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Quintic B-spline method for numerical solution
of fourth order singular perturbation boundary
value problems

Ram Kishun Lodhi and Hradyesh Kumar Mishra

Abstract. In this communication, we have studied an efficient numerical approach
based on uniform mesh for the numerical solutions of fourth order singular pertur-
bation boundary value problems. Such type of problems arises in various fields of
science and engineering, like electrical network and vibration problems with large
Peclet numbers, Navier-Stokes flows with large Reynolds numbers in the theory
of hydrodynamics stability, reaction-diffusion process, quantum mechanics and
optimal control theory etc. In the present study, a quintic B-spline method has
been discussed for the approximate solution of the fourth order singular pertur-
bation boundary value problems. The convergence analysis is also carried out
and the method is shown to have convergence of second order. The performance
of present method is shown through some numerical tests. The numerical results
are compared with other existing method available in the literature.
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1. Introduction

We consider the fourth order singular perturbation boundary value problem

−εyiv (t)− p (t) y′′′ (t) + q (t) y′′ (t) + r (t) y (t) = f (t) , t ∈ [a, b] , (1.1)

y (a) = η1, y (b) = η2, y′′ (a) = η3, y′′ (b) = η4. (1.2)

where η1, η2, η3 and η4 are finite real constants and ε is a small positive parameter,
such that 0 < ε � 1. Moreover, we assume that the functions p (t) ,q (t) ,r (t) and
f (t) are sufficiently smooth. Further, the problem (1.1) is called non-turning point
problem if p (t) ≥ α > 0 throughout the interval [a, b], where α is some positive
constant and boundary layer will be in the neighbourhood of t = a [9]. In the same
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vein, if the p (t) vanishes at t = 0, then it becomes a turning point problem. In that
scenario, the boundary layer will be at both the end points t = a and t = b [2].

Singular perturbation problems are engendered by multiplication of a small pos-
itive parameter ε to highest derivative term of differential equation with boundary
conditions. Many scholars have studied the analytical and numerical solutions of these
problems, but sometimes they found that the classical numerical methods failed to
get good approximate solutions of singular perturbation problems. That’s why they
have gone for the non classical methods. In the last few decades, many researchers
have discussed the numerical solutions of singular perturbation problems. Most of
the researchers have studied the numerical solutions of second order singular pertur-
bation problems [5, 10, 11, 12, 13, 17, 19, 20, 21, 22, 29]. Only a few researchers
have focused the numerical solutions of higher order singular perturbation problems
[3, 24, 23, 28, 27]. Lodhi and Mishra [14, 15] have suggested the computational tech-
nique for numerical solutions of fourth order singular singularly perturbed and self
adjoint boundary value problems. Raja and Tamilselvan [23] have designed a shoot-
ing method on a Shishkin mesh to solve reaction-diffusion type problems. Mishra and
Saini [18] have used initial value technique for the numerical solution of fourth or-
der singularly perturbed boundary value problems. Sarakhsi et al [25] have studied
the existence of boundary layer problem. Parameter uniform numerical scheme to
solve fourth order singularly perturbed turning points problems have been presented
by Geetha and Tamilselvan [7]. Sharma et al. [26] have done the survey on singularly
perturbed turning point and interior layers problem. Geetha et al. [8] have applied pa-
rameter uniform numerical method based on Shishkin mesh for third order singularly
perturbed turning point problems exhibiting boundary layers.

This paper describes a quintic B-spline approach for the numerical solution of
fourth order singular perturbation boundary value problems and it has been proved
to be second order convergence. The paper is organized as follows: In section 2, we
describe the quintic B-spline method. Convergence analysis is established in section
3. Quasilinearization method is discussed in section 4. Section 5 gives the numerical
results which substantiate the theoretical aspects. Finally, we discuss the conclusions
in section 6.

