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Power of a meromorphic function that share a set
with its derivative
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Abstract. In this article, we deal with the problem of the uniqueness of the power
of a meromorphic function with its derivative counterpart sharing a set and thus
improve our recent result under some constraints.
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1. Introduction and Definitions

In this article, we assume that readers are familiar with basic Nevanlinna
theory([6]). By C and N, we mean the set of complex numbers and the set of natural
numbers respectively.

Let f and g be two non-constant meromorphic functions and let a be a finite
complex number. If f − a and g− a have the same zeros with the same multiplicities,
then we say that f and g share the value a in counting multiplicities (in short, CM).
Similarly, we say that f and g share the value a in ignoring multiplicities (in short,
IM), provided that f−a and g−a have the same set of zeros, where the multiplicities
are not taken into account.

Also, we say that f and g share ∞ CM (resp. IM), if 1/f and 1/g share 0 CM
(resp. IM).

Next we shortly recall the notion of weighted sharing which appeared in the
literature in 2001 ([7]) as scaling between IM sharing to CM sharing.

Definition 1.1. ([7]) Let k be a non-negative integer or infinity. For a ∈ C ∪ {∞}, we
denote by Ek(a; f), the set of all a-points of f , where an a-point of multiplicity m is
counted m times if m ≤ k and k + 1 times if m > k.
If Ek(a; f) = Ek(a; g), we say that f and g share the value a with weight k.
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We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly f and g share a value a IM (resp. CM) if and only if f and g share (a, 0)
(resp. (a,∞)).

Definition 1.2. ([7]) Let S ⊂ C ∪ {∞} and k be a non-negative integer or ∞. We
denote by Ef (S, k), the set ∪a∈SEk(a; f).

If Ef (S, k) = Eg(S, k), then we say f , g share the set S with weight k.

Definition 1.3. A set S ⊂ C ∪ {∞} is called a unique range set for meromorphic
functions with weight k (in short, URSMk), if for any two non-constant meromorphic
functions f and g, Ef (S, k) = Eg(S, k) implies f ≡ g.

Similarly, one can define unique range set for entire functions with weight k (in
brief, URSEk).

Next we recall following two definitions:

Definition 1.4. ([2]) Let z0 be a zero of f − a of multiplicity p and a zero of g − a of
multiplicity q.

i) We denote by NL(r, a; f), the counting function of those a-points of f and g
where p > q ≥ 1,

ii) byN
1)
E (r, a; f), the counting function of those a-points of f and g where p = q = 1

and

iii) by N
(2

E (r, a; f), the counting function of those a-points of f and g where p = q ≥
2, each point in these counting functions is counted only once.

In the same way, we can define NL(r, a; g), N
1)
E (r, a; g), N

(2

E (r, a; g).

Definition 1.5. ([2]) Let f and g share a value a IM. We denote by N∗(r, a; f, g), the
reduced counting function of those a-points of f whose multiplicities differ from the
multiplicities of the corresponding a-points of g.

Clearly

N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).

The subject of sharing values between entire functions and their derivatives was
first studied by Rubel and Yang ([11]). In 1977, they proved that if non-constant
entire functions f and f (1) share two distinct finite numbers a, b CM, then f ≡ f (1).

Later, in 1979, analogous result for IM sharing was obtained by Mues and Stein-
metz ([10]) in the following manner:

Theorem A. ([10]) Let f be a non-constant entire function. If f and f (1) share two
distinct values a, b IM, then f ≡ f (1).

In the direction of value sharing and uniqueness problem, Yang and Zhang ([12])
were the first authors to consider the uniqueness of a power of a meromorphic (resp.
entire) function F = fm and its derivative F (1) as:

Theorem B. ([12]) Let f be a non-constant entire (resp. meromorphic) function and
m > 7 (resp. 12) be an integer. If F and F (1) share 1 CM, then F = F (1), and f
assumes the form

f(z) = ce
z
m ,
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where c is a nonzero constant.

In this direction, Zhang ([13]) further improved the above result in the following
manner:

Theorem C. ([13]) Let f be a non-constant entire function, m, k be positive integers
and a(z)( 6≡ 0,∞) be a small function of f . Suppose fm− a and (fm)(k)− a share the
value 0 CM and m > k + 4. Then fm ≡ (fm)(k) and f assumes the form

f(z) = ce
λ
m z,

where c is a nonzero constant and λk = 1.

