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1. Introduction

Differential equations with impulses were considered for the first time by Milman
and Myshkis [18] and then followed by a period of active research which culminated
with the monograph by Halanay and Wexler [13]. Many phenomena and evolution
processes in physics, chemical technology, population dynamics, and natural sciences
may change state abruptly or be subject to short-term perturbations. These perturba-
tions may be seen as impulses. Impulsive problems arise also in various applications in
communications, mechanics (jump discontinuities in velocity), electrical engineering,
medicine and biology fields. A comprehensive introduction to the basic theory is well
developed in the monographs by Benchohra et al [3], Graef et al [11], Laskshmikan-
tham et al. [1], Samoilenko and Perestyuk [26].For instance, in the periodic treatment
of some diseases, impulses correspond to the administration of a drug treatment or a
missing product.In environmental sciences, impulses correspond to seasonal changes
of the water level of artificial reservoirs.
Random differential and integral equations play an important role in characterizing
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many social, physical, biological and engineering problems; see for instance the mono-
graph of Da Prato and Zabczyk [7], Gard [9], Gikhman and Skorokhod [10], Sobzyk
[27] and Tsokos and Padgett [28]. For example, a stochastic model for drug distri-
bution in a biological system was described by Tsokos and Padgett [28] to a closed
system with a simplified heat, one organ or capillary bed, and re-circulation of a blood
with a constant rate of flow, where the heart is considered as a mixing chamber of
constant volume. For the basic theory concerning stochastic differential equations see
the monographs of Wu et al [30], Bharucha-Reid [4], Mao[16], Øksendal, [20], Tsokos
and Padgett [28], Da Prato and Zabczyk [7].
In this paper, we study the existence theory for initial-value problems with impulse
effects.

(φ(x′(t)))′ = f1(t, x(t), y(t))dt

+

∞∑
l=1

σ1
l (t, x(t), y(t))dW l(t), t ∈ [0, T ], t 6= tk,

(φ(y′(t)))′ = f2(t, x(t), y(t))dt

+

∞∑
l=1

σ2
l (t, x(t), y(t))dW l(t), t ∈ [0, T ], t 6= tk,

∆x(t) = Ik(x(tk)), ∆x′(t) = I1k(x′(tk)), t = tk, k = 1, 2, . . . ,m,

∆y(t) = Ik(y(tk)), ∆y′(t) = I
2

k(y′(tk)), t = tk, k = 1, 2, . . . ,m,

x(0) = A0, y(0) = B0,

x′(0) = A1, y′(0) = B1,

(1.1)

where 0 = t0 < t1 < . . . < tm < tm+1 = T, J := [0, T ]. f1l , f
2
l : J × R2 → R is a

given function, σ1
l , σ

2
l : J ×R2 → R is a given function and W l is an infinite sequence

of independent standard Brownian motions, l = 1, 2, . . . and φ : R → R is a suitable

monotone homeomorphism, I1k , I
1

k, I
2

k, I
2
k ∈ C(R,R), (k = 1, 2, . . . ,m) and Aj , Bj ∈ R

for each j = 0, 1, ∆x|t=tk = x(t+k ) − x(t−k ),∆y|t=tk = y(t+k ) − y(t−k ) and ∆x′|t=tk =

x′(t+k )−x′(t−k ),∆y′|t=tk = y′(t+k )− y′(t−k ). The notations y(t+k ) = lim
h→0+

y(tk +h) and

y(t−k ) = lim
h→0+

y(tk − h) stand for the right and the left limits of the function y at

t = tk, respectively. Set fi(., x, y) = (f i1(., x, y), f i2(., x, y), . . .),

‖fi(., x, y)‖ =
(∑∞

l=1(f il )
2(., x, y)

) 1
2

,
(1.2)

where i = 1, 2, fi(., x, y) ∈ l2 for all x ∈ R .
This paper is organized as follows: In Section 2, we introduce all the back- ground
material used in this paper such as stochastic calculus. In Section 3, to provide some
existence results and to establish the compactness of solution sets to the above prob-
lems are quoted.



Existence and topological structure of solution sets 505

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper.
Let (Ω,F ,P) be a complete probability space with a filtration (F = Ft)t≥0 satisfying
the usual conditions (i.e. right continuous and F0 containing all P-null sets). Assume
W (t) is an infinite sequence of independent standard Brownian motions, defined on
(Ω,F ,P) that is, W (t) = (W 1(t),W 2(t), . . .)T . An R-valued random variable is an
F-measurable function x(t) : Ω→ R and the collection of random variables

S = {x(t, ω) : Ω→ R| t ∈ J}

is called a stochastic process. Generally, we write x(t) instead of x(t, ω).

Definition 2.1. An F-adapted process X on [0, T ] × Ω is elementary processes if for
a partition φ = {t = 0 < t1 < . . . < tn = T} and (Fti)-measurable random variables
(Xti)i<n, Xt satisfies

Xt(ω) =

n−1∑
i=0

Xi(ω)χ[ti,ti+1)(t), for 0 ≤ t ≤ T, ω ∈ Ω.

The Itô integral of the simple process X is defined as∫ T

0

X(s)dW l(s) =

n−1∑
i=0

Xl(ti)(W
l(ti+1)−W l(ti)), (2.1)

whenever Xti ∈ L2(Fti) for all i ≤ n.

