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Extended local convergence analysis of inexact
Gauss-Newton method for singular systems of
equations under weak conditions
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Abstract. A new local convergence analysis of the Gauss-Newton method for
solving some optimization problems is presented using restricted convergence
domains. The results extend the applicability of the Gauss-Newton method under
the same computational cost given in earlier studies. In particular, the advantages
are: the error estimates on the distances involved are tighter and the convergence
ball is at least as large. Moreover, the majorant function in contrast to earlier
studies is not necessarily differentiable. Numerical examples are also provided in
this study.
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1. Introduction

In this study, we are concerned with the problem of approximating a solution of
the equation

F (x) = 0, (1.1)

where D is open and convex and F : D ⊂ Rj → Rm is a nonlinear operator with
its Fréchet derivative denoted by F ′. In the case m = j, the inexact Newton method
(INM) was defined in [19] by:

xn+1 = xn + sn, F ′(xn)sn = −F (xn) + rn for each n = 0, 1, 2, . . . , (1.2)

where x0 is an initial point, the residual control rn satisfy

‖rn‖ ≤ λn‖F (xn)‖ for each n = 0, 1, 2, . . . , (1.3)

and {λn} is a sequence of forcing terms such that 0 ≤ λn < 1. Let x∗ be a solution
of (1.1) such that F ′(x∗) is invertible. As shown in [19], if λn ≤ λ < 1, then, there
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exists r > 0 such that for any initial guess x0 ∈ U(x∗, r) := {x ∈ Rj : ‖x− x∗‖ < r},
the sequence {xn} is well defined and converges to a solution x∗ in the norm ‖y‖∗ :=
‖F ′(x∗)y‖, where ‖ · ‖ is any norm in Rj . Moreover, the rate of convergence of {xn}
to x∗ is characterized by the rate of convergence of {λn} to 0. It is worth noting that,
in [19], no Lipschitz condition is assumed on the derivative F ′ to prove that {xn} is
well defined and linearly converging. However, no estimate of the convergence radius
r is provided. As pointed out by [16] the result of [19] is difficult to apply due to
dependence of the norm ‖ · ‖∗, which is not computable.

In [41] Ypma used the affine invariant condition of residual control in the form:

‖F ′(xn)−1rn‖ ≤ λn‖F ′(xn)−1F (xn)‖ for each n = 0, 1, 2, . . . , (1.4)

instead of (1.3) to study the local convergence of inexact Newton method (1.2). And
the radius of convergent result are also obtained. Morini in [32] presented the following
variation for the residual controls:

‖Pnrn‖ ≤ λn‖PnF (xn)‖ for each n = 0, 1, 2, . . . , (1.5)

where {Pn} is a sequence of invertible operator from Rj to Rj and {λn} is the forc-
ing term. If Pn = I and Pn = F ′(xn) for each n, (1.5) reduces to (1.3) and (1.4),
respectively.

Recently, several authors have studied the convergence behaviour of singular
nonlinear systems by Gauss-Newton’s method (GNM), which is defined by

xn+1 = xn − F ′(xn)†F (xn) for each n = 0, 1, 2, . . . , (1.6)

where x0 ∈ D is an initial point and F ′(xn)† denotes the Moore-Penrose inverse of
the linear operator (of matrix) F ′(xn) [1, 12, 14, 15, 17, 18, 20, 21, 36].

In the present study, using the idea of restricted convergence domains, we pro-
vide a new local convergence analysis for GNM under the same computational cost
and the following advantages: larger radius of convergence; tighter error estimates
on the distances ‖xn − x∗‖ for each n = 0, 1, . . . and a clearer relationship between
the majorant function (see (2.8) and the associated least squares problems (1.1)).
These advantages are obtained because we use a center-type majorant condition (see
(2.11)) for the computation of inverses involved which is more precise that the ma-
jorant condition used in [21, 22, 23, 24, 25, 26, 30, 31, 39, 40, 41, 42, 43]. Moreover,
these advantages are obtained under the same computational cost, since as we will
see in section 3 and section 4, the computation of the majorant function requires
the computation of the center-majorant function. Furthermore, these advantages are
very important in computational mathematics, since we have a wider choice of initial
guesses x0 and fewer computations to obtain a desired error tolerance on the distances
‖xn−x∗‖ for each n = 0, 1, 2, . . . . Finally, the majorant functions (see ω and v) is not
necessarily differentiable as in [21, 26, 30, 31, 39, 40, 41, 42, 43] but just differentiable.
This is an improvement modification and extends the applicability of the method.

The rest of this study is structured as follows. In section 2, we introduce some
preliminary notions and properties of the majorizing function. The main result about
the local convergence are stated in section 3. In section 4, we prove the local con-
vergence results given in section 3. Section 5 contains the numerical examples and
section 6 the conclusion of this study.
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2. Preliminaries

We present some standard results to make the study as self-contained as possible.
More results can be found in [13, 28, 35].