Afterwards, there were many improvements and generalizations concerning the
uniqueness of fm and (fm)(k). But all authors paid their attention on value sharing
or small function sharing, not on set sharing problem. Thus the natural curiosity will
be:

Question 1.1. Is it possible to change the value sharing notion into set sharing notion
in Theorem C keeping the conclusions same?

In connection to Question 1.1, recently we considered the uniqueness of f and
f (k) when they share a set S instead of a value a(6= 0,∞). To discuss the results in
([3]), we first introduce the polynomial of Lin and Yi ([8]).

P (z) = azn − n(n− 1)z2 + 2n(n− 2)bz − (n− 1)(n− 2)b2, (1.1)

where n ≥ 3 is an integer and a and b are two nonzero complex numbers satisfying
abn−2 6= 2. Clearly the polynomial P (z) has only simple zeros.
In ([3]), we considered the uniqueness of f and f (k) when they share a set.

Theorem E. ([3]) Let n(≥ 8), k(≥ 1) be two positive integers and f be a non-constant
meromorphic function. Suppose that S = {z : P (z) = 0} where P (z) is defined by
(1.1). If Ef (S, 3) = Ef(k)(S, 3), then f ≡ f (k).

But in this paper, we will see that if we impose some restrictions on f , then the
cardinality of the set S defined in Theorem E will be reduced remarkably.

Thus our main goal is to reduce the cardinality of this particular set S and to
establish the uniqueness of the power of a meromorphic function with its derivative
counterpart sharing the set S.

The method of proving of the main result of this paper is from ([3, 4]).

2. Main Result

Theorem 2.1. Let f be a non-constant meromorphic function and n(≥ 6), k(≥ 1) and
m(≥ k+ 1) be three positive integers. Suppose that S = {z : P (z) = 0} where P (z) is
defined by (1.1). If Efm(S, 3) = E(fm)(k)(S, 3), then fm ≡ (fm)(k) and hence f takes
the form

f(z) = ce
ζ
m z,

where c is a non-zero constant and ζk = 1.
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The following example shows that for a non-constant entire function the set S in
Theorem 2.1 can not be replaced by an arbitrary set containing six distinct elements.

Example 2.1. ([3]) For a non-zero complex number a, let

S = {aω, a
√
ω, a,

a√
ω
,
a

ω
,

a

ω
√
ω
},

where ω is the non-real cubic root of unity. Choosing

f(z) = e
ω

1
2k

m z

(taking the principal branch when m ≥ 2), it is easy to verify that fm and (fm)(k)

share (S,∞), but fm 6≡ (fm)(k)

Remark 2.1. However the following questions are still unknown to us:

i) Is it possible to omit the condition m ≥ k+1 keeping the condition n(≥ 6) same
in Theorem 2.1?

ii) Under the same conditions of Theorem 2.1, is it possible to further reduce the
cardinality of S?

3. Auxiliary Lemmas

Before going to discuss the necessary lemmas, we recall a well known auxiliary
function as

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
, (3.1)

where F := R(fm) , G := R
(
(fm)(k)

)
and the expression

a(∗)n

n(n− 1)(∗ − α1)(∗ − α2)

is denoted by R(∗).
In addition, in the expression of R(∗), we choose α1 and α2 as the distinct roots

of the equation

n(n− 1)z2 − 2n(n− 2)bz + (n− 1)(n− 2)b2 = 0.

Lemma 3.1. ([1]) Let Q(z) = (n− 1)2(zn − 1)(zn−2 − 1)− n(n− 2)(zn−1 − 1)2. Then

Q(z) = (z − 1)4
2n−6∏
i=1

(z − βi),

where βi ∈ C \ {0, 1}(i = 1, 2, ..., 2n− 6), which are distinct.

