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A note on the Wang-Zhang and Schwarz
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Abstract. In this note we show that the Wang-Zhang inequality can be naturally
applied to obtain an elegant reverse for the classical Schwarz inequality in complex
inner product spaces.
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1. Introduction

Let (H, 〈·, ·〉) be a complex inner product space and x, y ∈ H two nonzero vectors.
One can define the angle between the vectors x, y either by

Φx,y = arccos

(
Re 〈x, y〉
‖x‖ ‖y‖

)
or by Ψx,y = arccos

(
|〈x, y〉|
‖x‖ ‖y‖

)
.

The function Ψx,y is a natural metric on complex projective space [6].

In 1969 M. K. Krĕın [5] obtained the following inequality for angles between two
vectors

Φx,y ≤ Φx,z + Φz,y (1.1)

for any x, y, z ∈ H \ {0} .
By using the representation

Ψx,y = inf
α,β∈C\{0}

Φαx,βy = inf
α∈C\{0}

Φαx,y = inf
β∈C\{0}

Φx,βy (1.2)

and Krĕın’s inequality (1.1), M. Lin [6] has shown recently that the following triangle
inequality is also valid

Ψx,y ≤ Ψx,z + Ψz,y (1.3)

for any x, y, z ∈ H \ {0} .



396 Sever S. Dragomir

The following inequality has been obtained by Wang and Zhang in [9] (see also
[11, p. 195]) √

1− |〈x, y〉|2

‖x‖2 ‖y‖2
≤

√
1− |〈x, z〉|2

‖x‖2 ‖z‖2
+

√
1− |〈y, z〉|2

‖y‖2 ‖z‖2
(1.4)

for any x, y, z ∈ H \ {0} . Using the above notations it can be written as [6]

sin Ψx,y ≤ sin Ψx,z + sin Ψz,y (1.5)

for any x, y, z ∈ H \ {0} . It also provides another triangle type inequality comple-
menting the Krĕın and Lin inequalities above.

In this note we show that the Wang-Zhang inequality can be naturally applied to
obtain an elegant reverse for the classical Schwarz inequality in complex inner product
spaces.

2. Reverse of Schwarz inequality

In the sequel we assume that (H, 〈·, ·〉) is a complex inner product space. The
inequality

|〈x, y〉|2 ≤ ‖x‖2 ‖y‖2 for x, y ∈ H (2.1)

is well know in the literature as the Schwarz inequality. The equality holds in (2.1) iff
x and y are linearly dependent.

Theorem 2.1. Let x, y, z ∈ H with ‖z‖ = 1 and α, β ∈ C, r, s > 0 such that

‖x− αz‖ ≤ r and ‖y − βz‖ ≤ s. (2.2)

Then

(0 ≤) ‖x‖2 ‖y‖2 − |〈x, y〉|2 ≤ (r ‖y‖+ s ‖x‖)2 . (2.3)

Proof. If we multiply (1.4) by ‖x‖ ‖y‖ ‖z‖ > 0, then we get

‖z‖
√
‖x‖2 ‖y‖2 − |〈x, y〉|2 (2.4)

≤‖y‖
√
‖x‖2 ‖z‖2 − |〈x, z〉|2 + ‖x‖

√
‖y‖2 ‖z‖2 − |〈y, z〉|2

for any x, y, z ∈ H \ {0} .
We observe that, if either x = 0 or y = 0, then the inequality (2.4) reduces to

an equality.
Let z ∈ H with ‖z‖ = 1, and since (see for instance [2, Lemma 2.4])

‖x‖2 − |〈x, z〉|2 = inf
λ∈C
‖x− λz‖2 and ‖y‖2 − |〈y, z〉|2 = inf

µ∈C
‖y − µz‖2

then by (2.4) we have√
‖x‖2 ‖y‖2 − |〈x, y〉|2 ≤ ‖y‖ inf

λ∈C
‖x− λz‖+ ‖x‖ inf

µ∈C
‖y − µz‖ , (2.5)

for any x, y, z ∈ H with ‖z‖ = 1.
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Since, by (2.2)

inf
λ∈C
‖x− λz‖ ≤ ‖x− αz‖ ≤ r and inf

µ∈C
‖y − µz‖ ≤ ‖y − βz‖ ≤ s,

then by (2.5) we obtain the desired result (2.3). �

Corollary 2.2. Let x, y, z ∈ H with ‖z‖ = 1 and λ,Λ, γ,Γ ∈ C with λ 6= Λ, γ 6= Γ and
such that either