Let A : Rj → Rm be a linear operator (or an m × j matrix). Recall that an
operator (or j × m matrix) A† : Rm → Rj is the Moore-Penrose inverse of A if it
satisfies the following four equations:

A†AA† = A†; AA†A = A; (AA†)∗ = AA†; (A†A) = A†A,

where A∗ denotes the adjoint of A. Let kerA and imA denote the kernel and image
of A, respectively. For a subspace E of Rj , we use ΠE to denote the projection onto
E. Clearly, we have that

A†A = ΠkerA⊥ and AA† = ΠimA.

In particular, in the case when A is full row rank (or equivalently, when A is
surjective), AA† = IRm ; when A is full column rank (or equivalently, when A is
injective), A†A = IRj .

The following lemma gives a Banach-type perturbation bound for Moore-Penrose
inverse, which is stated in [25].

Lemma 2.1. ([25, Corollary 7.1.1 & Corollary 7.1.2]). Let A and B be m× j matrices
and let r ≤ min{m, j}. Suppose that rankA = r, 1 ≤ rankB ≤ A and ‖A†‖‖B−A‖ <
1. Then, rankB = r and

‖B†‖ ≤ ‖A†‖
1− ‖A†‖‖B −A‖

·

Also, we need the following useful lemma about elementary convex analysis.

Lemma 2.2. ([25, Proposition 1.3]). Let R > 0. If ϕ : [0, R] → R is continuously
differentiable and convex, then, the following assertions hold:

(a)
ϕ(t)− ϕ(τt)

t
≤ (1− τ)ϕ′(t) for each t ∈ (0, R) and τ ∈ [0, 1].

(b)
ϕ(u)− ϕ(τu)

u
≤ ϕ(v)− ϕ(τv)

v
for each u, v ∈ [0, R), u < v and 0 ≤ τ ≤ 1.

From now on we suppose that the (I) conditions listed below hold.
For a positive real R ∈ R+, let

ψ : [0, R]× [0, 1)× [0, 1)→ R
be a continuous differentiable function of three of its arguments and satisfy the fol-
lowing properties:

(i) ψ(0, λ, θ) = 0 and
∂

∂t
ψ(t, λ, θ)

∣∣∣∣
t=0

= −(1 + λ+ θ).

(ii)
∂

∂t
ψ(t, λ, θ) is convex and strictly increasing with respect to the argument t.

For fixed λ, θ ∈ [0, 1), we write hλ,θ(t) , ψ(t, λ, θ) for short below. Then the above
two properties can be restated as follows.

(iii) hλ,θ(0) = 0 and h′λ,θ(0) = −(1 + λ+ θ).
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(iv) h′λ,θ(t) is convex and strictly increasing.

(v) ω : [0, R] −→ R is integrable, convex and strictly increasing with ω(0) = −1.

(vi) g : [0, R]→ R is strictly increasing with g(0) = 0 and given by g(t) =

∫ t

0

ω(s)ds.

(vii) g(t) ≤ hλ,θ(t), ω(t) ≤ h′λ,θ(t) for each t ∈ [0, R), λ, θ ∈ [0, 1].

Define

ζ0 := sup{t ∈ [0, R) : h′0,0(t) < 0}, ζ := sup{t ∈ [0, R) : ω(t) < 0}, (2.1)

ρ0 := sup

{
t ∈ [0, ζ0) :

∣∣∣∣∣hλ,θ(t)h′0,0(t)
− t

∣∣∣∣∣ < t

}
,

ρ = sup

{
t ∈ [0, ζ) :

∣∣∣∣hλ,θ(t)− th′0,0(t)

ω(t)

∣∣∣∣ < t

} (2.2)

σ := sup{t ∈ [0, R) : U(x∗, t) ⊂ D}. (2.3)

The next two lemmas show that the constants ζ and ρ defined in (2.1) and (2.2),
respectively, are positive.

Lemma 2.3. The constant ζ defined in (2.1) is positive and

th′0,0(t)− hλ,θ(t)
ω(t)

< 0

for each t ∈ (0, ζ).

Proof. Since ω(0) = −1, there exists δ > 0 such that ω(t) < 0 for each t ∈ (0, δ). Then,

we get ζ ≥ δ (> 0). We must show that
th′0,0(t)− hλ,θ(t)

ω(t)
< 0 for each t ∈ (0, ζ). By

hypothesis, functions h′λ,θ, ω(t) are strictly increasing, then functions hλ,θ, v(t) are

strictly convex. It follows from Lemma 2.2 (i) and hypothesis (vii) that

hλ,θ(t)− hλ,θ(0)

t
< h′λ,θ(t), t ∈ (0, R).

