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Fixed point theorems for a system of operator
equations with applications
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Abstract. The purpose of this paper is to present some existence and uniqueness
theorems for a general system of operator equations. The abstract result gener-
alizes some existence results obtained in [V. Berinde, Generalized coupled fixed
point theorems for mixed monotone mappings in partially ordered metric spaces,
Nonlinear Anal. 74 (2011) 7347-7355] for the case of coupled fixed point problem.
We also provide an application to a system of integro-differential equations.
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1. Introduction

The classical Banach contraction principle is remarkable in its simplicity and it
is perhaps the most widely applied fixed point theorem in all analysis. This is because
the contractive condition on the operator is easy to test and it requires only the
structure of a complete metric space for its setting (see S. Banach [1]). This principle
is also a very useful tool in nonlinear analysis with many applications to operatorial
equations, fractal theory, optimization theory and other topics. Several authors have
been dedicated to the improvement and generalization of this principle (see [3], [6],
[4], [5], etc.)

The purpose of this paper is to present some existence and uniqueness results
which will extend and generalize some theorems obtained by V. Berinde in [2] for the
case of coupled fixed point problems. We also provide an application to an integral
equation system. For related results see also [7].
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2. Main results

The first result is an existence and uniqueness result which generalizes Theorem
3 presented by V. Berinde in [2].

Theorem 2.1. Let X be a nonempty set and suppose there is a metric d on X such
that (X, d) is a complete metric space. Let T1, T2 : X ×X → X be two operators for
which there exists a constant k ∈ [0, 1) such that

d(T1(x, y), T1(u, v)) + d(T2(x, y), T2(u, v)) ≤ k(d(x, u) + d(y, v)),

for all (x, y), (u, v) ∈ X ×X.
Then we have the following conclusions:
(i) there exists a unique element (x∗, y∗) ∈ X ×X such that{

x∗ = T1(x∗, y∗)
y∗ = T2(x∗, y∗)

(ii) the sequence (Tn1 (x, y), Tn2 (x, y))n∈N converges to (x∗, y∗) as n→∞

Tn+1
1 (x, y) : = Tn1 (T1(x, y), T2(x, y))

Tn+1
2 (x, y) : = Tn2 (T1(x, y), T2(x, y))

for all n ∈ N.
(iii) we have the following estimation

d(Tn1 (x0, y0), x∗) ≤ kn

1− k
d(x0, T1(x0, y0))

d(Tn2 (x0, y0), y∗) ≤ kn

1− k
d(y0, T2(x0, y0))

(iv) let F1, F2 : X ×X → X be two operators such that, there exist ε1, ε2 > 0 with

d(T1(x, y), F1(x, y)) ≤ ε1

d(T2(x, y), F2(x, y)) ≤ ε2

for all (x, y) ∈ X ×X. If (a∗, b∗) ∈ X ×X is such that{
a∗ = F1(a∗, b∗)
b∗ = F2(a∗, b∗)

then

d(x∗, a∗) + d(y∗, b∗) ≤ ε1 + ε2
1− k

Proof. (i)- (ii)
We define T : X ×X → X ×X by

T (x, y) = (T1(x, y), T2(x, y)).

Lets denote Z := X ×X and d∗ : Z × Z → R+

d∗((x, y), (u, v)) :=
1

2
(d(x, u) + d(y, v))

for all (x, y), (u, v) ∈ X ×X.
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Then we have

d∗(T (x, y), T (u, v)) =
d(T1(x, y), T1(u, v)) + d(T2(x, y), T2(u, v))

2
.

Then we denote (x, y) := z, (u, v) := w we get that

d∗(T (z), T (w)) ≤ k · d∗(z, w)

for every z, w ∈ X ×X.
Hence we obtained Banach’s contraction condition. Applying Banach’s contraction
fixed point theorem we get that there exists a unique element (x∗, y∗) := z∗ ∈ X ×X
such that

z∗ = T (z∗)

and it is equivalent with {
x∗ = T1(x∗, y∗)
y∗ = T2(x∗, y∗)

.

For each z ∈ X ×X, we have that Tn(z)→ z∗ as n→∞ where

T 0(z) : = z, T 1(z) = T (x, y) = (T1(x, y), T2(x, y))

T 2(z) = T (T1(x, y), T2(x, y)) = (T 2
1 (x, y), T 2

2 (x, y))

and in generally

Tn+1
1 (x, y) : = Tn1 (T1(x, y), T2(x, y))

Tn+1
2 (x, y) : = Tn2 (T1(x, y), T2(x, y)).

We get that Tn(z) = (Tn1 (z), Tn2 (z)) → z∗ = (x∗, y∗) as n→ ∞, for all z = (x, y) ∈
X ×X.
So for all (x, y) ∈ X ×X we have that

Tn1 (x, y) → x∗ as n→∞
Tn2 (x, y) → y∗ as n→∞.

(iii) We apply Banach’s contraction principle and we have successively

d(Tn1 (x0, y0), x∗) ≤ kn

1− k
d(x0, T1(x0, y0))

d(Tn2 (x0, y0), y∗) ≤ kn

1− k
d(x0, T2(x0, y0))

(iv) Let us consider F : X ×X → X ×X given by F (x, y) = (F1(x, y), F2(x, y)) and

d∗(T (x, y), F (x, y)) = d∗((T1(x, y), T2(x, y)), (F1(x, y), F2(x, y)))

=
d(T1(x, y), F1(x, y)) + d(T2(x, y), F2(x, y))

2
≤ ε,

where ε := ε1+ε2
2 .