2. Quintic B-spline Method

We divide the interval [a, b] into N equal subinterval and we choose piecewise
uniform mesh points represented by π = {t0, t1, t2, ..., tN} ,such that t0 = a, tN = b
and h = b−a

N is the piecewise uniform spacing. We define L2 [a, b] as a vector space of
all the integrable functions on [a, b] , and X be the linear subspace of L2 [a, b] . Now
we define
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Bi(t) =
1

h5



(t− ti−3)
5
, if t ∈ [ti−3, ti−2]

h5 + 5h4 (t− ti−2) + 10h3 (t− ti−2)
2

+ 10h2 (t− ti−2)
3

+5h (t− ti−2)
4 − 5 (t− ti−2)

5
, if t ∈ [ti−2, ti−1]

26h5 + 50h4 (t− ti−1) + 20h3 (t− ti−1)
2 − 20h2 (t− ti−1)

3

−20h (t− ti−1)
4

+ 10 (t− ti−1)
5
, if t ∈ [ti−1, ti]

26h5 + 50h4 (ti+1 − t) + 20h3 (ti+1 − t)2 − 20h2 (ti+1 − t)3

−20h (ti+1 − x)
4

+ 10 (ti+1 − t)5 , if t ∈ [ti, ti+1]

h5 + 5h4 (ti+2 − t) + 10h3 (ti+2 − t)2 + 10h2 (ti+2 − t)3

+5h (ti+2 − t)4 − 5 (ti+2 − t)5 , if t ∈ [ti+1, ti+2]

(ti+3 − t)5 , if t ∈ [ti+2, ti+3]
0 otherwise, for i = 0, 1, 2, ...N.

(2.1)
We introduce six additional knots as t−3 < t−2 < t−1 < t0 and tN+3 > tN+2 >

tN+1 > tN . From equation (2.1), we can easily check that each of the functions Bi(t)
is four times continuously differentiable on the entire real line. Also, the values of
Bi (t) ,B′i (t) ,B′′i (t) ,B′′′i (t) and Bivi (t)at the nodal points are given in Table 1.

Table 1. Quintic B-spline basis and its derivative function values at nodal points
B (t) ti−3 ti−2 ti−1 t ti+1 ti+2 ti+3

Bi (t) 0 1 26 66 26 1 0
B′i (t) 0 5/h 50/h 0 −50/h −5/h 0
B′′i (t) 0 20

/
h2 40

/
h2 −120

/
h2 40

/
h2 20

/
h2 0

B′′′i (t) 0 60
/
h3 −120

/
h3 0 120

/
h3 −60

/
h3 0

Bivi (t) 0 120
/
h4 −480

/
h4 720

/
h4 −480

/
h4 120

/
h4 0

Let Ω = {B−2, B−1, B0, B1, . . . . . . , BN−1, BN , BN+1, BN+2} and let φ5 (π) =
span Ω. The function Ω is linearly independent on [a, b] , thus φ5 (π) is (N + 5)-
dimensional. Even one can show that φ5 (π) ⊆subspace X. Let L be a linear operator
whose domain is X and whose range is also in X. Now we define

S (t) =

N+2∑
i=−2

ciBi (t) , (2.2)

be the approximate solution of the problem (1.1) with boundary conditions (1.2),
where c′is is an unknown coefficient and Bi (t)

′
s a fifth degree spline function. To

solve fourth order singularly perturbed two point boundary value problems, the spline
functions are evaluated at nodal points t = ti (i = 0, 1, 2, . . . , N) which are needed for
the solution.
From Table 1 and equation (2.2), we obtain the following relationships:

y (ti) = S (ti) = ci−2 + 26ci−1 + 66ci + 26ci+1 + ci+2 (2.3)

m (ti) = S′ (ti) =
1

h
(−5ci−2 − 50ci−1 + 50ci+1 + 5ci+2) (2.4)
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Mi = S′′ (ti) =
1

h2
(20ci−2 + 40ci−1 − 120ci + 40ci+1 + 20ci+2) (2.5)

Ti = S′′′ (ti) =
1

h3
(−60ci−2 + 120ci−1 − 120ci+1 + 60ci+2) (2.6)

Fi = Siv (ti) =
1

h4
(120ci−2 − 480ci−1 + 720ci − 480ci+1 + 120ci+2) (2.7)

Moreover, mi, Mi, Ti and Fi can be used to approximate values of y′ (ti) , y
′′ (ti) ,

y′′′ (ti) and yiv (ti) .
Since S (t) is an approximate solution, it will satisfy equation (1.1) with boundary
conditions (1.2). Hence we get