In view of hλ,θ(0) = 0 and ω(t) < 0 for all t ∈ (0, ζ). This together with the last
inequality yields the desired inequality. �

Lemma 2.4. The constant ρ defined in (2.2) is positive. Consequently,∣∣∣∣ th′0,0(t)− hλ,θ(t)
ω(t)

∣∣∣∣ < t

for each t ∈ (0, ρ).

Proof. Firstly, by Lemma 2.3, it is clear that

(
hλ,θ(t)

th′0,0(t)
− 1

)
h′0,0(t)

ω(t)
> 0 for t ∈ (0, ζ).

Secondly, we get from Lemma 2.2 (i) that

lim
t→0

(
hλ,θ(t)

th′0,0(t)
− 1

)
h′0,0(t)

ω(t)
= 0.
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Hence, there exists a δ > 0 such that

0 <

(
hλ,θ(t)

th′0,0(t)
− 1

)
h′0,0(t)

ω(t)
< 1, t ∈ (0, ζ).

That is ρ is positive. �
Define

r := min{ρ, δ}, (2.4)

where ρ and δ are given in (2.2) and (2.3), respectively.
For any starting point x0 ∈ U(x∗, r)\{x∗}, let {tn} be a sequence defined by:

t0 = ‖x0 − x∗‖, tn+1 =

∣∣∣∣∣
(
tn −

hλ,θ(tn)

h′0,0(tn)

)
h′0,0(tn)

ω(tn)

∣∣∣∣∣ for each n = 0, 1, 2, . . .

(2.5)

Lemma 2.5. The sequence {tn} given by (2.5) is well defined, strictly decreasing,
remains in (0, ρ) for each n = 0, 1, 2, . . . and converges to 0.

Proof. Since 0 < t0 = ‖x0 − x∗‖ < r ≤ ρ, using Lemma 2.4, we have that {tn} is well
defined, strictly decreasing and remains in [0, ρ) for each n = 0, 1, 2, . . . Hence, there
exists t∗ ∈ [0, ρ) such that lim

n→+∞
tn = t∗. That is, we have

0 ≤ t∗ =

(
hλ,θ(t

∗)

h′0,0(t∗)
− t∗

)
h′0,0(t∗)

ω(t∗)
< ρ.

If t∗ 6= 0, it follows from Lemma 2.4 that(
hλ,θ(t

∗)

h′0,0(t∗)
− t∗

)
h′0,0(t∗)

ω(t∗)
< t∗,

which is a contradiction. Hence, we conclude that tn → 0 as n→ +∞. �
If g(t) = hλ,θ(t), then Lemmas 2.3-2.5 reduce to the corresponding ones in

[42, 43]. Otherwise, i. e., if g(t) < hλ,θ(t), then our results are better, since

ζ0 < ζ and ρ0 < ρ.

Moreover, the scalar sequence used in [42, 43] is defined by

u0 = ‖x0 − x∗‖, un+1 =

∣∣∣∣∣un − hλ,θ(un)

h′0,0(un)

∣∣∣∣∣ for each n = 0, 1, 2, . . . (2.6)

Using the properties of the functions hλ,θ, g, (2.5), (2.6) and a simple inductive
argument we get that

t0 = u0, t1 = u1, tn < un, tn+1 − tn < un+1 − un for each n = 1, 2, . . .

and
t∗ ≤ u∗ = lim

n→+∞
un,

which justify the advantages of our approach as claimed in the introduction of this
study.

In Section 3 we shall show that {tn} is a majorizing sequence for {xn}.
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We state the following modified majorant condition for the convergence of vari-
ous Newton-type methods in [10, 11, 12, 13].

Definition 2.6. Let r > 0 be such that U(x∗, r) ⊂ D. Then, F ′ is said to satisfy the
majorant condition on U(x∗, r) if

‖F ′(x∗)†[F ′(x)− F ′(x∗ + τ(x− x∗))]‖ ≤ h′λ,θ(‖x− x∗‖)− h′λ,θ(τ‖x− x∗‖) (2.7)

for any x ∈ U(x∗, r) and τ ∈ [0, 1].

In the case when F ′(x∗) is not surjective, the information on imF ′(x∗)⊥ may
be lost. This is why the above notion was modified in [42, 43] to suit the case when
F ′(x∗) is not surjective as follows:

Definition 2.7. Let r > 0 be such that U(x∗, r) ⊂ D. Then, F ′ is said to satisfy the
modified majorant condition on U(x∗, r), if

‖F ′(x∗)†‖‖F ′(x)− F ′(x∗ + τ(x− x∗))‖ ≤ h′λ,θ(‖x− x∗‖)− h′λ,θ(τ‖x− x∗‖) (2.8)

for any x ∈ U(x∗, r) and τ ∈ [0, 1].

