η − (1 + η)δeδ/2
. (4.12)

The relations (4.10), (4.11) and (4.12) together lead to

2− 6η − 5(1 + η)δeδ/2

2− 2η − (1 + η)δeδ/2
< Re

(
1 +

zg′′(z)

g′(z)

)
<

2 + 2η + 3(1 + η)δeδ/2

2− 2η − (1 + η)δeδ/2
.

The hypothesis (2.5) thus obtains

2 + 2η + 3(1 + η)δeδ/2

2− 2η − (1 + η)δeδ/2
< β

and
2− 6η − 5(1 + η)δeδ/2

2− 2η − (1 + η)δeδ/2
>
− β

2β − 3
,

completing the proof. �

Remark 4.2. The constant φ(β) in the statement of Theorem 2.2 is not sharp. For

instance, the function g(z) =
2z − z2

2(1− z)2
∈ C∞ for which |a2| = 3/2 > 1.

In the following example we construct a function that agree with Theorem 2.2
for some β ≥ 3/2.

Example 4.3. For any constant c with |c| < 3/7, consider the function g defined by

g(z) =
z

1− cz
, |z| < 1.

Although it directly follows from Corollary 2.4 that g ∈ C∞, one can also show that
g ∈ C5/2 and it satisfies the hypothesis of Theorem 2.2.

Indeed, first we note that g is a Möbius transformation and hence Sg = 0.
Therefore, it trivially satisfies the hypothesis of Theorem 2.2.

Secondly, an easy computation yields

1 +
zg′′(z)

g′(z)
=

1 + cz

1− cz
.

From this, we have

Re
(

1 +
zg′′(z)

g′(z)

)
=

1− |c|2|z|2

|1− cz|2
.

By the usual triangle inequalities, it follows that

1− |c||z|
1 + |c||z|

≤ 1− |c|2|z|2

|1− cz|2
≤ 1 + |c||z|

1− |c||z|
.

Since |c| < 3/7, for |z| < 1, it is easy to verify that

1 + |c||z|
1− |c||z|

<
5

2
and − 5

4
<

1− |c||z|
1 + |c||z|

hold true. Thus, g ∈ C5/2.
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