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Extending the applicability of modified
Newton-HSS method for solving systems
of nonlinear equations
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Abstract. We present the semilocal convergence of a modified Newton-HSS
method to approximate a solution of a nonlinear equation. Earlier studies show
convergence under only Lipschitz conditions limiting the applicability of this
method. The convergence in this study is shown under generalized Lipschitz-
type conditions and restricted convergence domains. Hence, the applicability of
the method is expanded. Moreover, numerical examples are also provided to show
that our results can be applied to solve equations in cases where earlier study
cannot be applied. Furthermore, in the cases where both old and new results are
applicable, the latter provides a larger domain of convergence and tighter error
bounds on the distances involved.
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1. Introduction

Let F : D ⊂ Cn → Cn be Gateaux-differentiable and D be an open set. Let also
x0 ∈ D be a point at which F ′(x) is continuous and positive definite. Suppose that

F ′(x) = H(x) + S(x),

where

H(x) =
1

2
(F ′(x) + F ′(x)∗) and S(x) =

1

2
(F ′(x)− F ′(x)∗)

are the Hermitian and Skew-Hermitian parts of the Jacobian matrix F ′(x), respec-
tively. Many problems can be formulated like the equation

F (x) = 0, (1.1)
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using Mathematical Modelling [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22]. The solution x∗ of equation (1.1) can rarely be found in an explicit
form. That is why most solution methods of equation (1.1) are usually iterative. In
particular, Hermitian and Skew-Hermitian Splitting (HSS) methods have been shown
to be very efficient in solving large sparse non-Hermitian positive definite systems of
linear equations [10, 11, 17, 22].

Let us consider the algorithm of modified Newton-HSS method [11, 12].

Algorithm of modified Newton-HSS method:

1. Let x0 ∈ D be an initial point, α and tol positive constants and let {lk}, {mk}
be two positive integer sequences.

2. For k = 0, 1, · · · until ‖F (xk)‖ ≤ tol‖F (xk)‖ do:
2.1. Set dk,0 = hk,0 := 0.
2.2. For l = 0, 1, . . . , lk−1, apply algorithm HSS to the linear system

(αI +H(xk))dk,l+ 1
2

= (αI − S(xk))dk,l − F (xk),

(αI + S(xk))dk,l+1 = (αI −H(xk))dk,l+ 1
2
− F (xk)

and obtain dk,lk such that ‖F (xk) + F (xk)dk,lk‖ ≤ ηk‖F (xk)‖ for some
ηk ∈ [0, 1).

2.3. Set
yk = xk + dk,lk .

2.4. Compute F (yk).
2.5. For m = 0, 1, . . . ,mk−1, apply algorithm HSS to the linear system

(αI +H(xk))hk,m+ 1
2

= (αI − S(xk))hk,m − F (yk),

(αI + S(xk))hk,m+1 = (αI −H(xk))dk,m+ 1
2
− F (xk)

and obtain hk,mk
such that

‖F (yk) + F ′(xk)hk,mk
‖ ≤ η̃k‖F (yk)‖ for some η̃k ∈ [0, 1)

2.6. Set
xk+1 = yk + hk,mk

.

The algorithm can also be written as

yk = xk − (I − T (α;xk)lk)F ′(xk)−1F (xk),

xk+1 = yk − (I − T (α;xk)mk)F ′(xk)−1F (yk), (1.2)

where

T (α;x) = (αI + S(x))−1(αI −H(x))(αI +H(x))−1(αI − S(x)).

From now on we assume that

max{sup ηk, sup η̃k} = η < 1.

The local and semilocal convergence analysis of method (1.2) was given in [22] using
Lipschitz continuity conditions on F. Later, we extended the local convergence of
method (1.2) using generalized Lipschitz continuity conditions [8].

In the present study, we show that the results in [22] can be improved. Using
generalized Lipschitz-type conditions we present a new semilocal convergence analysis
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with advantages (A):
(a) Larger convergence domain.
(b) More precise error estimates on ‖x(k) − x∗‖.
(c) The new results can be used in cases where the old ones in [22] cannot be used to
solve equation (1.1).

The advantages (A) are obtained under the same computational cost as in [22].
Hence, the applicability of modified Newton-HSS method is expanded.

The rest of the paper is organized as follows: Section 2 contains the semilocal
convergence analysis of the modified Newton-HSS method. The numerical examples
are presented in the concluding section 3.

