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Abstract. The main aim of this paper is to give integral characterizations for a
general concept of (h, k)-splitting for skew-evolution semiflows in Banach spaces.
As consequences, criteria for the properties of (h, k)-dichotomy, nonuniform ex-
ponential splitting and exponential splitting are obtained.
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1. Introduction

The study of the asymptotic behaviours for dynamical systems represents a
research area of large interest, with an impressive development in the last years.

An important starting point for the stability theory is due to E. A Barbashin
and R. Datko, who establish integral characterizations for the property of uniform
exponential stability in [2], respectively [8].
Recently, P.V. Hai ([10]) obtains discrete and continuous characterizations for the
concept of (uniform) exponential stability in terms of Banach sequence (function)
spaces. Also, in [20] and [25] are proved generalizations of the results obtained by E.
A. Barbashin and R. Datko.

Significant results in the field of exponential dichotomy of skew-product flows are
obtained in [7], [11], [13], [14], [22] and for the case of nonlinear differential equations,
we emphasize the contributions of S. Elaydi and O. Hajek ([9]).
In [18], respectively [24], the authors give necessary and sufficient conditions for ex-
ponential dichotomy with input-output techniques, using spaces of continuous and
bounded functions, respectively Lebesgue spaces. Also, the property of (uniform) ex-
ponential dichotomy is studied in [23] through the Banach function spaces.

Different concepts of dichotomy of exponential type or more general, with differ-
ent growth rates, are treated in [4], [5], [6], [12], [16], [19] and the references therein.
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As application, we mention the robustness property studied by L. Barreira, J. Chu,
C. Valls in [3] and by M. Lizana in [15].

The notion of exponential splitting is a extension of the exponential dichotomy
and it is studied for difference equations in [1] and [17]. Important characterizations
for various concepts of splitting with growth rates are given in [21].

In this paper we approach the concept of (h, k)-splitting as generalization of
(h, k)-dichotomy for skew-evolution semiflows in Banach spaces. Integral conditions
of Datko and Barbashin type are given, considering invariant and strongly invariant
families of projectors.
Also, we emphasize the results for (h, k)-dichotomy, nonuniform exponential splitting
and exponential splitting.

2. Preliminaries

We denote by X a metric space, V a Banach space and B(V ) the Banach algebra
of all bounded linear operators on V. The norms on V , respectively B(V ) will be
denoted || · ||.
Also, we consider the sets

∆ = {(t, t0) ∈ R2
+ : t ≥ t0},

T = {(t, s, t0) ∈ R3
+ : t ≥ s ≥ t0}

and Y = X × V.

Definition 2.1. A continuous map ϕ : ∆×X → X is said to be evolution semiflow on
X if it satisfies the following relations:

(es1) ϕ(s, s, x) = x, for all (s, x) ∈ R+ ×X;

(es2) ϕ(t, s, ϕ(s, t0, x)) = ϕ(t, t0, x), for all (t, s, t0, x) ∈ T ×X.

Definition 2.2. We say that Φ : ∆ × X → B(V ) is an evolution cocycle over the
evolution semiflow ϕ if

(ec1) Φ(s, s, x) = I (the identity operator on V ), for all (s, x) ∈ R+ ×X;

(ec2) Φ(t, s, ϕ(s, t0, x))Φ(s, t0, x) = Φ(t, t0, x), for all (t, s, t0, x) ∈ T ×X;

(ec3) (t, s, x) 7→ Φ(t, s, x)v is continuous for every v ∈ V.

Definition 2.3. If ϕ is an evolution semiflow on X and Φ is an evolution cocycle over
ϕ, then the pair C = (Φ, ϕ) is called skew-evolution semiflow.

Example 2.4. Let X be a compact metric space, V a Banach space, ϕ an evolution
semiflow on X and A : X → B(V ) a continuous map. If Φ(t, s, x)v is the solution of
the equation

v̇(t) = A(ϕ(t, s, x))v(t), t ≥ s ≥ 0,

then C = (Φ, ϕ) is a skew-evolution semiflow.
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Definition 2.5. We say that a continuous map P : R+ × X → B(V ) is a family of
projectors on V if

P (s, x)2 = P (s, x), for all (s, x) ∈ R+ ×X.