If τ = 0, condition (2.8) reduces to

‖F ′(x∗)†‖‖F ′(x)− F ′(x∗)‖ ≤ h′λ,θ(‖x− x∗‖)− h′λ,θ(0). (2.9)

In particular, for λ = θ = 0, condition (2.9) reduces to

‖F ′(x∗)†‖‖F ′(x)− F ′(x∗)‖ ≤ h′0,0(‖x− x∗‖)− h′0,0(0). (2.10)

Condition (2.10) is used to produce the Banach-type perturbation Lemmas in [42, 43]
for the computation of the upper bounds on the norms ‖F ′(x)†‖. In this study we
use a more flexible function g than hλ,θ function for the same purpose. This way the
advantages as stated in the Introduction of this study can be obtained.

In order to achieve these advantages we introduce the following notion [2, 3, 7,
8, 4, 9, 5, 10, 11, 12].

Definition 2.8. Let r > 0 be such that U(x∗, r) ⊂ D. Then ω is said to satisfy the
center-majorant condition on U(x∗, r), if

‖F ′(x∗)†‖‖F ′(x)− F ′(x∗)‖ ≤ ω(‖x− x∗‖)− ω(0). (2.11)

Clearly,

ω(t) ≤ h′λ,θ(t) for each t ∈ [0, R], λ, θ ∈ [0, 1] (2.12)

holds in general and
h′λ,θ(t)

ω(t)
can be arbitrarily large [2, 3, 7, 8, 4, 9, 5, 10, 11, 12].

It is worth noticing that (2.11) is not an additional condition to (2.8) since in
practice the computation of function hλ,θ requires the computation of g as a special
case (see also the numerical examples).
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3. Local convergence

In this section, we present local convergence for INM (1.2). Equation (1.1) is
a surjective-undetermined (resp. injective-overdetermined) system if the number of
equations is less (resp. greater) than the number of knowns and F ′(x) is of full rank
for each x ∈ D. It is well known that, for surjective-underdetermined systems, the
fixed points of the Newton operator NF (x) := x − F ′(x)†F (x) are the zeros of F ,
while for injective-overdetermined systems, the fixed points of NF are the least square
solutions of (1.1), which, in general, are not necessarily the zeros of F .

We shall use the notation D0 = U(x∗, ξ) and D = U(x∗, R) and set

D1 = D0 ∩ U(x∗, r).

Next, we present the local convergence properties of INM for general singular
systems with constant rank derivatives.

Theorem 3.1. Let F : D ⊂ Rj → Rm be continuously Fréchet differentiable non-
linear operator and D is open and convex. Suppose that F (x∗) = 0, F ′(x∗) 6= 0
and that F ′ satisfies the modified majorant condition (2.8) on D1 and the center-
majorant condition (2.11) on D, where r is given in (2.4). In addition, we assume
that rankF ′(x) ≤ rankF ′(x∗) for any x ∈ U(x∗, r) and that

‖[IRj − F ′(x)†F ′(x)](x− x∗)‖ ≤ θ‖x− x∗‖, x ∈ U(x∗, r), (3.1)

where the constant θ satisfies 0 ≤ θ < 1. Let sequence {xn} be generated by INM with
any initial point x0 ∈ U(x∗, r)\{x∗} and the conditions for the residual rn and the
forcing term λn:

‖rn‖ ≤ λn‖F (xn)‖, 0 ≤ λnF ′(xk) ≤ λ for each n = 0, 1, 2, . . . . (3.2)

Then, sequence {xn} converges to x∗ so that F ′(x∗)†F (x∗) = 0. Moreover, we have
the following estimate:

‖xn+1 − x∗‖ ≤
tn+1

tn
‖xn − x∗‖ for each n = 0, 1, 2, . . . , (3.3)

where the sequence {tn} is defined by (2.5).

Remark 3.2. (a) If g(t) = hλ,θ(t), then the results obtained in Theorem 3.1 reduce
to the ones given in [42, 43].

(b) If g(t) and hλ,θ(t) are

g(t) = hλ,θ(t) = −(1 + λ+ θ)t+

∫ t

0

L(u)(t− u) du, t ∈ [0, R], (3.4)

then the results obtained in Theorem 3.1 reduce to the one given in [25]. More-
over, if taking λ = 0 (in this case λn = 0 and rn = 0) in Theorem 3.1, we obtain
the local convergence of Newton’s method for solving the singular systems, which
has been studied by Dedieu and Kim in [17] for analytic singular systems with
constant rank derivatives and Li, Xu in [39] and Wang in [38] for some special
singular systems with constant rank derivatives.