2. Semilocal Convergence

The following hypotheses shall be used in the semilocal convergence analysis
(H):
(H1) Let x0 ∈ Cn. There exist β1 > 0, β2 > 0, γ > 0 and µ > 0 such that

‖H(x0)‖ ≤ β1, ‖S(x0)‖ ≤ β2, ‖F ′(x0)−1‖ ≤ γ, ‖F (x0)‖ ≤ µ.
(H2) There exist v1 : [0,+∞)→ R, v2 : [0,+∞)→ R, continuous and nondecreasing
functions with v1(0) = v2(0) = 0 such that for each x, y ∈ D

‖H(x)−H(x0)‖ ≤ v1(‖x− x0‖)
and

‖S(x)− S(x0)‖ ≤ v2(‖x− x0‖).
Define functions w and v by w(t) = w1(t) + w2(t) and v(t) = v1(t) + v2(t).

Let r0 = sup{t ≥ 0 : γv(t) < 1}
and set

D0 = D ∩ U(x0, r0).

(H3) There exist w1 : [0,+∞)→ R, w2 : [0,+∞)→ R, continuous and nondecreasing
functions with w1(0) = w2(0) = 0 such that for each x, y ∈ D0

‖H(x)−H(y)‖ ≤ w1(‖x− y‖)
and

‖S(x)− S(y)‖ ≤ w2(‖x− y‖).
We need the following auxiliary results for the semilocal convergence analysis that
follows.
Lemma 2.1 Under the (H) hypotheses, the following items hold for each x, y ∈ D0:

‖F ′(x)− F ′(y)‖ ≤ w(‖x− y‖), (2.1)

‖F ′(x)− F ′(x0)‖ ≤ v(‖x− y‖), (2.2)

‖F ′(x)‖ ≤ v(‖x− y‖) + β1 + β2, (2.3)

‖F ′(x)− F (y)− F ′(y)(x− y)‖ ≤
∫ 1

0

w(‖x− y‖ξ)dξ‖x− y‖ (2.4)
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and
‖F ′(x)−1‖ ≤ γ

1− γv(‖x− x0‖)
. (2.5)

Proof. By hypothesis (H3) and F ′(x) = H(x) + S(x), we have that

‖F ′(x)− F ′(y)‖ = ‖(H(x)−H(y)) + (S(x)− S(y))‖
≤ ‖H(x)−H(y)‖+ ‖S(x)− S(y)‖
≤ w1(‖x− y‖) + w2(‖x− y‖ = w(‖x− y‖)

and by (H2)

‖F ′(x)− F ′(x0)‖ ≤ ‖H(x)−H(x0)‖+ ‖S(x)− S(x0)‖
≤ v1(‖x− x0‖) + v2(‖x− x0‖)
= v(‖x− x0‖),

which show (2.1) and (2.2), respectively.

Then, we get by (H1) and (H3)

‖F ′(x)‖ = ‖(F ′(x)− F (x0)) + F ′(x0)‖
≤ ‖F ′(x)− F ′(x0)‖+ ‖H(x0)‖+ ‖S(x0)‖
≤ v(‖x− x0‖) + β1 + β2,

which shows that (2.3). Using (H3) we obtain that

‖F (x)− F (y)− F ′(y)(x− y)‖ = ‖
∫ 1

0

F ′(y + t(x− y)− F ′(y))dt(x− y)‖

≤
∫ 1

0

w(‖x− y‖ξ)dξ‖x− y‖ξ,

which shows (2.4). By (H1), (H2) and (2.2), we get in turn that for x ∈ D0 :

‖F ′(x0)−1‖‖F ′(x)− F ′(x0)‖ ≤ γ(‖x− x0‖) ≤ γv(r0) < 1. (2.6)

It follows from (2.6) and the Banach lemma on invertible operators [4] that F ′(x)−1

exists so that (2.5) is satisfied. �
It is convenient for the semilocal convergence analysis that follows to introduce

some sequences, parameters and functions.
Let t0 = 0 and s0 = 2γµ. Define scalars sequences {tk}, {sk} for each k = 0, 1, . . . by

tk+1 = sk +
1

1− γv(tk)

[
(1 + η)γ

∫ 1

0

w((sk − tk)ξ)dξ + η(1− γv(tk))
]
(sk − tk)

sk = tk +
1

1− γv(t)

[
(1 + η)γ

∫ 1

0

w((tk − sk−1)ξ)dξ + η(1− γv(t))
]
(tk − sk−1). (2.7)

Moreover, define functions q and hq on the interval [0, r0) by

q(t) =

(1 + η)γ

∫ 1

0

w(2γµξ)dξ + η(1− γv(t))

1− γv(t)
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and

hq(t) = q(t)− 1.