−εSiv (t)− p (t)S′′′ (t) + q (t)S′′ (t) + r (t)S (t) = f (t) , (2.8)

and
S (a) = η1, S (b) = η2, S′′ (a) = η3, S′′ (b) = η4. (2.9)

Discretizing equation (2.8) at the nodal points ti(i = 0, 1, . . . , N), we have

−εSiv (ti)− p (ti)S
′′′ (ti) + q (ti)S

′′ (ti) + r (ti)S (ti) = f (ti) ,

Using equations (2.3)-(2.7) in above equation and simplifying, we obtain

− ε
h4 {120ci−2 − 480ci−1 + 720ci − 480ci+1 + 120ci+2}
− pi
h3 {−60ci−2 + 120ci−1 − 120ci+1 + 60ci+2}

+ qi
h2 {20ci−2 + 40ci−1 − 120ci + 40ci+1 + 20ci+2}

+ri {ci−2 + 26ci−1 + 66ci + 26ci+1 + ci+2} = fih
4,

(2.10)

where pi = p (ti) ,qi = q (ti) ,ri = r (ti) and fi = f (ti) . After simplifying above
equation, we get

γ1 (ti) ci−2 + γ2 (ti) ci−1 + γ3 (ti) ci + γ4 (ti) ci+1 + γ5 (ti) ci+2 = fih
4, (2.11)

where

γ1 (ti) = −120ε+ 60pih+ 20qih
2 + rih

4,
γ2 (ti) = 480ε− 120pih+ 40qih

2 + 26rih
4,

γ3 (ti) = −720ε− 120qih
2 + 66rih

4,
γ4 (ti) = 480ε+ 120pih+ 40qih

2 + 26rih
4,

γ5 (ti) = −120ε− 60pih+ 20qih
2 + rih

4, for i = 0, 1, . . . , N.

From the boundary conditions, we get the following equations

c−2 + 26c−1 + 66c0 + 26c1 + c2 = η1, (2.12)

cN−2 + 26cN−1 + 66cN + 26cN+1 + cN+2 = η2, (2.13)

20c−2 + 40c−1 − 120c0 + 40c1 + 20c2 = η3h
2, (2.14)

and
20cN−2 + 40cN−1 − 120cN + 40cN+1 + 20cN+2 = η4h

2. (2.15)

Coupling equations (2.11)-(2.15) lead to a system of (N + 5) linear equations AY = D
in the (N + 5) unknowns, where

Y = [c−2, c−1, c0, c1, . . . , cN−1, cN , cN+1, cN+2]
T
,

D =
[
η1, η3h

2, f0h
4, f1h

4, . . . , fN−1h
4, fNh

4, η4h
2, η2

]T
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and the coefficient matrix A is given by

A =



1 26 66 26 1 0
20 40 −120 40 20 0

γ1 (t0) γ2 (t0) γ3 (t0) γ4 (t0) γ5 (t0) 0
0 γ1 (t1) γ2 (t1) γ3 (t1) γ4 (t1) γ5 (t1)

0 0
...

...
...

...
0 0 0 γ1 (ti) γ2 (ti) γ3 (ti)
...

...
...

...
...

...
0 0 · · · 0 0 γ1 (tN−1)
0 0 · · · 0 0 0
0 0 · · · 0 0 0
0 0 · · · 0 0 0

0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

γ4 (ti) γ5 (ti) 0 0 0
...

...
... 0 0

γ2 (tN−1) γ3 (tN−1) γ4 (tN−1) γ5 (tN−1) 0
γ1 (tN ) γ2 (tN ) γ3 (tN ) γ4 (tN ) γ5 (tN )

20 40 −120 40 20
1 26 66 26 1



.

(2.16)
Since A is a non-singular matrix, so we can solve the system AY = D for

c−2,c−1,c0,c1,c2,. . . ,cN−2,cN−1,cN ,cN+1,cN+2 substituting these values into equation
(2.2), we get the required approximate solution.

3. Derivation for convergence

In this section, a technique is portrayed which will ascertain the truncation error
for the quintic B-spline method over the whole range a ≤ t ≤ b. Here, we suppose
that function y (t) has continuous derivatives in the whole range.