Remark 2.6. If P : R+ × X → B(V ) is a family of projectors for C = (Φ, ϕ), then
Q : R+ ×X → B(V ), Q(t, x) = I − P (t, x) is also a family of projectors for C, called
the complementary family of projectors of P .

Definition 2.7. A family of projectors P : R+ ×X → B(V ) is called

(i) invariant for the skew-evolution semiflow C = (Φ, ϕ) if

P (t, ϕ(t, s, x))Φ(t, s, x) = Φ(t, s, x)P (s, x), for all (t, s, x) ∈ ∆×X;

(ii) strongly invariant for the skew-evolution semiflow C = (Φ, ϕ) if it is invariant
for C and for all (t, s, x) ∈ ∆ × X, the map Φ(t, s, x) is an isomorphism from
Range Q(s, x) to Range Q(t, ϕ(t, s, x)).

Remark 2.8. An example of an invariant family of projectors for a skew-evolution
semiflow which is not strongly invariant is given in [21].

Proposition 2.9. If P : R+ × X → B(V ) is a strongly invariant family of projec-
tors for C = (Φ, ϕ), then there exists an isomorphism Ψ : ∆ × X → B(V ) from
Range Q(t, ϕ(t, s, x)) to Range Q(s, x), such that:

(Ψ1) Φ(t, s, x)Ψ(t, s, x)Q(t, ϕ(t, s, x)) = Q(t, ϕ(t, s, x));
(Ψ2) Ψ(t, s, x)Φ(t, s, x)Q(s, x) = Q(s, x);
(Ψ3) Ψ(t, s, x)Q(t, ϕ(t, s, x)) = Q(s, x)Ψ(t, s, x)Q(t, ϕ(t, s, x));
(Ψ4) Ψ(t, t0, x)Q(t, ϕ(t, t0, x)) = Ψ(s, t0, x)Ψ(t, s, ϕ(s, t0, x))Q(t, ϕ(t, t0, x)),

for all (t, s, t0, x) ∈ T ×X.

Proof. See [21], Proposition 2. �

Throughout this paper, we will consider two nondecreasing functions
h, k : R+ → [1,+∞) with lim

t→+∞
h(t) = lim

t→+∞
k(t) = +∞ (growth rates).

Let C = (Φ, ϕ) be a skew-evolution semiflow and P : R+ × X → B(V ) an
invariant family of projectors for C.

Definition 2.10. The pair (C,P ) admits a (h, k)-splitting if there exist two constants
α, β ∈ R, α < β and a nondecreasing map N : R+ → [1,+∞) such that

(hs1) h(s)α||Φ(t, t0, x0)P (t0, x0)v0|| ≤ N(s)h(t)α||Φ(s, t0, x0)P (t0, x0)v0||;
(ks1) k(t)β ||Φ(s, t0, x0)Q(t0, x0)v0|| ≤ N(t)k(s)β ||Φ(t, t0, x0)Q(t0, x0)v0||,
for all (t, s, t0, x0, v0) ∈ T × Y, where Q is the complementary family of projectors of
P .

The constants α and β are called splitting constants.
As particular cases, we have:

(i) if the map N is constant, then we have the property of uniform (h, k)-splitting ;
(ii) if α < 0 < β, then we obtain the notion of (h, k)-dichotomy ;

(iii) if h(t) = k(t) = et, t ≥ 0, then we recover the concept of nonuniform exponential
splitting ;
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(iv) if h(t) = k(t) = et and N(t) = Seεt, with t ≥ 0, S ≥ 1 and ε ≥ 0, then we obtain
the concept of exponential splitting.

Remark 2.11. The pair (C,P ) is (h, k)-dichotomic if and only if there are a, b > 0
and a nondecreasing mapping N : R+ → [1,+∞) with

(hd1) h(t)a||Φ(t, t0, x0)P (t0, x0)v0|| ≤ N(s)h(s)a||Φ(s, t0, x0)P (t0, x0)v0||;
(kd1) k(t)b||Φ(s, t0, x0)Q(t0, x0)v0|| ≤ N(t)k(s)b||Φ(t, t0, x0)Q(t0, x0)v0||,
for all (t, s, t0, x0, v0) ∈ T × Y.

Example 2.12. Let P : R+ ×X → B(V ) be a constant family of projectors on V and
Q = I − P.