Lemma 3.2. Let F and G share (1, l) where F and G defined as earlier, then

i) NL(r, 1;F ) ≤ µ
(
N(r, 0; f) +N(r,∞; f)

)
+ S(r, f),

ii) NL(r, 1;G) ≤ µ
(
N(r, 0; (fm)k) +N(r,∞; f)

)
+ S(r, f),

where µ = min{ 1l , 1}.
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Proof. The proofs are similar to the proof of Lemma 2.2 of ([3]). So we omit the
details. �

Lemma 3.3. Suppose that F and G share (1, l) and F 6≡ G. If m ≥ k + 1, then

N(r, 0; f) ≤ N(r, 0, (fm)(k)) ≤ 2µ+ 1

η − 2µ
N(r,∞; f) +

2

η − 2µ
T (r) + S(r),

where T (r) = T (r, fm) + T
(
r, (fm)(k)

)
, S(r) = S(r, f) and η = (m− k)n− 1.

Proof. For the proof, we define U := F ′

(F−1) −
G′

(G−1) and consider two cases:

Case 1. Assume U ≡ 0. Then by integration, we get

F − 1 = B(G− 1).

If z0 is a zero of f , then B = 1 which is impossible, thus N(r, 0; f) = S(r, f). Hence
the result holds.
Case 2. Next we assume that U 6≡ 0.

If z0 is a zero of f of order t, then it is a zero of F of order mtn and that of G is
of order (mt− k)n. Hence z0 is a zero of U of order at least η = (m− k)n− 1. Thus

N(r, 0; f) ≤ N
(
r, 0, (fm)(k)

)
≤ 1

η
N(r, 0;U) ≤ 1

η
N(r,∞;U) + S(r, f)

≤ 1

η
{NL(r, 1;F ) +NL(r, 1;G) +NL(r,∞;F ) +NL(r,∞;G)

+N(r,∞;G|F 6=∞) +N(r,∞;F |G 6=∞)}+ S(r, f)

≤ 1

η
{µ
(
N(r, 0; f) +N(r, 0; (fm)(k)) + 2N(r,∞; f)

)
+N(r,∞; f) +N(r, α1; fm) +N(r, α2; fm)

+N(r, α1; (fm)(k)) +N(r, α2; (fm)(k)}+ S(r, f)

≤ 1

η
{2µN(r, 0; (fm)(k)) + (2µ+ 1)N(r,∞; f) + 2T (r)}+ S(r).

Thus

N(r, 0; f) ≤ N(r, 0, (fm)(k)) ≤ 2µ+ 1

η − 2µ
N(r,∞; f) +

2

η − 2µ
T (r) + S(r).

Hence the proof of the lemma is completed. �

Lemma 3.4. Let F and G share (1, l) and F 6≡ G. If m ≥ k + 1, then

N(r,∞; f) ≤ µ(η − 2µ) + 2

(λ− 2µ)(η − 2µ)− (2µ+ 1)
T (r) + S(r), (3.2)

where T (r) = T (r, fm) + T
(
r, (fm)(k)

)
and S(r) = S(r, f), λ = m(n − 2) − 1 and

µ = min{ 1l , 1}.
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Proof. For the proof, we define V := F ′

F (F−1) −
G′

G(G−1) and consider two cases:

Case 1. Assume that V ≡ 0. Then by integration, we get(
1− 1

F

)
= A

(
1− 1

G

)
.

As fm and (fm)(k) share (∞, 0), so if N(r,∞; f) 6= S(r, f), then A = 1, i.e., F = G,
which is not possible. So N(r,∞; f) = S(r, f). Thus the lemma holds.
Case 2. Next we assume that V 6≡ 0.

If z0 is a pole of f of order p, then it is a pole of (fm)(k) of order (pm+ k) and
that of F and G are pm(n− 2) and (pm+ k)(n− 2) respectively.

Hence z0 is a zero of ( F ′

F−1 −
F ′

F ) of order at least pm(n − 2) − 1 and a zero of

V of order at least λ where λ = m(n− 2)− 1.

Since the zeros of F comes from zeros of fm and that of G comes from zeros of
(fm)(k), so for the points where f = 0, each zero of F will be of larger multiplicities
than that of G. Consequently

N∗(r, 0;F,G) +N(r, 0;G | F 6= 0)

≤ NL(r, 0;F ) +NL(r, 0;G) +N(r, 0;G | F 6= 0)

≤ NL(r, 0;F ) +N(r, 0;G | F 6= 0) ≤ N(r, 0;G).