The following result is one of the elementary properties of square-integrable
stochastic processes [20, 16].

Lemma 2.2. (Itô Isometry for Elementary Processes) Let (Xl)l∈N be a sequences of
elementary processes. Assume that∫ T

0

E|X(s)|2ds <∞,

where |X|2 =

( ∞∑
l=1

X2
l

)
. Then

E

( ∞∑
l=1

∫ T

0

Xl(s)dW
l(s)

)2

= E

( ∞∑
l=1

∫ T

0

X2
l (s)ds

)
. (2.2)

Remark 2.3. For a square integrable stochastic process X on [0, T ], its Itô integral is
defined by ∫ T

0

X(s)dW (s) = lim
n→∞

∫ T

0

Xn(s)dW (s),

taking the limit in L2, with Xn is defined in definition 2.1. Then the Itô isometry
holds for all Itô-integrable X.
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The next result is known as the Burholder-Davis-Gundy inequalities. It was
first proved for discrete martingales and p > 0 by Burkholder [5] in 1966. In 1968,
Millar [17] extended the result to continuous martingales. In 1970, Davis [8] extended
the result for discrete martingales to p = 1. The extension to p > 0 was obtained
independently by Burkholder and Gundy [6] in 1970 and Novikov [19] in 1971.

Theorem 2.4. [23] For each p > 0 there exist constants cp, Cp ∈ (0,∞), such that for

any progressive process x with the property that for some t ∈ [0,∞),
∫ t
0
X2
sds <∞ a.s,

we have

cpE

(∫ t

0

X2
sds

) p
2

≤ E

(
sup
s∈[0,t]

∫ t

0

XsdW (s)

)p
≤ CpE

(∫ t

0

X2
sds

) p
2

. (2.3)

2.1. Some results on fixed point theorems and set-valued analysis

The classical Banach contraction principle was extended for contractive maps
on spaces endowed with vector-valued metric space by Perov [21] in 1964 and Precup
[22].
For x, y ∈ Rn, x = (x1, . . . , xn), y = (y1, . . . , yn), by x ≤ y we mean xi ≤ yi for all
i = 1, . . . , n.
Also |x| = (|x1|, . . . , |xn|) and max(x, y) = max(max(x1, y1), . . . ,max(xn, yn)).
If c ∈ R, then x ≤ c means xi ≤ c for each i = 1, . . . , n.

Definition 2.5. Let X be a nonempty set. A vector-valued metric on X is a map
d : X ×X → Rn with the following properties:

(i) d(u, v) ≥ 0 for all u, v ∈ X; if d(u, v) = 0 then u = v;
(ii) d(u, v) = d(v, u) for all u, v ∈ X;
(iii) d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ X.
The pair (X, d) is said to be a generalized metric space.

For r = (r1, . . . , rn) ∈ Rn+, we will denote by

B(x0, r) = {x ∈ X : d(x0, x) < r},
the open ball centered in x0 with radius r and

B(x0, r) = {x ∈ X : d(x0, x) ≤ r}
the closed ball centered in x0 with radius r. We mention that for generalized metric
space, the notation of open subset, closed set, convergence, Cauchy sequence and
completeness are similar to those in usual metric spaces.

Definition 2.6. A generalized metric space (X, d), where

d(x, y) :=

 d1(x, y)
· · ·

dn(x, y)

 ,

is complete if (X, di) is a complete metric space for every i = 1, . . . , n.

Definition 2.7. The map f : J ×X → X is said to be L2-Caratheodory if

i) t 7→ f(t, u) is measurable for each u ∈ X;



Existence and topological structure of solution sets 507

ii) u 7→ f(t, u) is continuous for almost all t ∈ J ;
iii) For each q > 0, there exists αq ∈ L1(J,R+) such that

E|f(t, u)|2X ≤ αq , for all u ∈ X such that E|u|2X ≤ q and for a.e. t ∈ J.

Lemma 2.8 (Grönwall-Bihari [2]). Let I = [0, b] and let u, g : I → R be positive con-
tinuous functions. Assume there exist c > 0 and a continuous nondecreasing function
h : [0,∞)→ (0,+∞) such that

u(t) ≤ c+ g(s)h(u(s))ds, ∀t ∈ I.

Then

u(t) ≤ H−1
(∫ t

p

g(s)ds
)
, ∀t ∈ I,

provided ∫ +∞

c

dy

h(y)
>

∫ q

p

g(s)ds,

where H−1 refers to inverse of the function H(u) =
∫ u
c

dy
h(y) for u ≥ c.

In the paper [14], the case of a single system of differential equations was analyzed
based on the technique of applying the nonlinear alternative of Leray-Schauder type.
In the present paper we extend these results to the more general case of coupled
stochastic differential systems with infinite Brownian motions, and we will apply a
different technique to obtain our results.
Next, we quote the version of nonlinear alternative Leary-Schauder type theorem in
generalized Banach space[29].

Theorem 2.9. Let C ⊂ E be a closed convex subset and U ⊂ C a bounded open neigh-
borhood of zero (with respect to topology of C). If N : U → E is compact continuous
then

i) Either N has a fixed point in U, or
ii) There exists x ∈ ∂U such that x = λN(x) for some λ ∈ (0, 1).

