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Radii of harmonic mapping with fixed second
coefficients in the plane
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Abstract. In this paper we investigate the radii problem for harmonic functions
with a fixed coefficient and determine the radii of univalence, stable starlikness,
stable convexity, fully starlikness and fully convexity of order α for these type of
functions. All results are sharp. Also these results generalize and improve some
results in the literature.
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1. Introduction and Preliminaries

Denote by H the class of all complex-valued harmonic functions f in the unit
disk D = {z ∈ C : |z| < 1} normalized by f(0) = 0 = fz(0)− 1. Each f ∈ H can be
decomposed as f = h+ g, where g and h are analytic in D so that

h(z) = z +

∞∑
n=2

anz
n and g(z) =

∞∑
n=1

bnz
n. (1.1)

Let SH denote the class of univalent and orientation- preserving functions f ∈ H.
Then the Jacobian of f is given by Jf (z) = |h′(z)|2 − |g′(z)|2.

A necessary and sufficient condition (see Lewy [11]) for a harmonic function f to be
locally univalent in D is that Jf (z) > 0 in D.

Let KH ,S∗H and CH be the subclass of SH mapping D onto convex, starlike and

close-to-convex domains, respectively. Also denote by K0
H ,S∗

0
H , C0H and S0H the class

consisting of the functions f in KH ,S∗H , CH and SH respectively, for which fz(0) =
b1 = 0.

One of the important questions in the study of class S0H and its subclasses is related
to coefficient bounds. In 1984, Clunie and Sheil-Small [5], it was conjectured that
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the Taylor coefficients of the the series h and g, namely, an and bn are satisfy the
conditions |an| ≤ An and |bn| ≤ Bn, where

An =
1

6
(2n+ 1)(n+ 1) and Bn =

1

6
(2n− 1)(n− 1). (1.2)

The harmonic function f(z) = z+

∞∑
n=2

Anz
n +

∞∑
n=2

Bnz
n is known as harmonic Koebe

function and maps the unit disk D onto the slit plane C \ {u+ iv : u ≤ −1/6, v = 0}
which is starlike function in D.
Although, the coefficients conjecture remains an open problem for the full class S0H ,
the same has been verified for all functions f ∈ S0H with real coefficients and all
function f ∈ S0H for which either f(D) is starlike with respect to the origin, close-
to-convex function and for convex in one direction (see [5], [19], [20]). The extremal
function is the harmonic Koebe function. If f ∈ K0

H , Clunie and Sheil-Small [5] proved
the Taylor coefficients of h and g satisfy the inequality

|an| ≤
n+ 1

2
and |bn| ≤

n− 1

2
, (1.3)

and equality occurs for the harmonic half-plane mapping

L(z) =
2z − z2

2(1− z)2
+

−z2
2(1− z)2

=

∞∑
n=1

n+ 1

2
zn −

∞∑
n=1

n− 1

2
zn.

Chaqui et al. [4] introduced the notion of fully starlike and fully convex harmonic
function that do inherit the properties of starlikeness and convexity, respectively. A
harmonic mapping f of D is said to be fully convex of order α, 0 ≤ α < 1, if it maps
every circle |z| = r < 1 in a one-to-one manner onto a convex curve satisfying

∂

∂θ
(arg

(
∂

∂θ
f(reiθ))

)
> α, 0 ≤ θ < tπ, 0 < r < 1.

Similarly, a harmonic mapping f of D is said to be fully starlike of order α, 0 ≤ α < 1,
if it maps every circle |z| = r < 1 in a one-to-one manner onto a curve that bound a
domain starlike with respect to the origin satisfying

∂

∂θ
(arg(f(reiθ))) > α, 0 ≤ θ < tπ, 0 < r < 1.

