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1. Results

Consider the complex n-dimensional space Cn endowed with the indefinite inner
product

[x, y]J = y∗Jx, x, y ∈ Cn,

where J = Ir ⊕−In−r, and corresponding J-norm

[x, x]J = |x1|2 + . . .+ |xr|2 − |xr+1|2 − . . .− |xn|2.
In the sequel we shall assume that 0 < r < n, except where otherwise stated.

The J-adjoint of A ∈ Cn×n is defined and denoted as

[A#x, x] = [x,Ax]

or, equivalently, A# := JA∗J , [4]. The matrix A is said to be J-Hermitian if A# = A,
and is J-positive definite (semi-definite) if JA is positive definite (semi-definite). This
kind of matrices appears on Quantum Physics and in Symplectic Geometry [10]. An
arbitrary matrix A ∈ Cn×n may be uniquely written in the form

A = ReJA+ iImJA,

where
ReJA = (A+A#)/2, ImJA = (A−A#)/(2i)

are J-Hermitian. This is the so-called J-Cartesian decomposition of A. J-Hermitian
matrices share properties with Hermitian matrices, but they also have important
differences. For instance, they have real and complex eigenvalues, these occurring in
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conjugate pairs. Nevertheless, the eigenvalues of a J-positive matrix are all real, being
r positive and n− r negative, according to the J-norm of the associated eigenvectors
being positive or negative. A matrix A is said to be J-accretive (resp. J-dissipative)

if JReJA (resp. JImJA) is positive definite. If both matrices JReJA and JImJA are
positive definite the matrix is said to be J-accretive dissipative. We are interested in
obtaining determinantal inequalities for J-accretive dissipative matrices. Determinan-
tal inequalities have deserved the attention of researchers, [2], [3], [5]-[9], [11].

Throughout, we shall be concerned with the set

DJ(A,C) = {det(A+ V CV #) : V ∈ U(r, n− r)},

where A,C ∈ Cn×n are J-unitarily diagonalizable with prescribed eigenvalues and
U(r, n− r) is the group of J-unitary transformations in Cn (V is J-unitary if V V # =
I), [12]. The so-called J-unitary group is connected, nevertheless it is not compact. As
a consequence, DJ(A,C) is connected. This set is invariant under the transformation
C → UCU# for every J-unitary matrix U , and, for short, DJ(A,C) is said to be
J-unitarily invariant.

In the sequel we use the following notation. By Sn we denote the symmetric
group of degree n, and we shall also consider

Srn = {σ ∈ Sn : σ(j) = j, j = r + 1, . . . , n}, (1.1)

Ŝrn = {σ ∈ Sn : σ(j) = j, j = 1, . . . , r}. (1.2)

Let αj , γj ∈ C, j = 1, . . . , n denote the eigenvalues of A and C, respectively. The
r!(n− r)! points

zσ = zξτ =

r∏
j=1

(αj + γξ(j))

n∏
j=r+1

(αj + γτ(j)), ξ ∈ Srn, τ ∈ Ŝrn. (1.3)

belong to DJ(A,C).

The purpose of this note, which is in the continuation of [1], is to establish the
following results.

Theorem 1.1. Let J = Ir⊕−In−r, and A and C be J- positive matrices with prescribed
real eigenvalues

α1 ≥ . . . ≥ αr > 0 > αr+1 ≥ . . . ≥ αn (1.4)

and

γ1 ≥ . . . ≥ γr > 0 > γr+1 ≥ . . . ≥ γn, (1.5)

respectively. Then

|det(A+ iC)| ≥
(
(α2

1 + γ21) . . . (α2
n + γ2n)

)1/2
.

Corollary 1.2. Let J = Ir⊕−In−r, and B be a J-accretive dissipative matrix. Assume
that the eigenvalues of ReJB and ImJB satisfy (1.4) and (1.5), respectively. Then,

|det(B)| ≥
(
(α2

1 + γ21) . . . (α2
n + γ2n)

)1/2
.
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Example 1.3. In order to illustrate the necessity of A and C to be J-positive matrices
in Theorem 1.1, let A = diag(α1, α2), C = diag(γ1, γ2), with α1 = γ1 = 1, α2 = 3/2,
γ2 = −2, and J = diag(1,−1). We find (α2

1 + γ21)(α2
2 + γ22) = 27/2. However, the

minimum of |det(A+ iV BV #|2, for V ranging over the J-unitary group , is 49/4.