Let h, k : R+ → [1,+∞) be two growth rates and let α < β be two real constants.
For every two nondecreasing functions u, v : R+ → [1,+∞) with

sup
t≥0

u(t) = α and sup
t≥0

v(t) = β

we define Φ : ∆×X → B(V ) by

Φ(t, s, x) =
u(s)

u(t)

(
h(t)

h(s)

)α
P (s, x) +

v(t)

v(s)

(
k(t)

k(s)

)β
Q(s, x),

which is an evolution cocycle over every evolution semiflow on X with

Φ(t, s, x1) = Φ(t, s, x2), for all (t, s, x1), (t, s, x2) ∈ ∆×X,

Φ(t, t0, x0)P (t0, x0) =
u(t0)

u(t)

(
h(t)

h(t0)

)α
P (t0, x0), for all (t, t0, x0) ∈ ∆×X,

Φ(t, t0, x0)Q(t0, x0) =
v(t)

v(t0)

(
k(t)

k(t0)

)β
Q(t0, x0), for all (t, t0, x0) ∈ ∆×X.

Moreover,

h(s)α||Φ(t, t0, x0)P (t0, x0)v0|| =
u(t0)

u(t)

(
h(s)

h(t0)

)α
h(t)α||P (t0, x0)v0|| ≤

≤ u(s)h(t)α||Φ(s, t0, x0)P (t0, x0)v0|| ≤ N(s)h(t)α||Φ(s, t0, x0)P (t0, x0)v0||
and

k(t)β ||Φ(s, t0, x0)Q(t0, x0)v0|| =
v(s)

v(t)
k(s)β ||Φ(t, t0, x0)Q(t0, x0)v0|| ≤

≤ v(t)k(s)β ||Φ(t, t0, x0)Q(t0, x0)v0|| ≤ N(t)k(s)β ||Φ(t, t0, x0)Q(t0, x0)v0||,
for all (t, s, t0, x0, v0) ∈ T × Y, where N(t) = u(t) + v(t), for every t ≥ 0.

Finally, we obtain that (C,P ) has a (h, k)-splitting, with the splitting constants
α and β.

If we suppose that (C,P ) is (h, k)-dichotomic, then it results that there exist
γ > 0 and a nondecreasing function N : R+ → [1,+∞) such that

h(t)γ ||Φ(t, t0, x0)P (t0, x0)v0|| ≤ N(s)h(s)γ ||Φ(s, t0, x0)P (t0, x0)v0||,

for all (t, s, t0) ∈ T and all (x0, v0) ∈ Y.
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From here, for s = t0 = 0 we deduce

u(0)h(t)α+γ ≤ N(0)h(0)α+γu(t) ≤ αN(0)h(0)α+γ

and for t→ +∞ we obtain a contradiction.

Remark 2.13. The previous example shows that for every two growth rates h, k and
all two real constants α < β there is a skew-evolution semiflow which admits a (h, k)-
splitting with the splitting constants α, β and which is not (h, k)-dichotomic.

Remark 2.14. The pair (C,P ) has a (h, k)-splitting if and only if there exist α, β ∈ R,
α < β and nondecreasing map N : R+ → [1,+∞) such that

(hs′1) h(t0)α||Φ(t, t0, x0)P (t0, x0)v0|| ≤ N(t0)h(t)α||P (t0, x0)v0||;
(ks′1) k(t)β ||Q(t0, x0)v0|| ≤ N(t)k(t0)β ||Φ(t, t0, x0)Q(t0, x0)v0||,
for all (t, t0, x0, v0) ∈ ∆× Y.

Definition 2.15. We say that (C,P ) has a (h, k)-growth if there exist two constants
ω1, ω2 > 0 and nondecreasing map M : R+ → [1,+∞) such that

(hg1) h(s)ω1 ||Φ(t, t0, x0)P (t0, x0)v0|| ≤M(t0)h(t)ω1 ||Φ(s, t0, x0)P (t0, x0)v0||;
(kg1) k(s)ω2 ||Φ(s, t0, x0)Q(t0, x0)v0|| ≤M(t)k(t)ω2 ||Φ(t, t0, x0)Q(t0, x0)v0||,
for all (t, s, t0, x0, v0) ∈ T × Y.

In particular,

(neg) for h(t) = k(t) = et, t ≥ 0, we have the property of nonuniform exponential
growth;

(eg) for h(t) = k(t) = et and M(t) = Geγt, t ≥ 0, G ≥ 1 and γ ≥ 0, we obtain the
notion of exponential growth.