3. Main results

Let Jk = (tk, tk+1], k = 1, 2, . . . ,m. In order to define a solution for Problem
(1.1), consider the following space of piece-wise continuous functions.

Let us introduce the spaces

H2([0, T ];L2(Ω,R)) = {x : J → L2(Ω,R) , x |(tk,tk+1]∈ C((tk, tk+1], L2(Ω,R)),

k = 1, 2, ..,m and there exist x(t+k ) for k = 1, 2, ..,m},
and

H ′2([0, T ];L2(Ω,R)) = {x : J → L2(Ω,R) , x |(tk,tk+1]∈ C
1((tk, tk+1], L2(Ω,R)),

k = 1, 2, ..,m and there exist x(t+k ) for k = 1, 2, ..,m}.
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It is clear that H2([0, T ];L2(Ω,R)) endowed with the norm

‖x‖H2
= sup
s∈[0,T ]

(E|x(s, .)|2)
1
2 .

It is easy to see that H ′2 is a Banach space with the norm ‖x‖H′
2

= ‖x‖H2
+ ‖x′‖H2

.
Finally, let the space

PC = {x : [0, T ]→ L2(Ω,R) andx |J∈ H ′2 such that

sup
t∈[0,T ]

E|x(t, .)|2 <∞ almost surely},

endowed with the norm

‖x‖PC = sup
s∈[0,T ]

(E|x(s, .)|2)
1
2 .

It is not difficult to check that PC is a Banach space with norm ‖ · ‖PC .
Let us now prove the existence and uniqueness of solutions to our problem which

will be obtained by applying the Leary-Schauder fixed point theorem. To this end we
first need to introduce the following hypotheses:

(H1) f i, σi : [0, T ]× R× R→ R is an Carathéodory function and
E|φ−1(X)|2 ≤ φ−1(E|X|2) with X ∈ R, Ik, Īk ∈ C(R,R).

(H2) There exist constants ai, bi, ci ∈ R+ such that each

|f i(t, x, y)|2 ≤ ai|x|2 + bi|y|2 + ci, i = 1, 2.

for all x, y ∈ R, and a.e. t ∈ J.
(H3) There exist constants αi ∈ R+ and βi, ci ∈ R+ such that

‖σi(t, x, y)‖2 ≤ αi|x|2 + βi|y|2 + ci, i = 1, 2

for all x, y ∈ R, and a.e. t ∈ J.

Theorem 3.1. Assume that (H1)-(H3) hold. Then, problem (1.1) has at least one
solution and the solution set

Sc = {(x, y) ∈ PC × PC : (x, y) is a solution of (1.1)}

is compact.

Proof. The proof involves several steps.
Step 1. Consider the problem

(φ(x′(t)))′ = f1(t, x(t), y(t))dt+

∞∑
l=1

σ1
l (t, x(t)), y(t))dW l(t), t ∈ [0, t1],

(φ(y′(t)))′ = f2(t, x(t), y(t))dt+

∞∑
l=1

σ2
l (t, x(t)), y(t))dW l(t), t ∈ [0, t1],

x(0) = A0 , y(0) = B0,
x′(0) = A1 , y′(0) = B1.

(3.1)

Let

Ĉt0 = {x : [0, t1]→ L2(Ω,R) , x |[0,t1]∈ C
1([0, t1], L2(Ω,R)), k = 1, 2, ..,m,
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and there exists

x(t+1 ) for k = 1, 2, ..,m},

with

Ct0 = {x : [0, t1]→ L2(Ω,R) andx |[0,t1]∈ Ĉt0 such that

sup
t∈[0,t1]

E|x(t, .)|2 <∞ almost surely},

Consider the operator

P 0 : Ct0 × Ct0 → Ct0 × Ct0
defined by

P 0(x, y) = (P 0
1 (x, y), P 0

2 (x, y)), (x, y) ∈ Ct0 × Ct0
where

P 0
1 (x, y) = A0 +

∫ t

0

φ−1
(
φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ [0, t1], a.e. ω ∈ Ω.

P 0
2 (x, y) = B0 +

∫ t

0

φ−1
(
φ(B1) +

∫ s

0

f2(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ2
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ [0, t1], a.e. ω ∈ Ω.

(3.2)
Clearly, the fixed points of P 0 = (P 0

1 , P
0
2 ) are solutions of the problem (3.1).

To apply the nonlinear alternative of Leray-Schauder type, we first show that P 0 is
completely continuous. The proof will be given in several steps.

Claim 1. P 0 sends bounded sets into bounded sets in Ct0 × Ct0 . Indeed, it is enough
to show that for any q > 0, there exists a positive constant κ such that for each

(x, y) ∈ Bq = {(x, y) ∈ Ct0 × Ct0 : sup
t∈[0,t1]

E|x(t, ·)|2 ≤ q, sup
t∈[0,t1]

E|x(t, ·)|2 ≤ q},

we have

‖P 0(x, y)‖ ≤ κ = (κ1, κ2).