In [5] Clunie and Sheil-Small proved the following result

Lemma 1.1. If h, g are analytic in D with |h′(0)| > |g′(0)| and h+εg is close-to-convex
for each ε, |ε| = 1, then f = h+ g is close-to-convex in D.
This lemma has been used to obtain many important results. Motivated by this result
Hernandes et al. [7] introduced the notion of stable univalent stable starlike, stable
convex and stable close-to-convex harmonic functions.
We say that the (sense-preserving) harmonic mapping f = h + g is stable univalent
(resp. stable convex, stable starlike with respect to origin, or stable close-to-convex)
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if all the mapping fλ = h+ λg with |λ| = 1 are univalent (resp. convex, starlike with
respect to origin, or close-to-convex) in D.

Analogs to Lemma 1.1 it is proved [7] that the harmonic mapping f = h+ g is stable
univalent (resp. stable convex, stable starlike with respect to origin, or stable close-
to-convex) if and only if all the mapping fλ = h+λg with |λ| = 1 are univalent (resp.
convex, starlike with respect to origin, or close-to-convex) in D.

We note that fully starlike function need not be univalent, but stable starlike function
is univalent. Also it is easy to see that the stable starlike and stable convex functions
are fully starlike and fully convex functions, respectively. It is easy to see that a
function f = h+ g whose coefficients satisfy the conditions |an| ≤ An and |bn| ≤ Bn
is harmonic in D, however it need not be univalent. For example the function f(z) =
z + 2z4 satisfy the above mentioned conditions but it is not sense-preserving in D.
It is therefore of interest to determine the largest subdisk |z| < ρ < 1 in which the
function f satisfying the condition (1.2) and (1.3) (or others) influence the univalency
of f . Recall that given two subsets M and N of H the N radius in M is the largest
R such that, for every f ∈M, r−1f(rz) ∈ N for every r ≤ R.

The radius of fully convexity of the class K0
H is

√
2 − 1, while the radius of fully

convexity of the class S∗0H is 3−
√

8 (see [18], [19]). The corresponding problem for the
radius of fully starlikeness are still unsolved. In [10], the radius of close-to-convexity
of harmonic mapping was determined. These results are generalized in context of fully
starlike and fully convex functions of order α (0 ≤ α < 1) in [14]. Also, we remark that
many authors studied the radii problem in the analytic functions (see [1], [2], [11],
[13], [15], [17], [16], [21]) There is a challenge in fixing the second coefficient which is
due to that removal of natural extremal function from the class. In this paper such as
[12] we investigate the radii of univalence, stable starlikeness, stable convexity, fully
starlikeness and fully convexity for these types of functions. Also we determine the
Bloch constant for harmonic functions with fixed second coefficient.

For proving our result we shall need the following result due to Jahangiri [8], [9].

Theorem 1.1. Let f = h + g, where h and g are given by (1.1) and let 0 ≤ α < 1.
Then we have the following

(i) If
∞∑
n=2

n− α
1− α

|an|+
∞∑
n=1

n+ α

1− α
|bn| ≤ 1,

then f is harmonic univalent and f is fully starlike of order α.

(ii) If
∞∑
n=2

n(n− α)

1− α
|an|+

∞∑
n=1

n(n+ α)

1− α
|bn| ≤ 1,

then f is harmonic univalent and f is fully convex of order α.

By making use of Theorem 1.1 we conclude the following result.

Corollary 1.2. Let f = h + g, where h and g are given by (1.1), then we have the
following
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(i) If
∞∑
n=1

n(|an|+ |bn|) ≤ 2 with a1 = 1,

then f is harmonic univalent and f is stable starlike.
(ii) If

∞∑
n=1

n2(|an|+ |bn|) ≤ 2 with a1 = 1,

then f is harmonic univalent and f is stable convex.

2. Radii of Univalence

In this section, the sharp stable starlike (convex) radius and the sharp fully
starlike (convex) of order α, (0 ≤ α < 1) are obtained for harmonic functions.