Proposition 2.16. Let P : R+×X → B(V ) be a strongly invariant family of projectors
for C = (Φ, ϕ). Then (C,P ) admits a (h, k)-splitting if and only if there exist two real
constants α < β and a nondecreasing mapping N : R+ → [1,+∞) such that

(hs1) h(s)α||Φ(t, t0, x0)P (t0, x0)v0|| ≤ N(s)h(t)α||Φ(s, t0, x0)P (t0, x0)v0||;
(ks′′1) k(s)β ||Ψ(t, t0, x0)Q(t, ϕ(t, t0, x0))v0|| ≤

≤ N(s)k(t0)β ||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0||,
for all (t, s, t0, x0, v0) ∈ T × Y.

Proof. See [21], Proposition 3. �

Similarly, we obtain

Remark 2.17. Let P : R+ ×X → B(V ) be a strongly invariant family of projectors
for C = (Φ, ϕ). Then (C,P ) has a (h, k)-growth if and only if there exist ω1, ω2 > 0
and nondecreasing function M : R+ → [1,+∞) with

(hg1) h(s)ω1 ||Φ(t, t0, x0)P (t0, x0)v0|| ≤M(t0)h(t)ω1 ||Φ(s, t0, x0)P (t0, x0)v0||;
(kg′1) k(t0)ω2 ||Ψ(t, t0, x0)Q(t, ϕ(t, t0, x0))v0|| ≤

≤M(s)k(s)ω2 ||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0||,
for all (t, s, t0, x0, v0) ∈ T × Y.
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3. The main results

In this section we will denote with H1 the set of the growth rates h : R+ → [1,+∞)
with

+∞∫
0

h(s)cds < +∞, for all c < 0.

Also, K1 represents the set of the growth rates k : R+ → [1,+∞), with the property
that there exists a constant K ≥ 1 such that

t∫
0

k(s)cds ≤ Kk(t)c, for all c > 0, t ≥ 0.

By H we denote the set of the growth rates h : R+ → [1,+∞) with the property that
there exists H ≥ 1 such that

h(t)c ≤ Hh(s)c, for all (t, s) ∈ ∆, t ≤ s+ 1, c ∈ R.

Remark 3.1. If we denote by e(t) = et, t ≥ 0, then e ∈ H1 ∩ K1 ∩H.
We consider C = (Φ, ϕ) a skew-evolution semiflow, P : R+ × X → B(V ) an

invariant family of projectors for C.
A first characterization for the (h, k)-splitting property is given by

Theorem 3.2. Let (C,P ) be a pair with (h, k)-growth, where h ∈ H1∩H and k ∈ K1∩H.
Then (C,P ) admits a (h, k)-splitting if and only if there exist d1, d2 ∈ R, d1 < d2 and
a nondecreasing mapping D : R+ → [1,+∞) such that the following assertions hold:

(Dhs1)

+∞∫
s

||Φ(τ, t0, x0)P (t0, x0)v0||
h(τ)d1

dτ ≤ D(s)

h(s)d1
||Φ(s, t0, x0)P (t0, x0)v0||,

for all (s, t0, x0, v0) ∈ ∆× Y ;

(Dks1)

t∫
t0

||Φ(τ, t0, x0)Q(t0, x0)v0||
k(τ)d2

dτ ≤ D(t)

k(t)d2
||Φ(t, t0, x0)Q(t0, x0)v0||,

for all (t, t0, x0, v0) ∈ ∆× Y.
Proof. Necessity. It is a simple verification for α < d1 < d2 < β and

D(s) = N(s)[K +Hh(s)d1−α],

where H =
+∞∫
0

h(τ)α−d1dτ.