Re 〈Λz − x, x− λz〉 ≥ 0 and Re 〈Γz − y, y − γz〉 ≥ 0 (2.6)

or, equivalently∥∥∥∥x− λ+ Λ

2
z

∥∥∥∥ ≤ 1

2
|Λ− λ| and

∥∥∥∥y − γ + Γ

2
z

∥∥∥∥ ≤ 1

2
|Γ− γ|

are valid. Then

(0 ≤) ‖x‖2 ‖y‖2 − |〈x, y〉|2 ≤ 1

4
(|Λ− λ| ‖y‖+ |Γ− γ| ‖x‖)2 . (2.7)

Proof. Follows by Theorem 2.1 on observing that

Re 〈∆e− u, u− δe〉 =
1

4
|∆− δ|2 −

∥∥∥∥u− δ + ∆

2
e

∥∥∥∥2
for any δ,∆ ∈ C with δ 6= ∆ and u, e ∈ H with ‖e‖ = 1. �

We give an example for n-tuples of complex numbers.

Let x = (x1, ..., xn) , y = (y1, ..., yn) and z = (z1, ..., zn) be n-tuples of complex
numbers, p = (p1, ..., pn) a probability distribution, i.e. pi > 0 i ∈ {1, ..., n} and∑n
i=1 pi = 1, with

∑n
i=1 pi |zi|

2
= 1 and λ,Λ, γ,Γ ∈ C with λ 6= Λ, γ 6= Γ and such

that

Re
[
(Λzi − xi)

(
xi − λzi

)]
≥ 0 and Re [(Γzi − yi) (yi − γzi)] ≥ 0

or, equivalently∣∣∣∣xi − λ+ Λ

2
zi

∣∣∣∣ ≤ 1

2
|Λ− λ| and

∣∣∣∣yi − γ + Γ

2
zi

∣∣∣∣ ≤ 1

2
|Γ− γ|

for any i ∈ {1, ..., n} . Then

n∑
i=1

piRe
[
(Λzi − xi)

(
xi − λzi

)]
≥ 0 and

n∑
i=1

piRe [(Γzi − yi) (yi − γzi)] ≥ 0

and by applying Corollary 2.2 for the inner product 〈·, ·〉p : Cn×Cn→ C with

〈x, y〉p =

n∑
i=1

pixiyi,
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we have

0 ≤
n∑
i=1

pi |xi|2
n∑
i=1

pi |yi|2 −

∣∣∣∣∣
n∑
i=1

pixiyi

∣∣∣∣∣
2

(2.8)

≤ 1

4

|Λ− λ|( n∑
i=1

pi |yi|2
)1/2

+ |Γ− γ|

(
n∑
i=1

pi |xi|2
)1/2

2

.

If 0 < a ≤ ai ≤ A < ∞ and 0 < b ≤ bi ≤ B < ∞ for any i ∈ {1, ..., n} then by
(2.8) we have for any p = (p1, ..., pn) a probability distribution that

0 ≤
n∑
i=1

pia
2
i

n∑
i=1

pib
2
i −

(
n∑
i=1

piaibi

)2

(2.9)

≤ 1

4

(A− a)

(
n∑
i=1

pib
2
i

)1/2

+ (B − b)

(
n∑
i=1

pia
2
i

)1/2
2

.

The interested reader may compare this new result with the classical reverses of
Schwarz inequality obtained by Diaz and Metcalf [1], Ozeki [4], G. Pólya and G.
Szegö [7], Shisha and Mond [8] and Cassels [10].

For other reverses of Schwarz inequality in complex inner product spaces see the
monograph [3] and the references therein.

Acknowledgement. The author would like to thank the anonymous referee for some
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script.
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[4] Izumino, S., Pečarić, J., A weighted version of Ozeki’s inequality, Sci. Math. Japonicae,
56(2002), no. 3, 511-526.
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