(c) If g(t) < hλ,θ(t) then the improvements as mentioned in the Introduction of this
study we obtained (see also the discussion above and below Definition 2.6)
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If F ′(x) is full column rank for every x ∈ U(x∗, r), then we have F ′(x)†F ′(x) = IRj .
Thus,

‖[IRm − F ′(x)†F ′(x)](x− x∗)‖ = 0,

i. e., θ = 0. We immediately have the following corollary:

Corollary 3.3. Suppose that rankF ′(x) ≤ rankF ′(x∗) and that

‖[IRm − F ′†(x)F ′(x)](x− x∗)‖ = 0,

for any x ∈ U(x∗, r). Suppose that F (x∗) = 0, F ′(x∗) 6= 0 and that F ′ satisfies the
modifed majorant condition (2.8) on D1 and the center-majorant condition (2.11) on
D. Let sequence {xn} be generated by IGNM with any initial point x0 ∈ U(x∗, r)\{x∗}
and the condition (3.2) for the residual rn and the forcing term λn. Then, sequence
{xn} converges to x∗ so that F ′(x∗)†F (x∗) = 0. Moreover, we have the following
estimate:

‖xn+1 − x∗‖ ≤
tn+1

tn
‖xn − x∗‖ for each n = 0, 1, 2, . . . , (3.5)

where the sequence {tn} is defined by (2.5) for θ = 0.

In the case when F ′(x∗) is full row rank, the modified majorant condition (2.8)
can be replaced by the majorant condition (2.7).

Theorem 3.4. Suppose that F (x∗) = 0, F ′(x∗) is full row rank, and that F ′ satisfies
the majorant condition (2.7) on D1 and the center-majorant condition (2.11) on D,
where r is given in (2.4). In addition, we assume that rankF ′(x) ≤ rankF ′(x∗) for
any x ∈ U(x∗, r) and that condition (3.1) holds. Let sequence {xn} be generated by
IGNM with any initial point x0 ∈ U(x∗, r)\{x∗} and the conditions for the residual
rn and the forcing term λn:

‖F ′(x∗)†rn‖ ≤ λn‖F ′(x∗)†F (xn)‖, 0 ≤ λnF ′(x∗)†F ′(xn) ≤ λ for each n = 0, 1, 2, . . . .
(3.6)

Then, sequence {xn} converges to x∗ so that F ′(x∗)†F (x∗) = 0. Moreover, we have
the following estimate:

‖xn+1 − x∗‖ ≤
tn+1

tn
‖xn − x∗‖ for each n = 0, 1, 2, . . . ,

where the sequence {tn} is defined by (2.5).

Remark 3.5. Comments as in Remark 3.2 can follow for this case.

Theorem 3.6. Suppose that F (x∗) = 0, F ′(x∗) is full row rank, and that F ′ satisfies
the majorant condition (2.7) on D1 and the center-majorant condition on D, where
r is given in (2.4). In addition, we assume that rankF ′(x) ≤ rankF ′(x∗) for any
x ∈ U(x∗, r) and that condition (3.1) holds. Let sequence {xn} generated by IGNM
with any initial point x0 ∈ U(x∗, r)\{x∗} and the conditions for the control residual
rn and the forcing term λn:

‖F ′(xn)†rn‖ ≤ λn‖F ′(xn)†F (xn)‖, 0 ≤ λnF ′(xn) ≤ λ for each n = 0, 1, 2, . . .
(3.7)



Extended local convergence analysis 551

Then, sequence {xn} converges to x∗ so that F ′(x∗)†F (x∗) = 0. Moreover, we have
the following estimate:

‖xn+1 − x∗‖ ≤
tn+1

tn
‖xk − x∗‖ for each n = 0, 1, 2, . . . ,

where sequence {tn} is defined by (2.5).

Remark 3.7. In the case when F ′(x∗) is invertible in Theorem 3.6, hλ,θ is given

by (3.4) and g(t) = −1 +

∫ t

0

L0(t)(t− u) du for each t ∈ [0, R], we obtain the local

convergence results of IGNM for nonsingular systems, and the convergence ball r is
this case satisfies ∫ r

0

L(u)u du

r

(
(1− λ)−

∫ r

0

L0(u) du

) ≤ 1, λ ∈ [0, 1). (3.8)

In particular, if taking λ = 0, the convergence ball r determined in (3.8) reduces to
the one given in [38] by Wang and the value r is the optimal radius of the convergence
ball when the equality holds. That is our radius is r larger than the one obtained in
[38], if L0 < L (see also the numerical examples). Notice that L is used in [38] for the
estimate (3.8). Then, we can conclude that vanishing residuals, Theorem 3.6 merges
into the theory of Newton’s method.

4. Proofs

In this section, we prove our main results of local convergence for inexact Gauss-
Newton method (1.2) given in Section 3.

4.1. Proof of Theorem 3.1

Lemma 4.1. Suppose that F ′ satisfies the modified majorant condition on U(x∗, r) and
that ‖x∗ − x‖ < min{ρ, x∗}, where r, ρ and x∗ are defined in (2.4), (2.2) and (2.1),
respectively. Then, rankF ′(x) = rankF ′(x∗) and

‖F ′(x)†‖ ≤ − ‖F
′(x∗)†‖

ω(‖x− x∗‖)
·

Proof. Since ω(0) = −1, we have

‖F ′(x∗)†‖‖F ′(x)− F ′(x∗)‖ ≤ ω(‖x− x∗‖)− ω(0) < −ω(0) = 1.