Then for each t ∈ [0, t1], we have

E|P 0
1 (x, y)|2 ≤ 2E|A0|2 + 2

∫ t

0

E
∣∣∣φ−1(φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)
ds
∣∣∣2.
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From Lemma 2.4, we obtain

E
∣∣∣φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr +

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

∣∣∣2
≤ 3|φ(A1)|2X + 3t1

∫ s

0

(a1|x(r)|2X + b1|y(r)|2 + c1)dr

+3C2

∫ s

0

(α1|x(r)|2 + β1|y(r)|2 + c1)dr,

it follows that

E
∣∣∣φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr +

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW (r)

∣∣∣2 ∈ B(0, l1),

where

l1 = 3E|φ(A1)|2 + 3t1

∫ s

0

(a1E|x(r)|2 + b1E|y(r)|2 + c1)dr

+3C2

∫ s

0

(α1E|x(r)|2 + β1E|y(r)|2 + c1)dr.

Since φ−1 is continuous,

sup
η1∈B(0,l1)

|φ−1(η1)| <∞.

Thus

E|P 0
1 (x, y)|2 ≤ 2E|A0|2 + 2t1 sup

η1∈B(0,l1)

|φ−1(η1)| := κ1.

Similarly,

E|P 0
2 (x, y)|2 ≤ 2E|B0|2 + 2t1 sup

η2∈B(0,l2)

|φ−1(η2)| := κ2,

where

l2 = 3E|φ(B1)|2 + 3t1

∫ s

0

(a2E|x(r)|2 + b2E|y(r)|2 + c2)dr

+3C2

∫ s

0

(α2E|x(r)|2 + β2E|y(r)|2 + c2)dr.

Since φ−1 is continuous,

sup
η1∈B(0,l1)

|φ−1(η1)| <∞.
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Claim 2. P 0 maps bounded sets into equicontinuous sets. Let l1, l2 ∈ [0, t1], l1 < l2
and Bq be a bounded set of Ct0 × Ct0 as in Claim 1. Let (x, y) ∈ Bq. Then

E|(P 0
1 (x, y))′(t)|2 = E

∣∣∣φ−1(φ(A1) +

∫ t

0

f1(s, x(s), y(s))dr

+

∞∑
l=1

∫ t

0

σ1
l (s, x(s), y(s))dW l(s)

)
− φ−1(φ(A1))

∣∣∣2
≤ E

∣∣∣φ−1(φ(A1) +

∫ t

0

f1(s, x(s), y(s))dr

+

∞∑
l=1

∫ t

0

σ1
l (s, x(s), y(s))dW l(s)

)∣∣∣2 + E
∣∣∣A1

∣∣∣2
≤ sup
η1∈B(0,l1)

|φ−1(η1)|+ E|A1| := r′.

Using the mean value theorem, we obtain

E|(P 0
1 (x, y))(l2)− (P 0

1 (x, y))(l1)| = E|(P 0
1 (x, y))′(ξ, ξ)(l2 − l1)| ≤ r′|l2 − l1|.

As l2 → l1 the right-hand side of the above inequality tends to zero.
Similarly,

E|(P 0
2 (x, y))′(t)|2X = E

∣∣∣φ−1(φ(B1) +

∫ t

0

f2(s, x(s), y(s))dr

+

∞∑
l=1

∫ t

0

σ2
l (s, x(s), y(s))dW l(s)

)
− φ−1(φ(B1))

∣∣∣2
≤
∣∣∣φ−1(φ(B1) +

∫ t

0

f2(s, x(s), y(s))dr

+

∞∑
l=1

∫ t

0

σ2
l (s, x(s), y(s))dW l(s)

)∣∣∣2 +
∣∣∣B1

∣∣∣2
≤ sup
η2∈B(0,l2)

|φ−1(η2)|+ |B1| := r′.

Using the mean value theorem, we obtain

E|(P 0
2 (x, y))(l2)− (P 0

2 (x, y))(l1)| = E|(P 0
2 (x, y))′(ξ, ξ)(l2 − l1)| ≤ r′|l2 − l1|.

As l2 → l1 the right-hand side of the above inequality tends to zero.
Claim 3. P 0 is continuous. Let (xn, yn)n∈N be a sequence such that (xn, yn)→ (x, y)
in Ct0 × Ct0 . Then there is an integer q such that

sup
t∈[0,t1]

E|xn(t, ·)|2 ≤ q, sup
t∈[0,t1]

E|yn(t, ·)|2 ≤ q ≤ q for all n ∈ N

and

sup
t∈[0,t1]

E|x(t, ·)|2 ≤ q, sup
t∈[0,t1]

E|y(t, ·)|2 ≤ q, (xn, yn) ∈ Bq and (x, y) ∈ Bq.



512 Tayeb Blouhi and Mohamed Ferhat

Then for each t ∈ [0, t1], we have

E|P 0
1 (xn, yn)− P 0

1 (x, y)|2X ≤
∫ t

0

E
∣∣∣φ−1(φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)
−φ−1

(
φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr)

+

∞∑
l=1

∫ s

0

σ1(r, x(r), y(r))dW l(r)
)∣∣∣2ds.