Thus

N(r,∞; f) ≤ 1

λ
N(r, 0;V )

≤ 1

λ
N(r,∞;V ) + S(r, f)

≤ 1

λ
{NL(r, 1;F ) +NL(r, 1;G) +NL(r, 0;F )

+NL(r, 0;G) +N(r, 0;G|F 6= 0}+ S(r, f)

≤ 1

λ
{NL(r, 1;F ) +NL(r, 1;G) +N(r, 0;G)}+ S(r, f)

≤ 1

λ
{µ
(
N(r, 0; f) +N(r, 0; (fm)(k)) + 2N(r,∞; f)

)
+N(r, 0; (fm)(k))}+ S(r, f).

Now using Lemma 3.3, we get

(λ− 2µ)N(r,∞; f) ≤ µT (r) +N(r, 0; (fm)(k)) + S(r)

≤ µT (r) +
2µ+ 1

η − 2µ
N(r,∞; f) +

2

η − 2µ
T (r) + S(r).

Thus

N(r,∞; f) ≤ µ(η − 2µ) + 2

(λ− 2µ)(η − 2µ)− (2µ+ 1)
T (r) + S(r).

Hence the proof is completed. �
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Lemma 3.5. If H 6≡ 0 and F and G share (1, l) then

N(r,∞;H) (3.3)

≤ N(r,∞; f) +N(r, 0; (fm)(k)) +N(r, b; fm) +N(r, b; (fm)(k))

+NL(r, 1;F ) +NL(r, 1;G) +N0(r, 0; (fm)′) +N0(r, 0; (fm)(k+1)),

where N0(r, 0; (fm)′) denotes the counting function of the zeros of (fm)′ which are
not the zeros of f(fm − b) and F − 1. Similarly N0(r, 0; (fm)(k+1)) is defined.

Proof. The proof is obvious if we are keeping the followings in our mind:
As zeros of F come from the zeros of fm and that of G come from the zeros of

(fm)(k), so N(r, 0;F ) ≤ N(r, 0;G) when m ≥ k + 1. Also

N(r,∞;F ) ≤ N(r,∞; fm) +N(r, α1; fm) +N(r, α2; fm).

Again simple zeros of fm − αi are not poles of H and multiple zeros of fm − αi are
zeros of (fm)′.

Similar explanation for G also holds. �

Lemma 3.6. If F ≡ G and n > 5, then fm = (fm)(k), i.e., f takes the form

f(z) = ce
ζ
m z,

where c is a non zero constant and ζk = 1.

Proof. Given F ≡ G, that is,

n(n− 1)f2m
(
(fm)(k)

)2{
f (n−2)m − ((fm)(k))n−2

}
−2n(n− 2)bfm(fm)(k)

{
f (n−1)m −

(
(fm)(k)

)n−1}
+(n− 1)(n− 2)b2

{
(fm)n −

(
(fm)(k)

)n}
= 0.

By substituting h = (fm)(k)

fm in above, we get

n(n− 1)h2f2m(hn−2 − 1) − 2n(n− 2)bhfm(hn−1 − 1) (3.4)

+ (n− 1)(n− 2)b2(hn − 1) = 0.

If h is a non-constant meromorphic function, then by Lemma 3.1, we get

{n(n− 1)hfm(hn−2 − 1)− n(n− 2)b(hn−1 − 1)}2

= −n(n− 2)b2(h− 1)4
2n−6∏
i=1

(h− βi).

Then by the second fundamental theorem, we get

(2n− 6)T (r, h)

≤ N(r,∞;h) +N(r, 0;h) +

2n−6∑
i=1

N(r, 0;h− βi) + S(r, h)

≤ N(r,∞;h+N(r, 0;h) +
1

2

2n−6∑
i=1

N(r, 0;h− βi) + S(r, h)

≤ (n− 1)T (r, h) + S(r, h),
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which is a contradiction as n > 5.
Thus h is a constant. Hence as f is non-constant and b 6= 0, we get from (3.4) that

(hn−2 − 1) = 0, (hn−1 − 1) = 0 and (hn − 1) = 0.

That is, h = 1. Consequently fm = (fm)(k).

If fm = (fm)(k), then we claim that 0 and ∞ are the Picard exceptional value of f .

For the proof, if z0 is a zero of f of order t, then it is a zero of fm and (fm)(k)

of order mt and (mt− k) respectively, which is impossible.