Sufficiency. We show that the relations from Definition 2.10 are verified.
(hs1) Case 1 : Let t ≥ s+ 1, (s, t0) ∈ ∆ and (x0, v0) ∈ Y. Then

h(s)d1 ||Φ(t, t0, x0)P (t0, x0)v0|| ≤

≤ h(s)d1M(t0)

t∫
t−1

(
h(t)

h(τ)

)ω1

||Φ(τ, t0, x0)P (t0, x0)v0||dτ =
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= M(t0)h(s)d1h(t)d1
t∫

t−1

(
h(t)

h(τ)

)ω1−d1 ||Φ(τ, t0, x0)P (t0, x0)v0||
h(τ)d1

dτ ≤

≤ HM(s)h(s)d1h(t)d1
+∞∫
s

||Φ(τ, t0, x0)P (t0, x0)v0||
h(τ)d1

dτ ≤

≤ N(s)h(t)d1 ||Φ(s, t0, x0)P (t0, x0)v0||, for all t ≥ s+ 1, s ≥ t0, (x0, v0) ∈ Y,
where N(s) = HM(s)D(s), s ≥ 0.
Case 2 : Let t ∈ [s, s+ 1], s ≥ t0 and (x0, v0) ∈ Y. We obtain

h(s)d1 ||Φ(t, t0, x0)P (t0, x0)v0|| ≤

≤M(t0)

(
h(t)

h(s)

)ω1−d1
h(t)d1 ||Φ(s, t0, x0)P (t0, x0)v0|| ≤

≤ N(s)h(t)d1 ||Φ(s, t0, x0)P (t0, x0)v0||,
for all t ∈ [s, s+ 1], s ≥ t0, (x0, v0) ∈ Y.
Then, we obtain that (hs1) is verified for all (t, s, t0, x0, v0) ∈ T × Y.
(ks1) Case 1 : We consider (t, s, t0) ∈ T, t ≥ s+ 1, (x0, v0) ∈ Y. Then,

s+1∫
s

k(t)d2 ||Φ(s, t0, x0)Q(t0, x0)v0||dτ ≤

≤ k(t)d2
s+1∫
s

M(τ)

(
k(τ)

k(s)

)ω2

||Φ(τ, t0, x0)Q(t0, x0)v0||dτ ≤

≤M(t)k(t)d2k(s)d2
s+1∫
s

(
k(τ)

k(s)

)ω2+d2 ||Φ(τ, t0, x0)Q(t0, x0)v0||
k(τ)d2

dτ ≤

≤ HM(t)k(s)d2k(t)d2
t∫

t0

||Φ(τ, t0, x0)Q(t0, x0)v0||
k(τ)d2

dτ ≤

≤ N(t)k(s)d2 ||Φ(t, t0, x0)Q(t0, x0)v0||.
We obtain

k(t)d2 ||Φ(s, t0, x0)Q(t0, x0)v0|| ≤ N(t)k(s)d2 ||Φ(t, t0, x0)Q(t0, x0)v0||,
for all t ≥ s+ 1, s ≥ t0, (x0, v0) ∈ Y.
Case 2 : Let t ∈ [s, s+ 1], s ≥ t0 and (x0, v0) ∈ Y. We deduce the following:

k(t)d2 ||Φ(s, t0, x0)Q(t0, x0)v0|| ≤

≤M(t)

(
k(t)

k(s)

)ω2

k(t)d2 ||Φ(t, t0, x0)Q(t0, x0)v0|| =

= M(t)

(
k(t)

k(s)

)ω2+d2

k(s)d2 ||Φ(t, t0, x0)Q(t0, x0)v0|| ≤
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≤ N(t)k(s)d2 ||Φ(t, t0, x0)Q(t0, x0)v0||.

Thus, the condition (ks1) holds for all (t, s, t0, x0, v0) ∈ T × Y.
In conclusion, the pair (C,P ) has a (h, k)-splitting. �

As consequences, we obtain

Corollary 3.3. Let (C,P ) be a pair with (h, k)-growth, where h ∈ H1 ∩ H and k ∈
K1 ∩ H. Then (C,P ) is (h, k)-dichotomic if and only if then there exist d1 < 0 < d2
and a nondecreasing function D : R+ → [1,+∞) such that:

(Dhd1)

+∞∫
s

||Φ(τ, t0, x0)P (t0, x0)v0||
h(τ)d1

dτ ≤ D(s)

h(s)d1
||Φ(s, t0, x0)P (t0, x0)v0||,

for all (s, t0, x0, v0) ∈ ∆× Y ;

(Dkd1)

t∫
t0

||Φ(τ, t0, x0)Q(t0, x0)v0||
k(τ)d2

dτ ≤ D(t)

k(t)d2
||Φ(t, t0, x0)Q(t0, x0)v0||,

for all (t, t0, x0, v0) ∈ ∆× Y.