Using the dominated convergence theorem, we have

E
∣∣∣φ(A1) +

∫ s

0

f1(r, xn(r), yn(r))dr +

∞∑
l=1

∫ s

0

σ1(r, xn(r), yn(r))dW l(r),

−φ(A1)−
∫ s

0

f(r, x(r), y(r))dr −
∞∑
l=1

∫ s

0

σ1(r, x(r), y(r))dW l(r)
∣∣∣2
X
→ 0 as n→∞,

since φ−1 is continuous. Then using the dominated convergence theorem, we have

sup
t∈[0,t1]

E|P 0
1 (xn, yn)− P 0

1 (x, y)|2

≤
∫ t1

0

E|φ−1[φ(B) +

∫ s

0

f1(r, xn, yn)dr +

∞∑
l=1

∫ s

0

σ1(r, xn(r), yn(r))dW l(r)]

− φ−1[φ(B) +

∫ s

0

f1(r, x, y)dr +

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)]2ds→ 0,

as n→∞. Thus P 0
1 is continuous.

Similarly,

sup
t∈[0,t1]

E|P 0
2 (xn, yn)− P 0

2 (x, y)|2

≤
∫ t1

0

E|φ−1[φ(B) +

∫ s

0

f2(r, xn, yn)dr +

∞∑
l=1

∫ s

0

σ2
l (r, xn(r), yn(r))dW l(r)]

− φ−1[φ(B) +

∫ s

0

f2(r, x, y)dr +

∞∑
l=1

∫ s

0

σ2
l (r, x(r), y(r))dW (r)]|2ds→ 0,

as n→∞. Thus P 0
2 is continuous.

Claim 4. Apriori estimate. Now we show that there exists a constant M0 such that
sup

t∈[0,t1]
E|x(t, ·)|2X ≤ M0 where (x, y) is a solution of the problem (3.1). Let (x, y) a
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solution of (3.1):

x(t) = A0 +

∫ t

0

φ−1
(
φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ [0, t1], a.e. ω ∈ Ω.

y(t) = B0 +

∫ t

0

φ−1
(
φ(B1) +

∫ s

0

f2(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ2
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ [0, t1], a.e. ω ∈ Ω.

(3.3)

From Lemma 2.4, we obtain

E|x(t)|2 ≤ E|A0|2 +

∫ t

0

E
∣∣∣φ−1(φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

0

σ1(r, x(r), y(r))dW l(r)
)∣∣∣2ds

≤ 2E|A0|2 + 2t1 sup
η1∈B(0,l1)

|φ−1(η1)| =: M0

where

l1 = 3E|φ(A1)|2 + 3t1

∫ s

0

(a1E|x(r)|2X + b1E|y(r)|2 + c1)dr

+3C2

∫ s

0

(α1E|x(r)|2 + β1E|y(r)|2 + c1)dr.

Thus,

sup
t∈[0,t1]

E|x(t)|2 ≤M0,

and

E|y(t)|2 ≤ E|B0|2 +

∫ t

0

E
∣∣∣φ−1(φ(B1) +

∫ s

0

f2(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

0

σ2(r, x(r), y(r))dW l(r)
)∣∣∣2ds

≤ 2E|B0|2 + 2t1 sup
η2∈B(0,l2)

|φ−1(η2)| =: M0

where

l2 = 3E|φ(A1)|2 + 3t1

∫ s

0

(a1E|x(r)|2 + b1E|y(r)|2 + c1)dr

+3C2

∫ s

0

(α1E|x(r)|2 + β1E|y(r)|2 + c1)dr.



514 Tayeb Blouhi and Mohamed Ferhat

Thus,

sup
t∈[0,t1]

E|y(t)|2 ≤M0.

Set

U = {y ∈ C([0, t1],R) : sup
t∈[0,t1]

E|x(t)|2 < M0 + 1, sup
t∈[0,t1]

E|y(t)|2 < M0 + 1}.

As a consequence of Claims 1-4 and the Ascoli-Arzela theorem, we can conclude that
the map P 0 : U → Ct0 ×Ct0 is compact. From the choice of U there is no (x, y) ∈ ∂U
such that (x, y) = λP 0(x, y) for any λ ∈ (0, 1). And from the consequence of the
nonlinear alternative of Leray-Schauder we deduce that P 0 has a fixed point denoted
by (x0, y0) ∈ U which is solution of the problem (3.1).

Step 2. Now consider the problem

(φ(x′(t)))′ = f1(t, x(t), y(t))dt+

∞∑
l=1

σ1
l (t, x(t)), y(t))dW (t), t ∈ (t1, t2],

(φ(y′(t)))′ = f2(t, x(t), y(t))dt+

∞∑
l=1

σ2
l (t, x(t)), y(t))dW (t), t ∈ (t1, t2],

x(t+1 ) = x0(t−1 ) + I1(x0(t−1 )) , x′(t+1 ) = x′0(t−1 ) + I11 (x0(t−1 )),

y(t+1 ) = y0(t−1 ) + I1(x0(t−1 )) , y′(t+1 ) = y′0(t−1 ) + I
2

1(y0(t−1 )).

(3.4)

Let

Ĉt1 = {x : (t1, t2]→ L2(Ω,R), x |(t1,t2]∈ C
1((t1, t2], L2(Ω,R)), k = 1, 2, ..,m

and there exists

x(t+2 ) for k = 1, 2, ..,m},

with

Dt1 = {x : (t1, t2]→ L2(Ω,R) and x(t) |(t1,t2]∈ Ĉt1 such that

sup
t∈(t1,t2]

E|x(t, .)|2 <∞ almost surely}.