Again if z0 is a pole of f of order s, then it is a pole of fm and (fm)(k) of order
ms and (ms+ k) respectively, which is impossible.

Thus our claim is true and hence f takes the form of

f(z) = ce
ζ
m z,

where c is a non zero constant and ζk = 1. �

Lemma 3.7. If H ≡ 0 and n > 5, then fm = (fm)(k).

Proof. Since H ≡ 0, on integration, we have

F =
AG+B

CG+D
, (3.5)

where A,B,C,D are constant satisfying AD −BC 6= 0, and F and G share (1,∞).
Thus applying Mokhon’ko’s Lemma ([9]) in (3.5), we get

T (r, fm) = T (r, (fm)(k)) + S(r, f). (3.6)

Again from (3.5), we get N(r,∞; f) = S(r, f) if C 6= 0, otherwise fm and (fm)(k)

share (∞,∞) if C = 0 .
As AD − BC 6= 0, so A = C = 0 never occurs. Thus we consider the following

cases:
Case 1. If AC 6= 0, then

F − A

C
=

BC −AD
C(CG+D)

. (3.7)

So,

N

(
r,
A

C
;F

)
= N(r,∞;G).

Now by using the second fundamental theorem, we get

T (r, F )

≤ N(r,∞;F ) +N(r, 0;F ) +N(r,
A

C
;F ) + S(r, F )

≤ N(r,∞; f) +N(r, α1; fm) +N(r, α2; fm) +N(r, 0; fm)

+N(r,∞; (fm)(k)) +N(r, α1; (fm)(k)) +N(r, α2; (fm)(k)) + S(r, f)

≤ 5

n
T (r, F ) + S(r, F ),
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which is a contradiction as n > 5.
Case 2. Next we consider AC = 0. Then obviously A = 0 and C = 0 can’t occur.
Thus we consider the following two subcases:
Subcase 2.1. If A = 0 and C 6= 0, then obviously B 6= 0 and

F =
1

γG+ δ
,

where γ = C
B and δ = D

B .
If F has no 1-point, then by using the second fundamental theorem, we get

T (r, F )

≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 1;F ) + S(r, F )

≤ N(r,∞; fm) +N(r, α1; fm) +N(r, α2; fm) +N(r, 0; fm) + S(r, f)

≤ 3

n
T (r, F ) + S(r, F ),

which is a contradiction as n > 5. Thus γ + δ = 1 and γ 6= 0. So,

F =
1

γG+ 1− γ
.

Consequently, N(r, 0;G+ 1−γ
γ ) = N(r,∞;F ).

Now if γ 6= 1, then applying the second fundamental theorem and equation (3.6),
we get

T (r,G)

≤ N(r,∞;G) +N(r, 0;G) +N(r, 0;G+
1− γ
γ

) + S(r,G)

≤ N(r,∞; (fm)(k)) +N(r, α1; (fm)(k)) +N(r, α2; (fm)(k))

+ N(r, 0; (fm)(k)) +N(r,∞; (fm)) +N(r, α1; (fm))

+ N(r, α2; (fm)) + S(r, f)

≤ 5

n
T (r,G) + S(r,G),

which is a contradiction as n > 5. Thus γ = 1 and hence FG ≡ 1 which give

fmn
(

(fm)(k)
)n

=
n2(n− 1)2

a2
(fm − α1)(fm − α2)((fm)(k) − α1)((fm)(k) − α2).

It is clear from the above equation that f has no pole, because n > 5. Now let z0 be
a α1i point of f of order s, where (α1i)

m = α1, then it can’t be a pole of (fm)(k) as
f has no pole, so z0 is a zero of (fm)(k) of order q satisfying n ≤ nq = s. Thus

N(r,∞; f) = S(r, f),

N(f, α1i; f) ≤ 1

n
N(f, α1i; f) and

N(f, α2j ; f) ≤ 1

n
N(f, α2j ; f).
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Thus by the second fundamental theorem, we get

(2m− 1)T (r, f)

≤ N(r,∞; f) +

m∑
i=1

N(r, α1i; f) +

m∑
j=1

N(r, α2j ; f) + S(r, f)

≤ 2m

n
T (r, f) + S(r, f),

which is not possible as n > 5.
Subcase 2.2. If A 6= 0 and C = 0, then obviously D 6= 0 and

F = λG+ µ,

where λ = A
D and µ = B

D . If F has no 1-point, then we arrive at a contradiction as
the previous case. Thus λ+ µ = 1 with λ 6= 0. Also

N

(
r, 0;G+

1− λ
λ

)
= N(r, 0;F ).