We have that hq(0) = η − 1 < 0 and hq(t) → +∞ as t → r−0 . It follows from the
intermediate value theorem that function hq has zeros in the interval (0, r0). Denote
by rq the smallest such zero. Then, we have that for each t ∈ [0, rq)

0 ≤ q(t) < 1. (2.8)

Lemma 2.2 Suppose that equation

t(1− p(t))−
(

2γµ+ (1 + η)γ

∫ 1

0

w(2γµξ)dξ + η
)

= 0, (2.9)

has zeros in interval (0, rq), where p(t) = q2(t). Denote by r the smallest such zero.
Then, sequences {tk}, {sk} generated by (2.7) are nondecreasing, bounded from above
by rq and converge to their unique least upper bound r∗ which satisfies

0 < r∗ ≤ r < rq. (2.10)

Proof. Equation (2.9) can be written as

t1 − t0
1− p(r)

= r, (2.11)

since by (2.7)

t1 = 2γµ+ (1 + η)γ

∫ 1

0

w(2γµτ)dτ + η

and r solves (2.9). It follows from the definition of sequences {tk}, {sk}, functions w1,
w2, v1, v2 and (2.8) that

0 ≤ t0 ≤ s0 ≤ t1 ≤ s1 ≤ · · · ≤ tk ≤ sk ≤ tk+1 < r,

tk+2 − sk+1 = q(r)(sk+1 − tk+1) ≤ q2(r)(sk+1 − sk) = p(r)(tk+1 − tk),

sk+1 − tk+1 ≤ q(r)(tk+1 − sk) ≤ p(r)(sk − tk),

so

tk+2 − tk+1 ≤ p(r)(tk+1 − tk) ≤ p(r)k+1(t1 − t0)

and

tk+2 ≤tk+1 + p(r)k+1(t1 − t0) ≤ tk + p(r)k(t1 − t0) + p(r)k+1(t1 − t0)

≤ · · · ≤ t1 + p(r)(t1 − t0) + · · ·+ p(r)k+1(t1 − t0)

≤ t1 − t0
1− p(r)

(1− p(r)k+2) <
t1 − t0

1− p(r)
= r.

Therefore, sequences {tk}, {sk} converge to r∗ which satisfies (2.10). �
Next, we present the semilocal convergence analysis of the modified Newton-HSS

method.
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Theorem 2.1. Suppose that the hypotheses (H) and hypotheses of Lemma 2.2 hold.
Define r̄ = min{r+1 , r∗}, where r+1 is defined in ([8], Theorem 2.1) and r∗ is given in
Lemma 2.2. Let u = min{m∗, l∗}, m∗ = lim infk→∞mk, l∗ = lim infk→∞lk. Moreover,
suppose

u >
⌊ lnη

ln((τ + 1)θ)

⌋
, (2.12)

where the symbol b.c denotes the smallest integer not less than the corresponding real
number, τ ∈ (0, 1−θθ ) and

θ := θ(α;x0) = ‖T (α;x0‖ < 1. (2.13)

Then, the sequence {xk} generated by the modified Newton-HSS method is well de-
fined, remains in U(x0, r̄) for each k = 0, 1, 2, . . . and converges to a solution x∗ of
equation F (x) = 0.

Proof. Notice that we showed in ([8], Theorem 2.1) that for each x ∈ U(x0, r̄)

‖T (α;x)‖ ≤ (τ + 1)θ < 1. (2.14)

The following statements shall be shown using mathematical induction:

‖xk − x0‖ ≤ tk − t0,

‖F (xk)‖ ≤ 1− γv(t)

(1 + η)γ
(sk − tk),

‖yk − xk‖ ≤ sk − tk, (2.15)

‖F (yk)‖ ≤ 1− γv(tk)

(1 + η)γ
(tk+1 − sk),

‖xk+1 − yk‖ ≤ tk+1 − sk.
We have in turn that

‖x0 − x0‖ = 0 ≤ t0 − t0,

‖F (x0)‖ ≤ µ ≤ 2γµ

γ(1 + η)
=

1− γv(t0)