Set

C1 = Ct0 ∩Dt1 .

Consider the operator P 1 : C1 × C1 → C1 × C1 defined by

P 1(x, y) = (P 1
1 (x, y), P 1

2 (x, y)), (x, y) ∈ C1 × C1.
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It is clear that all solutions of (3.4) are fixed points of the multi-valued operator
P 1
i : C1 × C1 → C1, for each i = 1, 2 defined by

P 1
1 (x, y) = A3 +

∫ t

t1

φ−1
(
φ(A4) +

∫ s

t1

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ (t1, t2], a.e. ω ∈ Ω.

P 1
2 (x, y) = B3 +

∫ t

t1

φ−1
(
φ(B4) +

∫ s

t1

f2(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ2(r, x(r), y(r))dW l(r)
)
ds, t ∈ (t1, t2], a.e. ω ∈ Ω.

(3.5)
and

A3 = x1(t1) + I1(x1(t1)), A4 = x′1(t−1 ) + I11 (x1(t−1 )),

B3 = y1(t1) + I1(y1(t1)), B4 = y′1(t−1 ) + I
2

1(y1(t−1 )).

As in Step 1, we can prove that P 1 has at least one fixed point which is a solution to
(3.4).
Step 3. We continue this process taking into account that

(xm, ym) := (x
∣∣
(tm,T ]

, y
∣∣
(tm,T ]

)

is a solution to the problem

(φ(x′(t)))′ = f1(t, x(t), y(t))dt+

∞∑
l=1

σ1
l (t, x(t)), y(t))dW l(t), t ∈ (tm, T ],

(φ(y′(t)))′ = f2(t, x(t), y(t))dt+

∞∑
l=1

σ2
l (t, x(t)), y(t))dW l(t), t ∈ ((tm, T ],

x(t+m) = xm−1(t−m) + Im(x0(t−m−1)),
x′(t+m) = x′m−1(t−m) + I1m(xm−1(t−m)),
y(t+m) = ym−1(t−m) + Im(x0(t−m−1)),

y′(t+m) = y′m−1(t−m) + I
2

m(ym−1(t−m)).

(3.6)

A solution (x, y) of problem (3.6) is ultimately defined by

(x(t), y(t)) =


(x0(t), y0(t)), if t ∈ [0, t1],

(x1(t), y1(t)), if t ∈ (t1, t2],

. . .

(xm(t), ym(t)), if t ∈ (tm, T ].

Step 4. Now we show that the set

Sc = {(x, y) ∈ PC × PC : (x, y) is a solution of (1.1)}
is compact. Let (xn, yn)n∈N be a sequence in Sc. We put

B = {(xn, yn) : n ∈ N} ⊆ PC × PC.
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Then from earlier parts of the proof of this theorem, we conclude that B is bounded
and equicontinuous and from the Ascoli-Arzela theorem, we can also conclude that B
is compact.
Recall that J0 = [0, t1] and Jk = (tk, tk+1], k = 1, . . . ,m. Hence:

• (xn, yn)|J0 has a subsequence

(xnm , ynm)nm∈N ⊂ Sc1 = {(x, y) ∈ Ct0 × Ct0 : (x, y) is a solution of (3.1)}

such that (xnm , ynm) converges to (x, y). Let

z0(t) = A0 +

∫ t

0

φ−1
(
φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ1(r, x(r), y(r))dW l(r)
)
ds, t ∈ [0, t1], a.e. ω ∈ Ω.

z0(t) = B0 +

∫ t

0

φ−1
(
φ(B1) +

∫ s

0

f2(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ2(r, x(r), y(r))dW l(r)
)
ds, t ∈ [0, t1], a.e. ω ∈ Ω.

(3.7)

E
∣∣∣xnm(t)− z0(t)

∣∣∣2
X
≤
∫ t

0

E
∣∣∣φ−1(φ(A1) +

∫ s

0

f1(r, xnm(r), ynm(r))dr

+

∞∑
l=1

∫ s

0

σ1
l (r, xnm

(r), ynm
(r))dW l(r)

)
− φ−1

(
φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)∣∣∣2
X
ds,

and

E
∣∣∣ynm(t)− z0(t)

∣∣∣2
X
≤
∫ t

0

E
∣∣∣φ−1(φ(B1) +

∫ s

0

f1(r, xnm(r), ynm(r))dr

+

∞∑
l=1

∫ s

0

σ1
l (r, xnm

(r), ynm
(r))dW l(r)

)
− φ−1

(
φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)∣∣∣2
X
ds.
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As nm → +∞, (xnm
, ynm

)→ (z0(t), z0(t)), then

x(t) = A0 +

∫ t

0

φ−1
(
φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)
ds,

and

y(t) = B0 +

∫ t

0

φ−1
(
φ(B1) +

∫ s

0

f2(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

0

σ2
l (r, x(r), y(r))dW l(r)

)
ds.

• (xn, yn)|J1 has a subsequence relabeled as (xnm
, ynm

) ⊂ Sc2 converging to (x, y) in
C1 × C1 where

Sc2 = {(x, y) ∈ C1 × C1 : (x, y) is a solution of (3.4)}.