Theorem 2.1. Let f = h+ g ∈ H, where h, g is given by (1.1). Let

b1 = 0, |a2|+ |b2| = 2b (0 ≤ b ≤ 1) and |an|+ |bn| ≤ n (n ≥ 3). (2.1)

Then for f ,
(i) the radius of stable starlikeness is rs, where rs = rs(b) is the smallest root in (0, 1)
of the equation

1 + r = 2[1 + 2(1− b)r](1− r)3. (2.2)

(ii) the radius of stable convexity is rc, where rc = rc(b) is the smallest root in (0, 1)
of the equation

2[1 + 4(1− b)r](1− r)4 = 1 + 4r + r2. (2.3)

Furthermore, all results are sharp.

Proof. First we prove the case (i). For r ∈ (0, 1) with r ≤ rs, it is sufficient to show
that Fr is stable starlike, where

Fr(z) = z +

∞∑
n=2

anr
n−1zn +

∞∑
n=2

bnrn−1zn. (2.4)

According to Corollary 1.1, it is sufficient to show that
∞∑
n=2

n(|an|+ |bn|)rn−1 ≤ 1. (2.5)

Considering condition (2.1), we have
∞∑
n=2

n(|an|+ |bn|)rn−1 ≤ 4brs +

∞∑
n=3

n2rn−1s

= 4brs +
1 + rs

(1− rs)3
− 1− 4rs = 1,

provided rs is the root of the equation (2.2) in the hypothesis of the theorem. Set

m(r) = 1 + r − 2(1 + 2(1− b)r)(1− r)3.
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Then m(0) = −1 and m(1) = 2 and so intermediate value theorem shows that the
equation (2.2) has a root in the interval (0, 1). Next for proving the sharpness part
we consider the function f0 = h0 + g0, where

h0(z) = 2z +
3

2
z2 − 2z − z2

2(1− z)2
and g0(z) = 2bz2 − 1

2
z2 +

z2

2(1− z)2
.

Direct calculation leads to

h′0(z) = 2 + 3z − 1

(1− z)3
and g′0(z) = 4bz − z +

z

(1− z)3
.

Now from (2.2), we have

[h′0(r)− g′0(r)]r=rs =
1

(1− r)3
[2(1 + 2r(1− b))(1− r)3 − (1 + r)]|r=rs = 0.

Hence,

Jf0(r)|r=rs = [(h′0(r) + g′0(r))(h′0(r)− g′0(r))]r=rs = 0.

Therefore, in view of Lewy’s theorem, the function f0 is not univalent in |z| < r if
r > rs. This shows the radius rs is sharp.
Case (ii). The proof of (2.3) is similar to the case (i) and we omit the details. To proof
sharpness, we take the function f1 = h1 + g1, where

h1(z) = 2z + 2z2 − z

(1− z)2
and g1(z) = −2bz2

Then if we define F1(z) = h1(z) + g1(z), it yields

Re

(
1 +

zF ′′1 (z)

F ′1(z)

)
|r=rc =

{
2(1− r4)[1 + 4(1− b)r]− (1 + 4r + r2)

(1− r)[(2 + 4(1− b)r)(1− r3)− (1 + r)]

}
|r=rc = 0.

The denominator of the rational function in the middle of the equation above is
greater than the numerator for all 0 ≤ r < 1 and 0 ≤ b ≤ 1. Therefore, if we take the
smallest root of the denominator with rp in (0, 1) then, we have rc < rp. Hence for
rc < r < rp the denominator of the rational function in the middle of the equation
above is the positive while the numerator is negative, and this means the expression
in the middle is negative for rc < r < rp. So we observe that the function F1 is not
convex for |z| < r, where r > rc. Now the functions Fλ = h1(z)+λg1(z) for all λ with

|λ| = 1 are not convex for |z| < r, where r > rc, or the functions Fλ = h1(z) + λg1(z)
for all λ with |λ| = 1 are not convex for |z| < r, where r > rc. This shows that the
radius rc is sharp. �

For example let us consider the half-plane harmonic function L = h+ g, where

h(z) =
2z − z2

2(1− z)2
, g(z) =

−z2

2(1− z)2
.