Corollary 3.4. We consider (C,P ) a pair with nonuniform exponential growth. Then
(C,P ) has a nonuniform exponential splitting if and only if there are two constants
d1, d2 ∈ R, d1 < d2 and a nondecreasing map D : R+ → [1,+∞) with:

(Dnes1)

+∞∫
s

e−τd1 ||Φ(τ, t0, x0)P (t0, x0)v0||dτ ≤

≤ D(s)e−sd1 ||Φ(s, t0, x0)P (t0, x0)v0||,
for all (s, t0, x0, v0) ∈ ∆× Y ;

(Dnes2)

t∫
t0

e−τd2 ||Φ(τ, t0, x0)Q(t0, x0)v0||dτ ≤

≤ D(t)e−td2 ||Φ(t, t0, x0)Q(t0, x0)v0||,
for all (t, t0, x0, v0) ∈ ∆× Y.

Corollary 3.5. If (C,P ) is a pair with exponential growth, then it admits an exponential
splitting if and only if there exists some real constants d1 < d2, D ≥ 1 and δ ≥ 0 such
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that:

(Des1)

+∞∫
s

e−τd1 ||Φ(τ, t0, x0)P (t0, x0)v0||dτ ≤

≤ De(δ−d1)s||Φ(s, t0, x0)P (t0, x0)v0||,
for all (s, t0, x0, v0) ∈ ∆× Y ;

(Des2)

t∫
t0

e−τd2 ||Φ(τ, t0, x0)Q(t0, x0)v0||dτ ≤

≤ De(δ−d2)t||Φ(t, t0, x0)Q(t0, x0)v0||,
for all (t, t0, x0, v0) ∈ ∆× Y.

Remark 3.6. The results given by Theorem 3.2, Corollary 3.3, Corollary 3.4 and
Corollary 3.5 are characterizations of Datko-type for the splitting concepts studied in
this paper.

Further, C = (Φ, ϕ) represents a skew-evolution semiflow and P : R+ × X →
B(V ) a strongly invariant family of projectors for C.
In this context, we obtain the following characterization for (h, k)-splitting:

Theorem 3.7. Let (C,P ) be a pair with (h, k)-growth,where h ∈ H1∩H and k ∈ K1∩H.
Then (C,P ) admits a (h, k)-splitting if and only if there exist d1, d2 ∈ R, d1 < d2 and a
nondecreasing map D : R+ → [1,+∞) such that the following inequalities are verified:

(Dhs1)

+∞∫
s

||Φ(τ, t0, x0)P (t0, x0)v0||
h(τ)d1

dτ ≤ D(s)

h(s)d1
||Φ(s, t0, x0)P (t0, x0)v0||,

for all (s, t0, x0, v0) ∈ ∆× Y ;

(Dks′1)

s∫
t0

||Ψ(t, τ, ϕ(τ, t0, x0))Q(t, ϕ(t, t0, x0))v0||
k(τ)d2

dτ ≤

≤ D(s)

k(s)d2
||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0||,

for all (t, s, t0, x0, v0) ∈ T × Y.

Proof. Necessity. It results from Proposition 2.16, for α < d1 < d2 < β and

D(s) = N(s)[K +Hh(s)d1−α],

where H =
+∞∫
0

h(τ)α−d1dτ.

Sufficiency. We prove that the inequalities (hs1) and (ks′′1) from Proposition
2.16 hold.

In a similar manner with the proof of Theorem 3.2 we obtain

h(s)d1 ||Φ(t, t0, x0)P (t0, x0)v0|| ≤ N(s)h(t)d1 ||Φ(s, t0, x0)P (t0, x0)v0||,
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for all (t, s, t0, x0, v0) ∈ T × Y, where N(s) = HM(s)D(s), s ≥ 0.