We calculate the following relationships by comparing the coefficients of
ci (i = −2,−1, 0, 1, . . . , N,N + 1, N + 2) . From equations (2.3)-(2.7), we have

S′(ti−2) + 26S′(ti−1) + 66S′(ti) + 26S′(ti+1) + S′(ti+2)
= 1

h {−5y(ti−2)− 50y(ti−1) + 50y(ti+1) + 5y(ii+2)} (3.1)

S′′(ti−2) + 26S′′(ti−1) + 66S′′(ti) + 26S′′(ti+1) + S′′(ti+2)
= 1

h2 {20y(ti−2) + 40y(ti−1)− 120y(ti) + 40y(ti+1) + 20y(ti+2)} (3.2)

S′′′(ti−2) + 26S′′′(ti−1) + 66S′′′(ti) + 26S′′′(ti+1) + S′′′(ti+2)
= 1

h3 {−60y(ti−2) + 120y(ti−1)− 120y(ti+1) + 60y(ti+2)} (3.3)
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Siv(ti−2) + 26Siv(ti−1) + 66Siv(ti) + 26Siv(ti+1) + Siv(ti+2)
= 1

h4 {120y(ti−2)− 480y(ti−1) + 720y(ti)− 480y(ti+1) + 120y(ti+2)} (3.4)

Using the operator notation [6, 16], the equations (3.1)-(3.4) can we written as

S′(ti) =
1

h

(
−5E−2 − 50E−1 + 50E + 5E2

E−2 + 26E−1 + 66I + 26E + E2

)
y(ti) (3.5)

S′′(ti) =
1

h2

(
20E−2 + 40E−1 − 120I + 40E + 20E2

E−2 + 26E−1 + 66I + 26E + E2

)
y(ti) (3.6)

S′′′(ti) =
1

h3

(
−60E−2 + 120E−1 − 120E + 60E2

E−2 + 26E−1 + 66I + 26E + E2

)
y(ti) (3.7)

Siv(ti) =
1

h4

(
120E−2 − 480E−1 + 720I − 480E + 120E2

E−2 + 26E−1 + 66I + 26E + E2

)
y(ti) (3.8)

where the operators are defined as Ey(ti) = y(ti + h), Dy(ti) = y′(ti) and Iy(ti) =
y(ti). Let E = ehD and expand them in powers of hD, we get

S′(ti) = y′(ti) +
1

5040
h6y7(ti)−

1

21600
h8y9(ti) +

1

1036800
h10y11(ti) + 0(h11) (3.9)

S′′(ti) = y′′(ti) + 1
720h

4y6(ti)− 1
3360h

6y8(ti) + 1
86400h

8y10(ti)
+ 221

239500800h
10y12(ti) + 0(h11)

(3.10)

S′′′(ti) = y′′′(ti)− 1
240h

4y7(ti) + 11
30240h

6y9(ti)− 1
28800h

8y11(ti)
+ 37

11404800h
10y13(ti) + 0(h11)

(3.11)

Siv(ti) = yiv(ti)− 1
12h

2y6(ti) + 1
240h

4y8(ti)− 1
7560h

6y10(ti)
− 13

907200h
8y12(ti) + 643

159667200h
10y14(ti) + 0(h11)

(3.12)

We now define e (t) = y (t) − S (t) and substitute equations (3.9)-(3.12) in the
Taylor series expansion of e (ti + θh) we obtain

e (ti + θh) =
(

θ2

1440 −
5θ4

1440

)
h6y6(ti) +

(
θ

5040 −
θ2

1440

)
h7y7(ti)

+
(
− θ2

6720 + θ4

5760

)
h8y8(ti) + 0(h9)

(3.13)

where a ≤ θ ≤ b. We abridge the above results in the following theorem:
Theorem 3.1. Let y (t) be the exact solution and S (t) be the numerical solution of
the singularly perturbed fourth order boundary value problem (1.1) with the boundary
conditions (1.2) for sufficiently small h which further gives the truncation error of
O
(
h6
)

and method of convergence of O
(
h2
)
.