It follows from Lemma (2.1) that rankF ′(x) = rankF ′(x∗) and

‖F ′(x)†‖ ≤ ‖F ′(x∗)†‖
1− (ω(‖x− x∗‖)− ω(0))

= − ‖F
′(x∗)†‖

ω(‖x− x∗‖)
. �

Proof of Theorem 3.1. We shall prove by mathematical induction on n that {tn} is
the majorizing sequence for {xn}, i. e.,

‖x∗ − xj‖ ≤ tj for each j = 0, 1, 2, . . . (4.1)
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Because t0 = ‖x0 − x∗‖, thus (4.1) holds for j = 0. Suppose that ‖x∗ − xj‖ ≤ tj for
some j = n ∈ N. For the case j = n+ 1, we first have that,

xn+1 − x∗ = xn − x∗ − F ′(xn)†[F (xn)− F (x∗)] + F ′(xn)†rn

= F ′(xn)†[F (x∗)− F (xn)− F ′(xn)(x∗ − xn)] + F ′(xn)†rn

+[IRj − F ′(xn)†F ′(xn)](xn − x∗)

= F ′(xn)†
∫ 1

0

[F ′(xn)− F ′(x∗ + τ(xn − x∗))](xn − x∗) dτ

+F ′(xn)†rn + [IRj − F ′(xn)†F ′(xn)](xn − ζ). (4.2)

By using the modified majorant condition (2.8), Lemma 2.4, the inductive hypothesis
(4.1) and Lemma 2.2, we obtain in turn that∥∥∥∥F ′(xn)†

∫ 1

0

[F ′(xn)− F ′(x∗ + τ(xn − x∗))](xn − x∗) dτ
∥∥∥∥

≤ − 1

ω(‖xn − x∗)‖

∫ 1

0

‖F ′(x∗)†‖‖F ′(xn)− F ′(x∗ + τ(xn − x∗))‖‖xn − x∗‖ dτ

= − 1

ω(‖xn − x∗‖)

∫ 1

0

h′λ,0(‖xn − x∗‖)− h′λ,0(τ‖xn − x∗‖)
‖xn − x∗‖

dτ · ‖xn − x∗‖2

≤ − 1

ω(tn)

∫ 1

0

h′λ,0(tn)− hλ,0(τtn)

tn
dτ · ‖xn − x∗‖2

= − 1

ω(tn)
(tnh

′
λ,0(tn)− hλ,0(tn))

‖xn − x∗‖2

t2n
·

In view of (3.2),

‖F ′(xn)†rn‖ ≤ ‖F ′(xn)†‖‖rn‖ ≤ λn‖F ′(xn)†‖‖F (xn)‖. (4.3)

We have that

−F (xn) = F (x∗)− F (xn)− F ′(xn)(x∗ − xn) + F ′(xn)(x∗ − xn)

=

∫ 1

0

[F ′(xn)− F ′(x∗ + τ(xn − x∗))](xn − x∗) dτ

+F ′(xn)(x∗ − xn). (4.4)

Then, combining Lemma 2.2, Lemma 4.1, the modified majorant condition (2.8), the
inductive hypothesis (4.1) and the condition (3.2), we obtain in turn that

λn‖F ′(xn)†‖‖F (xn)‖

≤ λn‖F ′(xn)†‖
∫ 1

0

‖F ′(xn)− F ′(x∗ + τ(xn − x∗))‖‖xn − x∗‖ dτ

+λn‖F ′(xn)†‖‖F ′(xn)‖‖xn − x∗‖

≤ − λ

ω(tn)
(tnh

′
λ,0(tn)− hλ,0(tn))

‖xn − x∗‖2

t2n
+ λtn

‖xn − x∗‖
tn

≤ λ
λtn + hλ,0(tn)

ω(tn)

‖xn − x∗‖
tn

· (4.5)
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Combining (3.1), (4.3), (4.3) and (4.5), we get that

‖xn+1 − x∗‖ ≤
[
−
tnh
′
λ,0(tn)− hλ,0(tn)

ω(tn)
+ λ

λtn + hλ,0(tn)

ω(tn)
+ θtn

]
‖xn − x∗‖

tn

=

[
−tn + (1 + λ)

(
λtn
ω(tn)

+
hλ,0(tn)

ω(tn)

)
+ θtn

]
‖xn − x∗‖

tn
·

But, we have that −1 < ω(t) < 0 for any t ∈ (0, ρ), so

(1 + λ)

(
λtn
ω(tn)

+
hλ,0(tn)

ω(tn)