Let

z1(t) = A3 +

∫ t

t1

φ−1
(
φ(A4) +

∫ s

t1

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

t1

σ1
l (r, x(r), y(r))dW l(r)

)
ds,

and

z1(t) = B3 +

∫ t

t1

φ−1
(
φ(B4) +

∫ s

t1

f2(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

t1

σ2
l (r, x(r), y(r))dW l(r)

)
ds.

Then

E
∣∣∣xnm

(t)− z1(t)
∣∣∣2 ≤ ∫ t

t1

E
∣∣∣φ−1(φ(A4) +

∫ s

t1

f1(r, xnm
(r), ynm

(r))dr

+

∞∑
l=1

∫ s

t1

σ1
l (r, xnm

(r), ynm
(r))dW l(r)

)
− φ−1

(
φ(A4) +

∫ s

t1

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

t1

σ1(r, x(r), y(r))dW l(r)
)∣∣∣2ds,
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and

E
∣∣∣ynm

(t)− z1(t)
∣∣∣2 ≤ ∫ t

t1

E
∣∣∣φ−1(φ(B4) +

∫ s

t1

f1(r, xnm
(r), ynm

(r))dr

+

∞∑
l=1

∫ s

t1

σ1(r, xnm
(r), ynm

(r))dW l(r)
)

− φ−1
(
φ(A4) +

∫ s

t1

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

t1

σ1(r, x(r), y(r))dW l(r)
)∣∣∣2ds.

As nm → +∞, (xnm(t), ynm(t))→ (z1(t), z1(t)), and then

x(t) = A3 +

∫ t

t1

φ−1
(
φ(A4) +

∫ s

t1

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

t1

σ1
l (r, x(r), y(r))dW l(r)

)
ds,

and

y(t) = B3 +

∫ t

t1

φ−1
(
φ(B4) +

∫ s

t1

f2(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

t1

σ2(r, x(r), y(r))dW l(r)
)
ds.

•We continue this process, and we conclude that {(xn, yn) | n ∈ N} has a subsequence
converging to

zm(t) = Am+2 +

∫ t

tm

φ−1
(
φ(Am+3) +

∫ s

tm

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

tm

σ1
l (r, x(r), y(r))dW l(r)

)
ds,

and

zm(t) = Bm+2 +

∫ t

tm

φ−1
(
φ(Bm+3) +

∫ s

tm

f2(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

tm

σ2
l (r, x(r), y(r))dW l(r)

)
ds.

Hence Sc is compact. �

Next we replace (H2) and (H3) in Theorem 3.1 by
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(H3)′ Then there exist a function pi ∈ L1(J,R+) and a continuous nondecreasing
function ψi : [0,∞)→ [0,∞)for each i = 1, 2 such that

E|f i(t, x, y)|2 ≤ pi(t)ψi(E(|x|2 + |y|2)),

and

E||σi(t, x, y)||2 ≤ pi(t)ψi(E(|x|2 + |y|2)).

Theorem 3.2. Under assumption (H3)′, problem (1.1) has at least one solution and
the solution set is compact.

Proof. As in the proof of Theorem 3.1 we can show that (1.1) has at least one solution
by applying the nonlinear alternative of Leray-Schauder. We show only the estimation
of a solution (x, y) of (1.1).

• For t ∈ [0, t1], we have

x(t) = A0 +

∫ t

0

φ−1
(
φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ [0, t1], a.e. ω ∈ Ω.

y(t) = B0 +

∫ t

0

φ−1
(
φ(B1) +

∫ s

0

f2(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ2
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ [0, t1], a.e. ω ∈ Ω.

(3.8)

Then

E|x(t)|2 ≤ 2E|A0|2 + 2

∫ t

0

E
∣∣∣φ−1(φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)∣∣∣2ds.
Consider functions µ, µ defined on t ∈ [0, t1] by

µ(t) = sup{E|x(s)|2 : 0 ≤ s ≤ t}, µ(t) = sup{E|y(s)|2 : 0 ≤ s ≤ t}.

From Lemma 2.4, we obtain

E
∣∣∣φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr +

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

∣∣∣2
≤ 3E|φ(A1)|2X + 3

∫ s

0

p1(r)ψ1(E(|x(r)|2 + |y(r)|2))dr

+3C2

∫ s

0

p1(r)ψ1(E(|x(r)|2X + |y(r)|2))dr

≤ 3E|φ(A1)|2 + ||p||L1ψ1(µ(s) + µ(s)),
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where ||p||L1 = (3t1 + 3C2)‖p1‖L1 , and, consequently,

µ(t) ≤ 2E|A0|2 +

∫ t

0

ψ̂1(µ(s) + µ(s)), t ∈ [0, t1],

where ψ̂1 = (φ−1 ◦ ψ̃1) and ψ̃
1
(u) = 3E|φ(A1)|2 + ||p1||L1ψ1(u). and similarly

µ(t) ≤ 2E|B0|2 +

∫ t

0

ψ̂2(µ(s) + µ(s))ds, t ∈ [0, t1],

where ψ̂2 = (φ−1 ◦ ψ̃2) and ψ̃2(u) = 3E|φ(B1)|2 + ||p2||L1ψ1(u), combining µ(t) and
µ(t),

µ(t) + µ(t) ≤ 2E|A0|2 + 2E|B0|2 +

∫ t

0

ψ̂1(µ(s) + µ(s))ds

+

∫ t

0

ψ̂2(µ(s) + µ(s))ds, t ∈ [0, t1].