This function maps D harmonically onto domain Ω = {z ∈ C : Re{z} > −1/2} and
so it is convex function. We remark this function is not stable starlike function. Since
if we consider the function

h(z) =
2z − z2

2(1− z)2



194 Rasoul Aghalary and Ali Mohammadian

we obtain

Re
zh′(z)

h(z)
= 2Re

(
1

1− z
− 1

2− z

)
,

and with calculation one can see that which is zero in the point z0 =
√
14
4 e

icos−1 3√
14 .

Hence h is not starlike and by result in [7] the half plane map L is not stable starlike.
On the other hand it is easy to see that

L(z) = z +

∞∑
n=2

n+ 1

2
zn −

∞∑
n=2

n− 1

2
zn,

so by taking a2 = 3/2, b2 = 1/2 we observe that L satisfies the condition of Theorem
2.1. Therefore L is stable starlike function in the disk |z| ≤ r0 where r0 ' 0.164878 is
the real root of the equation 2r3 − 6r2 + 7r − 1 = 0, in the interval (0, 1).

Theorem 2.2. Let f = h+ g ∈ H, where h, g is given by (1.1). Let

|b1| < 1, |a2|+|b2| = 2b (0 ≤ b ≤ M

2
) and |an|+|bn| ≤M (M > 0) (n ≥ 3). (2.6)

Then for f ,
(i) the radius of stable starlikeness is rs, where rs = rs(b) is the smallest root in (0, 1)
of the equation

M − [1 +M − |b1|+ 2(M − 2b)r](1− r)2 = 0. (2.7)

(ii) the radius of stable convexity is rc, where rc = rc(b) is the smallest root in (0, 1)
of the equation

(1− r)3[1 +M − |b1|+ 4r(M − 2b)] = M(1 + r). (2.8)

Furthermore, all results are sharp.

Proof. The proof of case (i) is similar to the proof of case (i) in the Theorem 2.1 and
so is omitted. The function f0 = h0 + g0, where

h0(z) = z − Mz3

2(1− z)
and g0(z) = −|b1|z − 2bz2 − Mz3

2(1− z)
(2.9)

shows that the result is sharp. Indeed, in view of (2.9) and direct computation imply
that

h′0(z) = 1−M 3z2 − 2z3

2(1− z)2
and g′0(z) = −|b1| − 4bz −M 3z2 − 2z3

2(1− z)2
,

and so

Jf0(r) = |h′0(r)|2 − |g′0(r)|2 = (1 + 4br)

[
1− 4br − |b1| −Mr2

(
3− 2r

(1− r)2

)]
,

which shows that Jf0(rs) = 0 and Jf0(r) < 0 for r > rs. Thus the proof of case (i) is
complete.
Case (ii). For r ∈ (0, 1) with r ≤ rc, it is sufficient to show that Fr is stable convex,
where

Fr(z) = z +

∞∑
n=2

anr
n−1zn +

∞∑
n=1

bnrn−1zn. (2.10)
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In view of corollary 1.1, it is sufficient to show that

|b1|+
∞∑
n=2

n2(|an|+ |bn|)rn−1 ≤ 1. (2.11)

Considering condition (2.6), we have

|b1|+
∞∑
n=2

n2(|an|+ |bn|)rn−1 ≤ |b1|+ 8brc +M
∞∑
n=3

n2rn−1c

= |b1|+ 8brc +M

[
1 + rc

(1− rc)3
− 1− 4rc

]
= 1,

provided rc is the root of the Equation (2.8) in the hypothesis of the theorem. Set

m(r) = M [1 + r]− [1 +M − |b1|+ 4(M − 2b)r](1− r)3.