Thus, we consider (t, s, t0) ∈ T, s ≥ t0 + 1, (x0, v0) ∈ Y and it results that

k(s)d2 ||Ψ(t, t0, x0)Q(t, ϕ(t, t0, x0)v0|| =

= k(s)d2

t0+1∫
t0

||Ψ(τ, t0, x0)Ψ(t, τ, ϕ(τ, t0, x0))Q(t, ϕ(t, t0, x0))v0||dτ ≤

≤ k(s)d2

t0+1∫
t0

M(τ)

(
k(τ)

k(t0)

)ω2

||Ψ(t, τ, ϕ(τ, t0, x0))Q(t, ϕ(t, t0, x0))v0||dτ ≤

≤M(s)k(s)d2k(t0)d2

t0+1∫
t0

(
k(τ)

k(t0)

)ω2+d2 ||Ψ(t, τ, ϕ(τ, t0, x0))Q(t, ϕ(t, t0, x0))v0||
k(τ)d2

dτ ≤

≤ HM(s)k(s)d2k(t0)d2
s∫

t0

||Ψ(t, τ, ϕ(τ, t0, x0))Q(t, ϕ(t, t0, x0))v0||
k(τ)d2

dτ ≤

≤ N(s)k(t0)d2 ||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0||.

For t ≥ s, s ∈ [t0, t0 + 1), (x0, v0) ∈ Y we have

k(s)d2 ||Ψ(t, t0, x0)Q(t, ϕ(t, t0, x0))v0|| ≤

≤ k(s)d2M(s)

(
k(s)

k(t0)

)ω2

||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0|| ≤

≤M(s)k(t0)d2
(
k(s)

k(t0)

)ω2+d2

||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0|| ≤

≤ N(s)k(t0)d2 ||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0||.

We deduce that (ks′′1) is verified, for all (t, s, t0) ∈ T, (x0, v0) ∈ Y.
Using Proposition 2.16, it follows that (C,P ) admits a (h, k)-splitting. �

In particular, we emphasize the following consequences:

Corollary 3.8. Let (C,P ) be a pair with (h, k)-growth,where h ∈ H1∩H and k ∈ K1∩H.
Then (C,P ) is (h, k)-dichotomic if and only if there exist two constants d1 < 0 < d2
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and a nondecreasing map D : R+ → [1,+∞) with:

(Dhd1)

+∞∫
s

||Φ(τ, t0, x0)P (t0, x0)v0||
h(τ)d1

dτ ≤ D(s)

h(s)d1
||Φ(s, t0, x0)P (t0, x0)v0||,

for all (s, t0, x0, v0) ∈ ∆× Y ;

(Dkd′1)

s∫
t0

||Ψ(t, τ, ϕ(τ, t0, x0))Q(t, ϕ(t, t0, x0))v0||
k(τ)d2

dτ ≤

≤ D(s)

k(s)d2
||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0||,

for all (t, s, t0, x0, v0) ∈ T × Y.
Corollary 3.9. Let (C,P ) be with nonuniform exponential growth. Then (C,P ) has a
nonuniform exponential splitting if and only if exist two real constants d1 < d2 and a
nondecreasing function D : R+ → [1,+∞) such that:

(Dnes1)

+∞∫
s

e−τd1 ||Φ(τ, t0, x0)P (t0, x0)v0||dτ ≤

≤ D(s)e−sd1 ||Φ(s, t0, x0)P (t0, x0)v0||,
for all (s, t0, x0, v0) ∈ ∆× Y ;

(Dnes′2)

s∫
t0

e−τd2 ||Ψ(t, τ, ϕ(τ, t0, x0))Q(t, ϕ(t, t0, x0))v0||dτ ≤

≤ D(s)e−sd2 ||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0||,
for all (t, s, t0, x0, v0) ∈ T × Y.

Corollary 3.10. If (C,P ) has an exponential growth, then it admits an exponential
splitting if and only if there exist d1, d2 ∈ R, d1 < d2, D ≥ 1 and δ ≥ 0 such that:

(Des1)

+∞∫
s

e−τd1 ||Φ(τ, t0, x0)P (t0, x0)v0||dτ ≤

≤ De(δ−d1)s||Φ(s, t0, x0)P (t0, x0)v0||,
for all (s, t0, x0, v0) ∈ ∆× Y ;

(Des′2)

s∫
t0

e−τd2 ||Ψ(t, τ, ϕ(τ, t0, x0))Q(t, ϕ(t, t0, x0))v0||dτ ≤

≤ De(δ−d2)s||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0||,
for all (t, s, t0, x0, v0) ∈ T × Y.

Remark 3.11. Theorem 3.7, Corollary 3.8, Corollary 3.9 and Corollary 3.10 are char-
acterizations of Barbashin-type for the splitting concepts considered in this paper.
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