γ(1 + η)
(s0 − t0),

‖y0 − x0‖ ≤ ‖I − T (α;x0)l0‖‖F ′(x0)−1‖‖F (x0)‖

≤ (1 + θl0)γµ < 2γµ = s0 = s0 − t0,

‖F (y0)‖ ≤ ‖F (y0)− F (x0)− F ′(x0)(y0 − x0)‖+ ‖F (x0) + F ′(x0)(y0 − x0)‖

≤
∫ 1

0

w(‖y0 − x0‖ξ)dξ‖y0 − x0‖+ η‖F (x0)‖

≤
∫ 1

0

w((s0 − t0)ξ)dξ(s0 − t0) + ηµ ≤ 1− γv(t0)

γ(1 + η)
(t1 − s0),

‖x1 − y0‖ ≤ ‖I − T (α;x0)m0‖‖F ′(x0)−1‖‖F (y0)‖

< (1 + η)γ
1− γv(t)

γ(1 + η)
(t1 − s0) = t1 − s0,
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so (2.15) holds for k = 0. Suppose that (2.15) holds for all nonnegative integers less
than k. We get in turn that

‖xk − x0‖ ≤ ‖xk − yk−1‖+ ‖yk−1 − xk−1‖+ ‖xk−1 − x0‖
≤ tk − t0 < r∗ ≤ r̄.

By Lemma 2.1 we get since xk−1, yk−1 ∈ U(x0, r)

‖F (xk)‖ ≤
∫ 1

0

w(‖xk − yk−1‖ξ)dξ‖xk − yk−1‖+ η‖F (yk−1‖

≤
∫ 1

0

w((tk − sk−1)ξ)dξ(tk − sk−1) + η
1− γv(tk)

(1 + η)γ
(tk − sk−1)

=
1− γv(tk)

(1 + η)γ
(tk − sk), (2.16)

‖yk − xk‖ ≤ ‖I − T (α;xk)lk‖‖F ′(xk)−1‖‖F (xk)‖

≤ (1 + η)γ

1− γv(tk)

[ ∫ 1

0

w((tk − sk−1ξ)dξ(tk − sk−1) + η
1− γv(tk)

(1 + η)γ
(tk − sk−1)

]
= sk − tk

and similarly to (2.16)

‖F (yk)‖ ≤
∫ 1

0

w(‖yk − xk‖ξdξ‖yk − xk‖+ η‖F (xk)‖

≤ 1− γv(tk)

(1 + η)γ
(tk+1 − sk).

We also have that

‖xk+1 − x0‖ ≤ ‖xk+1 − yk‖+ ‖yk − xk‖+ ‖xk − x0‖
≤ tk+1 − t0 < r̄.

The induction for (2.15) is completed.
It follows that sequence {xk} is complete

(
{tk} converges to r∗

)
in a Banach

space Cn and as such it converges to some x∗ ∈ Ū(x0, r̄) (since Ū(x0, r̄) is a closed
set). By letting k →∞ in (2.15), we conclude that F (x∗) = 0. �

Remark 2.2. (a) Let us specialize functions w1, w2, v1, v2 as w1(t) = L1t, w2(t) =
L2t, v1(t) = K1t, v2(t) = K2t for some positive constants K1, K2, L1, L2 and set
L = L1 + L2, K = K1 + K2. Suppose that D0 = D. Then, notice that (2.1) implies
(2.2) and not necessarily vice versa. Then, we have that

K ≤ L, (2.17)

since

K1 ≤ L1 (2.18)

and

K2 ≤ L2. (2.19)
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β1 ≤ β (2.20)

and
β2 ≤ β, (2.21)

where β := max{‖H(x0)‖, ‖S(x0)‖}.

Notice that in [22], K1 = L1, K2 = L2. and β = β1 = β2. Therefore, if strict
inequality holds in any of (2.18), (2.19), (2.20) or (2.21) the present results improve the
ones in [22]. As a simple example, consider function F defined on D = U(x0, 1−δ), δ ∈
(0, 1), x0 = 1 by F (x) = x3 − δ. Then, we have that (2.1) and (2.2) are satisfied for
w(t) = 6(2− δ)t, v(t) = 3(3− δ)t and v(t) < w(t).

(b) The set D0 in (H3) can be replaced by D1 = D ∩ U(x1, r0 − ‖x1 − x0‖)
leading to even smaller “w” functions, since D1 ⊂ D0.