Then m(0) = −(1 − |b1|) and m(1) = 2M and so intermediate value theorem shows
that the Equation (2.8) has a root in the interval (0, 1). To proof of sharpness, we
define the function f1 = h1 + g1, where

h1(z) = z −M z3

2(1− z)
and g1(z) = −|b1|z − 2bz2 −M z3

2(1− z)
.

Then if we consider the function F1(z) = h1(z) + g1(z), direct calculation gives that
F ′1(rc) + rcF

′′
1 (rc) = 0. In the other words we conclude that[

Re

(
1 +

zF ′′1 (z)

F ′1(z)

)]
|z=rc

= 0.

The rest of proof is exactly the same as proof of sharpness part of case (ii) of Theorem
2.1 and we omit the details. �

There are two important constants, one is the radius of univalencs, while the other
is the Bloch constant. Many authors have been studied these problems. (see [3]). By
making use of Theorem 2.2 we conclude the following result.

Corollary 2.3. Let f = h+ g ∈ H, where h, g is given by (1.1). Let

b1 = 0, |a2|+ |b2| = 2b, 0 ≤ b ≤ 2c

π
and |f(z)| < c. (2.12)

Then for f , the radius of univalence is r0, where r0 is the smallest root in (0, 1) of
the equation

4c

π
−
[
1 +

4c

π
+ 4

(
2c

π
− b
)
r

]
(1− r)2 = 0. (2.13)

Furthermore, f(Dr0) contains a univalent disk of radius at least

R0 = r0 − 2br0
2 − 4cr30

π(1− r0)
, (2.14)

where Dr0 = {z ∈ C : |z| < r0}.
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Proof. According to [3] we can obtain the sharp estimates

|an|+ |bn| ≤
4c

π

for any n ≥ 3. By Theorem 2.2 with M = 4c
π , we conclude that the radius of univalence

is r0. Furthermore, for |z| = r0, we have

|f(z)| = |z +
∞∑
n=2

(anz
n + bnzn)|

≥ |z| − |
∞∑
n=2

(anz
n + bnzn)|

≥ r0 −
∞∑
n=2

(|an|+ |bn|)rn0

≥ r0 − 2br20 −
4c

π

∞∑
n=3

rn0

= r0 − 2br20 −
4cr30

π(1− r0)
= R0

and the proof is complete. �

Theorem 2.4. Let f = h+ g ∈ H, where h, g is given by (1.1). Let

b1 = 0, |a2| = a, |b2| = b, |an| ≤
n+ 1

2
and |bn| ≤

n− 1

2
for n ≥ 3, (2.15)

where 0 ≤ a ≤ 3
2 and 0 ≤ b ≤ 1

2 . Then for f ,
(i) the radius of fully starlikeness is rs, where rs = rs(α, b) is the smallest root in
(0, 1) of the equation

(1 + r)− α(1− r)2 = (1− r)3{r[−2(a+ b) + α(a− b) + 4− α] + 2(1− α)}. (2.16)

(ii) the radius of fully convexity is rc, where rc = rc(α, b) is the smallest root in (0, 1)
of the equation

1+4r+r2−α(1−r)2 = (1−r)4{r[(−4(a+b)+2α(a−b)+8−2α)]+2(1−α)}. (2.17)

Furthermore, all results are sharp.

Proof. The proof is similar to the proof of Theorem 2.1. Let r ∈ (0, 1), it is sufficient to
prove that Fr(z) is fully starlike of order α, where Fr(z) is given by (2.10). According
to Theorem 1.1 and assumption (2.15), it is enough to show that

(2− α)ar + (2 + α)br +

∞∑
n=3

[n2 − α]rn−1 ≤ 1− α.

By making use of identities,
∞∑
n=1

n2rn−1 =
1 + r

(1− r)3
and

∞∑
n=1

rn−1 =
1

(1− r)
,
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the last inequality reduces to

(1 + r)− α(1− r)2 − (1− r)3[r(−2(a+ b) + α(a− b) + 4− α) + 2(1− α)] ≥ 0.