4. Quasilinearization method

Let us consider the boundary value problem

−εyiv (t) = F (t, y, y′′, y′′′) , t = [a, b] , (4.1)

y (a) = η1, y (b) = η2, y′′ (a) = η3, y′′ (b) = η4, (4.2)
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where F (t, y, y′′, y′′′) is a smooth function such that Fy′′′ (t, y, y
′′, y′′′) ≥ α > 0,

Fy′′ (t, y, y
′′, y′′′) ≥ β > 0, t ∈ [a, b] ,

0 ≥ Fy (t, y, y′′, y′′′) ≥ −λ, λ > 0.
(4.3)

In order to obtain the numerical solution of the boundary value problem (4.1) and
(4.2), Newton’s method of quasilinearization [1, 4] is applied to generate the sequence
of {yk}∞0 of successive approximations with a proper selection of initial guess y0. We
define yk+1, for each fixed non-negative integer k,to be solution of the following linear
problem:

−εyivk+1 (t)−pk (t) y′′′k+1 (t)+qk (t) y′′k+1 (t)+rk (t) yk+1 (t) = fk (t) , t ∈ [a, b] , (4.4)

yk+1 (a) = η1, yk+1 (b) = η2, y′′k+1 (a) = η3, y′′k+1 (b) = η4, (4.5)

where

pk (t) = Fy′′′ (t, yk, y
′′
k , y

′′′
k ) , qk (t) = Fy′′ (t, yk, y

′′
k , y

′′′
k ) ,

rk (t) = Fy (t, yk, y
′′
k , y

′′′
k ) , fk (t) = Fy (t, yk, y

′′
k , y

′′′
k )

−ykFy (t, yk, y
′′
k , y

′′′
k )− y′′kFy′′ (t, yk, y′′k , y′′′k )

−y′′′k Fy′′′ (t, yk, y′′k , y′′′k ) .

We make the following observations:

i) If the initial guess y0 is sufficiently close to the solution y (t) of (4.1) and (4.5),
then the sequence {yk}∞0 converges to y(x). One can see the proof given in [4].
From (4.3), it follows that, for each fixed k,

pk (t) = Fy′′′ (t, y, y
′′, y′′′) ≥ α > 0,

qk (t) = Fy′′ (t, y, y
′′, y′′′) ≥ β > 0,

0 ≥ rk (t) = Fy (t, y, y′′, y′′′) ≥ −λ, λ > 0.
(4.6)

ii) Problem (4.4) with the boundary conditions (4.5), for each fixed k,is a linear
fourth order boundary value problem which is in the form of (1.1) and (1.2).
Hence it can be solved by the method described in section 2.

iii) The following convergence criterion is used to terminate the iteration:

‖yk+1 (ti)− yk (ti)‖ ≤ ε, ti ∈ [a, b] , k ≥ 0. (4.7)

5. Numerical results

In the present section, we have presented numerical results of the considered
examples with the help of MATLAB software which verifies theoretical estimates.
When the exact solutions of the considered examples are available then the maximum
absolute errors EN are evaluated using the following formula for the present method,
which is given by

EN = max
ti∈[a, b]

∣∣yNε (ti)− SNε (ti)
∣∣ , (5.1)
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When the exact solutions of the considered examples are not available then the maxi-
mum absolute errors ENd are evaluated using the double mesh principle for the present
method, which is given by

ENd = max
ti∈[a, b]

∣∣SNε (ti)− S2N
ε (ti)

∣∣ , (5.2)

The numerical order of convergence is computed using the following formula

OrdN =
lnEN − lnE2N

ln 2
. (5.3)

The exact and approximate solutions are denoted by yNε and SNε respectively.
Example 5.1 Consider the following singular perturbation boundary value problem
[27]:

−εyiv (t)− 4y′′′ (t) = 1, t ∈ [0, 1] ,

y (0) = 1, y (1) = 1, y′′ (0) = −1, y′′ (1) = −1.

The exact solution of Example 5.1 is given by

y (t) = 1

192
(
1−e−

4
ε

) {−3ε2e−
4t
ε − 72t2 − 8t3 + 80t− 3tε2 + 192 + 3ε2

+ e−
4
ε

(
−192 + 96t2 + 8t3 − 104t+ 3tε2

)}
.