3. Numerical Examples

Example 3.1. Suppose that the motion of an object in three dimensions is governed
by system of differential equations

f ′1(x)− f1(x)− 1 = 0,

f ′2(y)− (e− 1)y − 1 = 0,

f ′3(z)− 1 = 0, (3.1)

with x, y, z ∈ D for f1(0) = f2(0) = f3(0) = 0. Then, the solution of the system is
given for v = (x, y, z)T by function F := (f1, f2, f3) : D → R3 defined by

F (v) =
(
ex − 1,

e− 1

2
y2 + y, z

)T
. (3.2)

The Fréchet-derivative is given by

F ′(v) =

ex 0 0
0 (e− 1)y + 1 0
0 0 1

 . (3.3)

Then, we have that x∗ = (0, 0, 0)T , w(t) = w1(t) + w2(t), v(t) = v1(t) + v2(t),
w1(t) = L1t, w2(t) = L2t, v1(t) = K1t, v2(t) = K2t where L1 = e − 1, L2 = e,
K1 = e− 2, K2 = e, η = 0.1, γ = 1 and µ = 0.01.

After solving the equation hq(t) = 0, we obtain the root rq = 0.289742. Similarly,
the roots of equation (2.9) are: 0.176953, 0.262643 and 0.309340. So,

r = min{0.176953, 0.262643, 0.309340} = 0.176953.

Therefore,
r = 0.176953 < rq = 0.289742.

Also, we have that
r∗ = 0.176953

and (see [8])
r+1 = 0.020274.
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So,
r̄ = min{r+1 , r∗} = min{0.020274, 0.176953} = 0.020274.

It follows that sequence {xk} is complete, {tk} → r∗ in D and as such it converges to
x∗ ∈ U(x0, r̄) = U(0, 0.020274).

Example 3.2. Consider the system of nonlinear equation F (X) = 0, wherein

F = (F1, · · · , Fn)T and X = (x1, x2, . . . , xn)T ,

with
Fi(X) = (3− 2xi)x

3/2
i − xi−1 − 2xi+1 + 1, i = 1, 2, . . . , n,

where x0 = xn+1 = 0 by convention. This system has complex solution. Therefore,
we consider the complex initial guess X0 = (−i,−i, . . . ,−i). The derivative F ′(X) is
given by

F ′(X)=


3
2
(3− 2x1)

√
x1 − 2x

3/2
1 −2 · · · 0 0

−1 3
2
(3− 2x2)

√
x2 − 2x

3/2
2 · · · 0 0

...
...

. . .
...

...

0 0 · · · −1 3
2
(3− 2xn)

√
xn − 2x

3/2
n

 .

Table 1. Optimal values of α for N-HSS and MN-HSS method

n 100 200 500 1000
N-HSS 4.1 4.1 4.2 4.1

MN-HSS 4.4 4.4 4.3 4.3

Table 2. Numerical results

n Method Error estimates CPU-time IT

100
Newton 7.7283× 10−7 0.2816 4
N-HSS 3.9846× 10−6 2.8942 5

MN-HSS 4.1688× 10−8 1.7852 4

200
Newton 3.2414× 10−7 0.4854 4
N-HSS 3.8333× 10−6 6.1576 5

MN-HSS 1.5428× 10−8 4.6873 4

500
Newton 1.5384× 10−7 2.0156 4
N-HSS 4.6524× 10−6 32.5942 5

MN-HSS 4.9421× 10−8 22.5150 4

1000
Newton 3.0245× 10−7 6.9062 4
N-HSS 4.2906× 10−6 122.9374 5

MN-HSS 5.3223× 10−8 98.8944 4

It is known that F ′(X) is sparse and positive definite. Now we solve this nonlinear
problem by the Newton method, the Newton-HSS method (see [22]) and the modified
Newton-HSS method. The methods are compared in error estimates, CPU time (CPU-
time) and the number of iterations (IT). We use experimentally optimal parameter
values of α for the Newton-HSS method (N-HSS) and the modified Newton-HSS (MN-
HSS) method corresponding to the problem dimension n = 100, 200, 500, 1000, see
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Table 1. The numerical results are displayed in Table 2. From numerical results we
observe that MN-HSS outperforms N-HSS in the sense of CPU time and the number
of iterations.

Note that in this example, the results in [10, 17, 22] can not be applied since the
operators involved are not Lipschitz. However, our results can be applied by choosing
“w” and “v” functions appropriately as in Example 3.1. We leave these details to the
interested readers.
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