Theorem 1.4. Let J = Ir⊕−In−r, and A and C be J-unitary matrices with prescribed
eigenvalues

α1, . . . , αr, αr+1, . . . , αn

and

γ1 . . . , γr, γr+1, . . . .γn,

respectively. Assume moreover that

=α1

2(1 + <α1)
≤ . . . ≤ =αr

2(1 + <αr)
< 0 <

=αr+1

2(1 + <αr+1)
≤ . . . ≤ =αn

2(1 + <αn)
(1.6)

and

=γ1
2(1−<γ1)

≤ . . . ≤ =γr
2(1−<γr)

< 0 <
=γr+1

2(1−<γr+1)
≤ . . . ≤ =γn

2(1−<γn)
. (1.7)

Then

DJ(A,C) = (α1 + γ1) . . . (αn + γn)[1,+∞[ .

We shall present the proofs of the above results in the next section.

2. Proofs

Lemma 2.1. Let g : U(r, n− r)→ R be the real valued function defined by

g(U) = det(I +A−1
0 UC0JU

∗JA−1
0 UC0JU

∗J),

where A0 = diag(α1, . . . , αn), C0 = diag(γ1, . . . , γn) and αi, γj satisfy (1.4) and (1.5).
Then the set

{U ∈ U(r, n− r) : g(U) ≤ a},
where

a >

n∏
j=1

(
1 +

γ2j
α2
j

)
,

is compact.

Proof. Notice that JA0 > 0, JC0 > 0, so we may write

g(U) = det(I +WW ∗WW ∗),

where

W = (JA0)−1/2U(JC0)1/2.

The condition g(U) ≤ a implies that W is bounded, and is satisfied if we require that
WW ∗ ≤ κI, for κ > 0 such that (1 + κ2)n ≤ a. Thus, also U is bounded. The result
follows by Heine-Borel Theorem. �
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Proof of Theorem 1.1

Under the hypothesis, A is nonsingular. Since the determinant is J-unitarily
invariant and C is J-unitarily diagonalizable, we may consider C = diag(γ1, . . . , γn).
We observe that

|det(A+iC)|2 = det ((A+ iC)(A− iC)) =

(
n∏
i=1

αi

)2

det
(
(I + iA−1C)(I − iA−1C)

)
Clearly,

det
(
(I + iA−1C)(I − iA−1C)

)
= det(I +A−1CA−1C).

The set of values attained by |det(A+ iC)|2 is an unbounded connected subset of the
positive real line. In order to prove the unboundedness, let us consider the J-unitary
matrix V obtained from the identity matrix I through the replacement of the entries
(r, r), (r+ 1, r+ 1) by cosh u, and the replacement of the entries (r, r+ 1), (r+ 1, r)
by sinh u, u ∈ R. We may assume that A0 = diag(α1, . . . , αn). A simple computation
shows that

|det(A0 + iV CV #)|2 =

n∏
j=1

(α2
j + γ2j )

− 2(αr − αr+1)(γr − γr+1)(αr+1γr + αrγr+1)(sinh u)2

+ (αr − αr+1)2(γr − γr+1)2(sinh u)4.

Thus, the set of values attained by |det(A0 + iV CV #)| is given by

[(α2
1 + γ21)1/2 . . . (α2

n + γ2n)1/2,+∞[ .

As a consequence of Lemma 2.1, the set of values attained by |det(A+ iC)|2 is closed
and a half-ray in the positive real line. So, there exist matrices A,C such that the
endpoint of the half-ray is given by |det(A+iC)|2. Let us assume that the endpoint of
this half-ray is attained at |det(A+iC)|2. We prove that A commutes with C. Indeed,
for ε ∈ R and an arbitrary J-Hermitian X, let us consider the J-unitary matrix given
as

eiX = i+ iεX − ε2

2
X2 + . . . .

We obtain by some computations

f(ε) := det(I +A−1e−iεXCeiεXA−1e−iεXCeiεX)