Set

m(r) = (1 + r)− α(1− r)2 − (1− r)3[r(−2(a+ b) + α(a− b) + 4− α) + 2(1− α)].

Then m(0) = −(1− α) and m(1) = 2 and so intermediate value theorem shows that
the Equation (2.16) has a root in the interval (0, 1). Therefore, Fr(z) is fully starlike
of order α for r ≤ rs, where rs is smallest root of equation (2.16) in (0, 1). To prove
sharpness, we take f0 = h0 + g0, where

h0(z) = 2z − az2 +
3

2
z2 − 2z − z2

2(1− z)2
and g0(z) = bz2 − 1

2
z2 +

z2

2(1− z)2
.

Direct computation leads to

h′0(z) = 2− 2az + 3z − 1

(1− z)3
, g′0(z) = 2bz − z +

z

(1− z)3
,

and

∂

∂θ

(
arg
(
f0(reiθ)

))
|θ=0 =

rh′0(r)− rg′0(r)

h0(r) + g0(r)
=

2− 2ar + 4r − 2br − 1+r
(1−r)3

2− ar + r + br − 1
1−r

. (2.18)

Also, from equation (2.16) we have

[2− 2ar + 4r − 2br](1− r)3 − (1 + r)

[2− ar + r + br](1− r)3 − (1− r)2
= α. (2.19)

Thus in view of (2.18) and (2.19) we conclude that

∂

∂θ

(
arg
(
f0(reiθ)

))
|θ=0,r=rs = α,

and this shows that the bound rs is best possible. The proof of first part of case
(ii) is the same as the case (i) and we omit the details. For the sharpness, we take
f1 = h1 + g1, where

h1(z) = 2z − az2 +
3

2
z2 − 2z − z2

2(1− z)2
and g1(z) = −bz2 +

1

2
z2 − z2

2(1− z)2
.

Direct computation leads to

h′1(z) = 2− 2az + 3z − 1

(1− z)3
, g′1(z) = −2bz + z − z

(1− z)3
,

h′′1(z) = −2a+ 3− 3

(1− z)4
, g′′1 (z) = −2b+ 1− 1 + 2z

(1− z)4
,
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and

∂

∂θ

(
arg

(
∂

∂θ
f1(reiθ)

))
|θ=0 (2.20)

=
h′1(r) + g′1(r) + r(h′′1(r) + g′′1 (r))

h′1(r)− g′1(r)

=
2− 4ar + 8r − 4br − 1+4r+r2

(1−r)4

2− 2ar + 2r + 2br − 1
(1−r)2

.

Also, from equation (2.18) we have

[2− 4ar + 8r − 4br](1− r)4 − (1 + 4r + r2)

[2− 2ar + 2r + 2br](1− r)4 − (1− r)2
= α. (2.21)

Thus in view of (2.20) and (2.21) we conclude that

∂

∂θ
(arg(

∂

∂θ
f1(reiθ)))|θ=0,r=rc = α,

and this shows that the bound rc is best possible. Hence the proof is complete. �

Remark 2.5. By compering Theorems 2.1 and 2.3 one can observe that by putting
α = 0 and a+ b = 2c on the Theorem 2.3 we obtain the assumption of Theorem 2.1.
Also, by putting α = 0 on the equations (2.16) and (2.17) we obtain the equations
(2.2) and (2.3), respectively. So in this case the radius of stable starlikeness and stable
convexity is the the same as radius of fully starlikeness and fully convexity of order
zero, respectively.

Corollary 2.6. Under the hypothesis of Theorem 2.3 for f , we have
(i) the radius of stable starlikeness is rs, where rs is the smallest root in (0, 1) of the
equation

(1 + r) = (1− r)3[r(−2(a+ b) + 4) + 2]. (2.22)

(ii) the radius of fully convexity is rc, where rc is the smallest root in (0, 1) of the
equation

1 + 4r + r2 = (1− r)4{r[(−4(a+ b) + 8] + 2}. (2.23)

Furthermore, all results are sharp.