)
+ θtn ≤

hλ,0(tn)

ω(tn)
+ θn ≤

hλ,0(tn)− θtn
ω(tn)

=
hλ,θ(tn)

ω(tn)
·

Using the definition of {tn} given in (2.5), we get that

‖xn+1 − x∗‖ ≤
tn+1

tn
‖xn − x∗‖,

so we deduce that ‖xn+1 − x∗‖ ≤ tn+1, which completes the induction. In view of
the fact that {tn} converges to 0 (by Lemma 2.5), it follows from (4.1) that {xn}
converges to x∗ and the estimate (3.3) holds for all n ≥ 0. �

4.2. Proof of Theorem 3.4

Lemma 4.2. Suppose that F (x∗) = 0, F ′(x∗) is full row rank and that F ′ satisfies the
majorant condition (2.7) on D1. Then, for each x ∈ U(x∗, r), we have rankF ′(x) =
rankF ′(x∗) and

‖[IRj − F ′(x∗)†(F ′(x∗)− F ′(x))]−1‖ ≤ − 1

ω(‖x− x∗‖)
·

Proof. Since ω(0) = −1, we have

‖F ′(x∗)†[F ′(x)− F ′(x∗)]‖ ≤ ω(‖x− x∗‖)− ω(0) < −ω(0) = 1.

It follows from Banach lemma that [IRj − F ′(x∗)†(F ′(x∗)− F ′(x))]−1 exists and

‖[IRj − F ′(x∗)†(F ′(x∗)− F ′(x))]−1‖ ≤ − 1

ω(‖x− x∗‖)
·

Since F ′(x∗) is full row rank, we have F ′(x∗)F ′(x∗)† = IRm and

F ′(x) = F ′(x∗)[IRj − F ′(z∗)†(F ′(x∗)− F ′(x))],

which implies that F ′(x) is full row, i. e., rankF ′(x) = rankF ′(x∗). �
Proof of Theorem 3.4. Let F̂ : U(x∗, r)→ Rm be defined by

F̂ (x) = F ′(x∗)†F̂ (x), x ∈ U(x∗, r),

with residual r̂k = F ′(x∗)†rn. In view of

F̂ ′(x)† = [F ′(x∗)†F ′(x)]† = F ′(x)†F ′(x∗), x ∈ U(x∗, r),

we have that {xn} coincides with the sequence generated by inexact Gauss-Newton

method (1.2) for F̂ . Moreover, we get that

F̂ ′(x∗)† = (F ′(x∗)†F ′(x∗))† = F ′(x∗)†F ′(x∗).
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Consequently,

‖F̂ ′(x∗)†F̂ ′(x∗)‖ = ‖F ′(x∗)†F ′(x∗)F ′(x∗)†F (x∗)‖ = ‖F ′(x∗)†F (x∗)‖.

Because ‖F ′(x∗)†F (x∗)‖ = ‖ΠkerF ′(x∗)⊥‖ = 1, thus, we have

‖F̂ ′(x∗)†‖ = ‖F̂ ′(x∗)†F̂ ′(x∗)‖ = 1.

Therefore, by (2.7), we can obtain that

‖F̂ ′(x∗)†‖‖F̂ ′(x)− F̂ ′(x∗ + τ(x− x∗))‖ = ‖F ′(x∗)†(F ′(x)− F ′(x∗ + τ(x− x∗)))‖
≤ h′λ,θ(‖x− x∗‖)− hλ,θ(τ‖x− x∗‖).

Hence, F̂ satisfies the modified majorant condition (2.8) on D1. Then, Theorem 3.1 is

applicable and {xk} converges to x∗ follows. Note that, F̂ ′(·)†F̂ (·) = F ′(·)†F (·) and
F (·) = F ′(·)F ′(·)†F (·). Hence, we conclude that x∗ is a zero of F . �

4.3. Proof of Theorem 3.6

Lemma 4.3. Suppose that F (x∗) = 0, F ′(x∗) is full row rank and that F ′ satisfies the
majorant condition (2.7) on D1. Then, we have

‖F ′(x)†F ′(x∗)‖ ≤ − 1

ω(‖x− x∗‖)
for each x ∈ D1.

Proof. Since F ′(x∗) is full row rank, we have F ′(x∗)F ′(x∗)† = IRm . Then, we get that

F ′(x)†F ′(x∗)(IRj − F ′(x∗)†(F ′(x∗)− F ′(x∗))) = F ′(x)†F ′(x), x ∈ D1.

By Lemma 4.2, IRj − F ′(x∗)†(F ′(x∗) − F ′(x)) is invertible for any x ∈ D1. Thus, in
view of the equality A†A = ΠkerA⊥ for any m× j matrix A, we obtain that

F ′(x)†F ′(x∗) = ΠkerF ′(x)⊥ [IRj − F ′(x∗)†(F ′(x∗)− F ′(x))]−1.