Now if λ 6= 1, then by using the second fundamental theorem and equation (3.6), we
get

T (r,G)

≤ N(r,∞;G) +N(r, 0;G) +N(r, 0;G+
1− λ
λ

) + S(r,G)

≤ N(r,∞; (fm)(k)) +N(r, α1; (fm)(k)) +N(r, α2; (fm)(k))

+ N(r, 0; (fm)(k)) +N(r, 0; (fm)) + S(r, f)

≤ 5

n
T (r,G) + S(r,G),

which is a contradiction as n > 5. Thus λ = 1 and hence F ≡ G.

Now in view of Lemma 3.6, we get fm = (fm)(k) as n > 5, i.e. f takes the form

f(z) = ce
ζ
m z,

where c is a non zero constant and ζk = 1. �

4. Proof of Main Result

Proof of Theorem 2.1 . Let H be defined by equation (3.1). Now we consider two
cases:
Case 1. First we assume H 6≡ 0. Then clearly F 6≡ G and

N(r, 1;F | = 1) = N(r, 1;G| = 1) ≤ N(r,∞;H).
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So by the second fundamental theorem and Lemma 3.5, we get

(n+ 1)T (r, fm) (4.1)

≤ N(r,∞; f) +N(r, 0; f) +N(r, b; fm)

+N(r, 1;F )−N0(r, 0, (fm)′) + S(r, f)

≤ 2{N(r,∞; f) +N(r, b; fm)}+N(r, 0; (fm)(k))

+N(r, 0; f) +N(r, b; (fm)(k)) +N(r, 1;F | ≥ 2)

+NL(r, 1;F ) +NL(r, 1;G) +N0

(
r, 0; (fm)(k+1)

)
+ S(r, f).

Now

N(r, 1;F | ≥ 2) +N∗(r, 1;F,G) +N0

(
r, 0; (fm)(k+1)

)
(4.2)

≤ N(r, 1;G| ≥ 2) +N(r, 1;G| ≥ 3) +N0

(
r, 0; (fm)(k+1)

)
≤ N

(
r, 0; (fm)(k+1) | (fm)(k) 6= 0

)
+ S(r, f)

≤ N
(
r, 0; (fm)(k)

)
+N(r,∞; f) + S(r, f).

Thus

(n+ 1)T (r, fm) (4.3)

≤ 2{N(r,∞; f) +N(r, b; fm)}+N(r, 0; f)

+2N(r, 0; (fm)(k)) +N(r, b; (fm)(k)) +N(r,∞; f) + S(r, f).

Similarly for (fm)(k), we get

(n+ 1)T (r, (fm)(k)) (4.4)

≤ 2{N(r,∞; f) +N(r, b; (fm)(k))}+N(r, 0; (fm)(k)) (4.5)

+2N(r, 0; f) +N(r, b; fm) +N(r,∞; f) + S(r, f).

Adding (4.3) and (4.4), we get

(n+ 1)T (r) ≤ 6N(r,∞; f) + 3{N(r, 0; f) +N(r, 0; (fm)(k))} (4.6)

+3{N(r, b; fm) +N(r, b; (fm)(k))}+ S(r, f)

and

(n− 5)T (r) ≤ 6N(r,∞; f) + S(r). (4.7)

Thus using Lemma 3.4, we get

(n− 5)T (r) ≤ 6µ(η − 2µ) + 12

(λ− 2µ)(η − 2µ)− (2µ+ 1)
T (r) + S(r),

which is a contradiction as n ≥ 6 and l ≥ 3.
Case 2. Next we assume H ≡ 0. Then for n > 5, applying Lemma 3.7, we have
fm = (fm)(k). Thus by the same arguments using in Lemma 3.6, we see that f takes
the form

f(z) = ce
ζ
m z,
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where c is a non zero constant and ζk = 1. Thus the proof is completed. �
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