Proof. The proof is similar to the proof of Theorem 2.3 and we omit the details. �

Theorem 2.7. Let f = h + g ∈ H is given by (1.1) and |an| ≤ An and |bn| ≤ Bn for
n ≥ 3, where An and Bn is given by (1.2). Also, let b1 = 0, |a2| = a and |b2| = b,
where 0 ≤ a ≤ 5

2 and 0 ≤ b ≤ 1
2 . Then for f ,

(i) the radius of fully starlikeness is rs, where rs = rs(b) is the smallest root in (0, 1)
of the equation

(1 + r)2−α(1− r)2 = (1− r)4{r[−2(a+ b) +α(a− b) + 2(3−α)] + 2(1−α)}, (2.24)

(ii) the radius of fully convexity is rc, where rc = rc(b) is the smallest root in (0, 1)
of the equation

(1+r)[1+6r+r2−α(1−r)2] = (1−r)5{r[(−4(a+b)+2α(a−b)+12−4α)]+2(1−α)},
(2.25)
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Furthermore, all results are sharp.

Proof. Using the same argument of the proof of Theorem 2.3 we can obtain the
equations (2.24) and (2.25). Only we prove the sharpness part of theorem. In the first
case the results is sharp for the function f0 = h0 + g0 given by

h0(z) = 2z−az2+
5

2
z2−

z − 1
2z

2 + 1
6z

3

(1− z)3
and g0(z) = bz2−1

2
z2+

1
2z

2 + 1
6z

3

(1− z)3
. (2.26)

In view of (2.26), and computation shows that

∂

∂θ
(arg(f0(reiθ)))|θ=0 =

rh′0(r)− rg′0(r)

h0(r) + g0(r)
=

2− 2ar + 6r − 2br − (1+r)2

(1−r)4

2− ar + 2r + br − 1
(1−r)2

. (2.27)

Also, from equation (2.24) we have

[2− 2(a+ b)r + 6r](1− r)4 − (1 + r)2

[2− (a− b)r + 2r](1− r)4 − (1− r)2
= α. (2.28)

Thus in view of (2.27) and (2.28) we conclude that

∂

∂θ
(arg(f0(reiθ)))|θ=0,r=rs = α,

and this shows that the bound rs is best possible. Furthermore, in the second part
the result is sharp for the function f1 = h1 + g1 given by

h1(z) = 2z − az2 +
5

2
z2 −

z − 1
2z

2 + 1
6z

3

(1− z)3
and g1(z) = −bz2 +

1

2
z2 −

1
2z

2 + 1
6z

3

(1− z)3
.

(2.29)
According to (2.29), direct calculation yields

∂

∂θ

(
arg

(
∂

∂θ
f1(reiθ)

))
|θ=0 (2.30)

=
h′1(r) + g′1(r) + r(h′′1(r) + g′′1 (r))

h′1(r)− g′1(r)

=
[2− 4ar + 12r − 4br](1− r)5 − (1 + r)2(1− r)− 6r − 8r2 − 2r3

[2− 2ar + 4r + 2br](1− r)5 − (1 + r)(1− r)2
.

Meanwhile, from equation (2.25) we have

[2− 4ar + 12r − 4br](1− r)5 − (1 + r)2(1− r)− 6r − 8r2 − 2r3

[2− 2ar + 4r + 2br](1− r)5 − (1 + r)(1− r)2
= α (2.31)

Thus in view of (2.27) and (2.28) we conclude that

∂

∂θ

(
arg

(
∂

∂θ
f1(reiθ)

))
|θ=0,r=rc = α,

and this shows that the bound rc is best possible. Hence the proof is complete. �
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