Therefore, by Lemma 4.2 we deduce that

‖F ′(x)†F ′(x∗)‖ ≤ ‖ΠkerF ′(x)⊥‖‖[IRj − F ′(x∗)†(F ′(x∗)− F ′(x))]−1‖

≤ − 1

ω(‖x− x∗‖)
. �

Proof of Theorem 3.6 Using Lemma 4.3, majorant condition (2.7) and the residual
condition (3.7), respectively, instead of Lemma 4.1, modified majorant condition (2.8)
and condition (3.2), one can complete the proof of Theorem 3.6 in an analogous way
to the proof of Theorem 3.1. �

Remark 4.4. The results in [6] improved the corresponding ones in [21, 22, 23, 24,
25, 42, 43]. In the present study, we improved the results in [6], since D1 ⊂ U(x∗, r)
leading to an at least as tight function h′λ,θ than the one used in [6] (see also the

Examples).
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5. Numerical examples

We present some numerical examples, where

g(t) < hλ,θ(t) (5.1)

and

ω(t) < h′λ,θ(t). (5.2)

For simplicity we take F ′(x)† = F ′(x)−1 for each x ∈ D.
Example 5.1. Let X = Y = (−∞,+∞) and define function F : X → Y by

F (x) = d0x− d1 sin(1) + d2 sin(ed2x)

where d0, d1, d2 are given real numbers. Then x∗ = 0. Define functions g and hλ,θ by

g(t) =
L0

2
t2 − t and hλ,θ(t) =

L

2
t2 − t.

Then, it can easily be seen that for d2 sufficiently large and d1 sufficiently small L
L0

can be arbitrarily large. Hence, (5.1) and (5.2) hold.
Example 5.2. Let F (x, y, z) = 0 be a nonlinear system, where F : D = U(0, 1) ⊆ R3 →

R3 and F (x, y, z) =

(
x,
e− 1

2
y2 + y, ez − 1

)T
. It is obvious that (0, 0, 0)T = x∗ is a

solution of the system.
From F , we deduce

F ′(x) =

 1 0 0
0 (e− 1)y 0
0 0 ez

 and F ′(x∗) = diag{1, 1, 1},

where x = (x, y, z)T . Hence, [F ′(x∗)]−1 = diag{1, 1, 1}. Moreover, we can define for

L0 = e − 1 < L = 1.78957239, g(t) =
e− 1

2
t2 − t and hλ,θ(t) =

1.78957239

2
t2 − t.

Then, again (5.1) and (5.2) hold.

Notice also that in [6] we used L = e and h̄λ,θ(t) =
e

2
t2 − t > hλ,θ(t). Hence, the

present results improve the ones in [6].
Example 5.3. Let us consider the nonlinear least-squares problem

min
x∈R

Q(x), (5.3)

where Q(x) = 1
2F (x)TF (x), and

F (x) =

(
µ
2x

2 − x+ µ1

µ
2x

2 − x+ µ2

)
with µ 6= 0, µ1, µ2 being real parameters not all zero at the same time. If x̃ is a solution
of (5.3), then x̃ is a solution of

5Q(x) = F ′(x)TF (x) = (1− µx, 1− µx)TF (x)

= (1− µx)(µx2 − 2x+ µ1 + µ2).
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To obtain a global minimizer x̃ we must find the solutions of5Q(x) = 0. Suppose that
µ(µ1 + µ2) < 1. Then, 5Q(x) = 0 has three distinct and positive solutions defined
by 1

µ ,

s− =
1−

√
1− µ(µ1 + µ2)

µ
and s+ =

1 +
√

1− µ(µ1 + µ2)

µ
.

We have that F ′(x) = (1− µx, 1− µx)T . If x = x∗, then F ′(x∗)† = (0, 0)T and

F ′(x∗)† =

(
1

2(1− µx)
,

1

2(1− µx)

)
for x 6= 1

µ is the Moore-Penrose inverse of F ′(x). Having defined the Moore-Penrose

inverse of F ′(x), we can now find the majorant functions along the lines of Example
5.3. We leave the details of the motivated reader.

Other examples can be found in [2, 8, 5, 10, 12].

6. Conclusion

We expanded the applicability of INM under a majorant and a center-majorant
condition. The advantages of our analysis over earlier works such as [8, 9, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43] are also shown under the same computational cost for the functions and
constants involved. These advantages include: a large radius of convergence and more
precise error estimates on the distances ‖xn+1 − x∗‖ for each n = 0, 1, 2, . . ., leading
to a wider choice of initial guesses and computation of less iterates xn in order to
obtain a desired error tolerance. Moreover, the differentiability of majorant function
ω is not assumed as in earlier studies where ω = g′ for some differentiable function g.
Numerical examples show that the center-function can be smaller than the majorant
function.
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