= det(I +A−1CA−1C − iε(A−1[X,C]A−1C +A−1CA−1[X,C]) +O(ε2)

= det(I +A−1CA−1C)

×det
(
I − iε(I +A−1CA−1C)−1(A−1[X,C]A−1C +A−1CA−1[X,C])

)
+O(ε2)

= det(I +A−1CA−1C)

× exp
(
−iεtr((I+A−1CA−1C)−1(A−1[X,C]A−1C +A−1CA−1[X,C]))

)
+O(ε2),
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where [X,Y ] = XY − Y X denotes the commutator of the matrices X and Y . The
function f(ε) attains its minimum at det(I +A−1CA−1C), if

df

dε

∣∣∣∣
ε=0

= 0.

Then we must have

tr
(
(I +A−1CA−1C)−1(A−1[X,C]A−1C +A−1CA−1[X,C])

)
= 0,

for every J-Hermitian X. That is

[C, (A−1C(I +A−1CA−1C)−1A−1 + (I +A−1CA−1C)−1A−1CA−1)] = 0,

and so, performing some computations, we find

[C, (A−1C(I +A−1CA−1C)−1A−1C + (I +A−1CA−1C)−1A−1CA−1C)]

= 2

[
C,

A−1CA−1C

I +A−1CA−1C

]
= 2

[
C, I − I

I +A−1CA−1C

]
= −2

[
C,

I

I +A−1CA−1C

]
=

2I

I + (A−1C)2
[
C, (A−1C)2

] I

I + (A−1C)2
= 0.

Thus
[C, (A−1C)2] = 0.

Assume that C, which is in diagonal form, has distinct eigenvalues. Then (A−1C)2 is
a diagonal matrix as well as ((JA)−1JC)2. Furthermore, ((JC)1/2(JA)−1(JC)1/2)2

is diagonal. Since (JC)1/2(JA)−1(JC)1/2 is positive definite, it is also diagonal, and
so are (JA)−1JC and A−1C . Henceforth, A is also a diagonal matrix and commutes
with C. (If C has multiple eigenvalues we can apply a perturbative technique and use
a continuity argument).

For σ ∈ Sn, such that σ(1), . . . , σ(r) ≤ r, we have

(α2
1 + γ2σ(1)) . . . (α

2
n + γ2σ(n)) ≥ (α2

1 + γ21) . . . (α2
n + γ2n).

Thus, the result follows. �
In the proof of Theorem 1.4, the following lemma is used (cf. [1, Theorem 1.1]).

Lemma 2.2. Let B,D be J-positive matrices with eigenvalues satisfying

β1 ≥ . . . ≥ βr > 0 > βr+1 ≥ . . . > βn,

and
δ1 ≥ . . . ≥ δr > 0 > δr+1 ≥ . . . > δn.

Then
DJ(B,D) = {(β1 + δ1) . . . (βn + δn) t : t ≥ 1} .

Proof of Theorem 1.4
Since, by hypothesis, A,C, are J-unitary matrices, considering convenient

Möbius transformations, it follows that

B =
i

2

A− I
A+ I

, D = − i
2

C + I

C − I
(2.1)
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are J-Hermitian matrices. Since

B +D = −i(A+ I)−1(C +A)(C − I)−1,

we obtain

det(B +D) = in
det(A+ C)∏n

j=1(1 + αj)(1− γj)
.

Assume that the eigenvalues of B and D are

σ(B) = {β1, . . . , βn}, σ(D) = {δ1, . . . , δn},

respectively. From (2.1) we get,

βj = − =αj
2(1 + <αj)

, δj = − =γj
2(1−<γj)

.

From (1.6) and (1.7) we conclude that

β1 ≥ . . . ≥ βr > 0 > βr+1 ≥ . . . > βn,

and

δ1 ≥ . . . ≥ δr > 0 > δr+1 ≥ . . . > δn,

so that the matrices B and D are J-positive. From Lemma 2.2 it follows that

DJ(B,D) = (β1 + δ1) . . . (βn + δn)[1,+∞[ .

Thus, DJ(A,C) is a half-line with endpoint at

(α1 + γ1) . . . (αn + γn),

or, more precisely,

DJ(A,C) = {(α1 + γ1) . . . (αn + γn) t : t ≥ 1}. �
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