Table 2. Maximum absolute errors and order of convergence of
Example 5.1 for different values of ε and N.

N ε = 2−4 Ord ε = 2−5 Ord ε = 2−6 Ord ε = 2−7 Ord ε = 2−8 Ord
64 9.5153E-06 2.0442 1.1597E-05 2.2186 9.3841E-06 1.6594 7.6100E-06 1.6904 1.0217E-05 2.4174
128 2.3070E-06 2.0097 2.4916E-06 2.0418 2.9708E-06 2.2173 2.3579E-06 1.6494 1.9126E-06 1.6944
256 5.7289E-07 2.0010 6.0512E-07 2.0095 6.3885E-07 2.0421 7.5163E-07 2.2142 5.9098E-07 1.6435
512 1.4312E-07 2.1459 1.5029E-07 1.4799 1.5512E-07 2.0623 1.6198E-07 2.0885 1.8916E-07 2.2051
1024 3.2339E-08 5.3882E-08 3.7140E-08 3.8086E-08 4.1024E-08

Example 5.2. Consider the following singular perturbation boundary value problem
[7]:

−εyiv (t) + 5ty′′′ (t) + 4y′′ (t) + 2y (t) = 0, t ∈ [−1, 1] ,

y (−1) = 1, y (1) = 1, y′′ (−1) = 1, y′′ (1) = 1.

Table 3. Comparison of maximum absolute error and order of convergence of
Example 5.2 for different values of N and ε = 2−4.

N Geetha and Tamilselvan [7] Present Method
ENd Ord ENd Ord

64 3.9249E-2 0.9770 4.4948E-04 2.5794
128 1.9940E-2 0.9886 7.5204E-05 2.0864
256 1.0049E-2 0.9944 1.7708E-05 2.0177
512 5.0440E-3 0.9972 4.3731E-06 2.3071
1024 2.5269E-3 8.8366E-07



Quintic B-spline method 149

Example 5.3. Consider the following singular perturbation boundary value problem
[7]:

−εyiv (t) + 5ty′′′ (t) + (4 + t) y′′ (t) +
(
2 + t2

)
y (t) = −et + 5, t ∈ [−1, 1] ,

y (−1) = 1, y (1) = 1, y′′ (−1) = 2, y′′ (1) = 2.

Table 4. Comparison of maximum absolute error and order of convergence of
Example 5.3 for different values of N and ε = 2−4

N Geetha and Tamilselvan [7] Present Method
ENd Ord ENd Ord

64 3.3778E-2 0.9823 4.1824E-04 2.5806
128 1.7097E-2 0.9913 6.9920E-05 2.0866
256 8.6002E-3 0.9957 1.6462E-05 2.0306
512 4.3130E-3 0.8693 4.0291E-06 2.1087
1024 2.3610E-3 9.3418E-07

Example 5.4. Consider the following singular perturbation boundary value problem
[7]:

−εyiv (t) + 5ty′′′ (t) + (4 + t) y′′ (t) + 2y2 (t) = 0, t ∈ [−1, 1] ,

y (−1) = 1, y (1) = 1, y′′ (−1) = 2, y′′ (1) = 2.

Table 5. Comparison of maximum absolute error and order of convergence of
Example 5.4 for different values of N and ε = 2−4

N Geetha and Tamilselvan [7] Present Method
ENd Ord ENd Ord

64 7.5762E-02 0.9731 1.1620e-03 2.5795
128 3.8593E-02 0.9867 1.9440e-04 2.0863
256 1.9475E-02 0.9934 4.5777e-05 2.0215
512 9.7821E-03 0.9967 1.1275e-05 1.7449
1024 4.9021E-03 - 3.3639e-06 -

6. Conclusions

In this article, we have used the quintic B-spline method for finding the approx-
imate solution of fourth order linear and non-linear singular perturbation boundary
value problems. We linearised the non-linear boundary value problem via quasilin-
earization method and solved the problem. It is a computationally proficient tech-
nique and the algorithm can easily be applied on a computer. The results obtained
through this method are better than the existing method [7] with the same number
of nodal points.
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