Using the nonlinear Grönwall-Bihari inequality (Lemma 2.8), we infer the bound

µ(t) + µ(t) ≤ H−1(t) ≤M0.

Consequently, there exists a constant M1 which only depends on t1, t2 such that

sup
t∈[0,t1]

E|x(t)|2 ≤ M0, and sup
t∈[0,t1]

E|y(t)|2 ≤M0,

where H(t) =

∫ t

2E|A0|2X+2E|B0|2X

dτ

(φ−1 ◦ ψ̃1(τ) + φ−1 ◦ ψ̃2(τ)
.

• For t ∈ (t1, t2], we have

x(t) = A3 +

∫ t

t1

φ−1
(
φ(A4) +

∫ s

t1

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

t1

σ1
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ [0, t1] .

y(t) = B3 +

∫ t

t1

φ−1
(
φ(B4) +

∫ s

t1

f2(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

t1

σ2
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ [0, t1] .

(3.9)

Then

E|x(t)|2 ≤ 2E|A3|2 + 2

∫ t

t1

E
∣∣∣φ−1(φ(A4) +

∫ s

t1

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

t1

σ1
l (r, x(r), y(r))dW l(r)

)∣∣∣2
X
ds.

Consider functions µ, µ defined on t ∈ (t1, t2] by

µ(t) = sup{E|x(s)|2 : t1 ≤ s ≤ t}, µ(t) = sup{E|y(s)|2 : t1 ≤ s ≤ t}.
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E
∣∣∣φ(A4) +

∫ s

t1

f1(r, x(r), y(r))dr +

∞∑
l=1

∫ s

t1

σ1
l (r, x(r), y(r))dW l(r)

∣∣∣2
X

≤ 3E|φ(A4)|2 + 3

∫ s

t1

p1(r)ψ1(E(|x(r)|2 + |y(r)|2X))dr

+3C2

∫ s

t1

p1(r)ψ1(E(|x(r)|2X + |y(r)|2))dr

≤ 3E|φ(A4)|2 + ||p||L1ψ1(µ(s) + µ(s)),

where ||p||L1 = (3t2 + 3C2)‖p1‖L1 , and, consequently,

µ(t) ≤ 2E|A3|2X +

∫ t

t1

ψ̂1(µ(s) + µ(s)), t ∈ (t1, t2],

where ψ̂1 = (φ−1 ◦ ψ̃1) and ψ̃
1
(u) = 3E|φ(A4)|2X + ||p1||L1ψ1(u). and similarly

µ(t) ≤ 2E|B0|2X +

∫ t

t1

ψ̂2(µ(s) + µ(s))ds, t ∈ (t1, t2],

where ψ̂2 = (φ−1 ◦ ψ̃2) and ψ̃2(u) = 3E|φ(B1)|2X + ||p2||L1ψ1(u). Now, taking into
account all the previous estimates we can write

µ(t) + µ(t) ≤ 2E|A3|2 + 2E|B3|2 +

∫ t

t1

ψ̂1(µ(s) + µ(s))ds

+

∫ t

t1

ψ̂2(µ(s) + µ(s))ds, t ∈ (t1, t2],

By the nonlinear Grönwall-Bihari inequality (Lemma 2.8), we infer the bound

µ(t) + µ(t) ≤ H−1(t) ≤M1.

Consequently, there exists a constant M1 which only depends on t1, t2 such that

sup
t∈(t1,t2]

E|x(t)|2 ≤ M1, and sup
t∈(t1,t2]

E|y(t)|2 ≤M1.

where H(t) =

∫ t

2E|A3|2+2E|B3|2

dτ

(φ−1 ◦ ψ̃1(τ) + φ−1 ◦ ψ̃2(τ)
.

• For t ∈ (tm, T ], we have

x(t) = Am+2 +

∫ t

tm

φ−1
(
φ(Am+3) +

∫ s

tm

f1(r, x(r), y(r))dr+

∞∑
l=1

∫ s

tm

σ1
l (r, x(r), y(r))dW l(r)

)
ds,

and

y(t) = Bm+2 +

∫ t

tm

φ−1
(
φ(Bm+3) +

∫ s

tm

f2(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

tm

σ2(r, x(r), y(r))dW l(r)
)
ds.
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As in the pattern shown above, there exists Mm > 0 such that

µ(t) + µ(t) ≤ H−1(t) ≤Mm.

Consequently, there exists a constant M1 which only depends on tm, T such that

sup
t∈(tm,T ]

E|x(t)|2 ≤ Mm, and sup
t∈(tm,T ]

E|y(t)|2 ≤Mm.

where H(t) =

∫ t

2E|Am+2|2X+2E|Bm+2|2X

dτ

(φ−1 ◦ ψ̃1(τ) + φ−1 ◦ ψ̃2(τ)
.

Hence
‖x‖PC ≤ max(M0,M1, . . . ,Mm) = M,

and
‖y‖PC ≤ max(M0,M1, . . . ,Mm) = M.

The proof is complete. �
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