Then, by the data dependence theorem related to Banachs contraction principle we
get that

d(x∗, a∗) + d(y∗, b∗) ≤ ε1 + ε2
1− k

.
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Hence we get that

d∗((x∗, y∗), (a∗, b∗)) ≤ ε

1− k
. �

An existence and uniqueness result, similar to Theorem 2.1, is the following theorem.

Theorem 2.2. Let X be a nonempty set and suppose there is a metric d on X such
that (X, d) is a complete metric space. Let T1, T2 : X ×X → X be two operators for
which there exists a constant k ∈ [0, 1) such that, for each (x, y), (u, v) ∈ X ×X, we
have

max{d(T1(x, y), T2(u, v)), d(T2(x, y), T2(u, v))} ≤ k ·max{d(x, u), d(y, v)}.
Then we have the following conclusions:
(i) there exists a unique element (x∗, y∗) ∈ X ×X such that{

x∗ = T1(x∗, y∗)
y∗ = T2(x∗, y∗)

(ii) the sequence (Tn1 (x, y), Tn2 (x, y))n∈N converges to (x∗, y∗) as n→∞

Tn+1
1 (x, y) : = Tn1 (T1(x, y), T2(x, y))

Tn+1
2 (x, y) : = Tn2 (T1(x, y), T2(x, y))

for all n ∈ N.
(iii) we have the following estimation

d(Tn1 (x0, y0), x∗) ≤ kn

1− k
d(x0, T1(x0, y0))

d(Tn2 (x0, y0), y∗) ≤ kn

1− k
d(y0, T2(x0, y0))

(iv) let F1, F2 : X ×X → X be two operators such that, there exist ε1, ε2 > 0 with

d(T1(x, y), F1(x, y)) ≤ ε1

d(T2(x, y), F2(x, y)) ≤ ε2

for all (x, y) ∈ X ×X. If (a∗, b∗) ∈ X ×X is such that{
a∗ = F1(a∗, b∗)
b∗ = F2(a∗, b∗)

then

max{d(x∗, a∗), d(y∗, b∗)} ≤ max{ε1, ε2}
1− k

.

Proof. (i)- (ii)
We define T : X ×X → X ×X by

T (x, y) = (T1(x, y), T2(x, y)).

Lets denote Z := X ×X and d∗ : Z × Z → R+

d∗((x, y), (u, v)) :=
1

2
max{d(x, u), d(y, v)}

for all (x, y), (u, v) ∈ X ×X.
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Then we have

d∗(T (x, y), T (u, v)) =
1

2
max{d(T1(x, y), T1(u, v)), d(T2(x, y), T2(x, y), T2(u, v))}

If we denote (x, y) := z, (u, v) := w we get that

d∗(T (z), T (w)) ≤ k ·max{d(x, u), d(y, v)} = k · d∗(z, w)

for every z, w ∈ X ×X.
Hence we obtained Banach’s type contraction condition. By Banach’s contraction
fixed point theorem we get that there exists a unique element (x∗, y∗) := z∗ ∈ X ×X
such that

z∗ = T (z∗)

and it is equivalent with {
x∗ = T1(x∗, y∗)
y∗ = T2(x∗, y∗)

.

For each z ∈ X ×X, we have that Tn(z)→ z∗ as n→∞ where

T 0(z) : = z, T 1(z) = T (x, y) = (T1(x, y), T2(x, y))

T 2(z) = T (T1(x, y), T2(x, y)) = (T 2
1 (x, y), T 2

2 (x, y))

and in generally

Tn+1
1 (x, y) : = Tn1 (T1(x, y), T2(x, y))

Tn+1
2 (x, y) : = Tn2 (T1(x, y), T2(x, y)).

We get that Tn(z) = (Tn1 (z), Tn2 (z)) → z∗ = (x∗, y∗) as n→ ∞, for all z = (x, y) ∈
X ×X.
So, for all (x, y) ∈ X ×X we have that

Tn1 (x, y) → x∗ as n→∞
Tn2 (x, y) → y∗ as n→∞.

(iii) We apply Banach’s contraction principle and we have successively

d(Tn1 (x0, y0), x∗) ≤ kn

1− k
d(x0, T1(x0, y0))

d(Tn2 (x0, y0), y∗) ≤ kn

1− k
d(x0, T2(x0, y0))

(iv) Let us consider F : X ×X → X ×X given by

F (x, y) = (F1(x, y), F2(x, y))

and

d∗(T (x, y), F (x, y)) = d∗((T1(x, y), T2(x, y)), (F1(x, y), F2(x, y)))

=
1

2
max{d(T1(x, y), F1(x, y)), d(T2(x, y), F2(x, y))} ≤ ε

where ε := max{ε1,ε2}
2 .
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Then, applying the abstract data dependence theorem related to Banachs contraction
principle we get that

max{d(x∗, a∗), d(y∗, b∗)} ≤ max{ε1, ε2}
1− k

.

We obtain that
d∗((x

∗, y∗), (a∗, b∗)) ≤ ε

1− k
. �

3. An application

In this section, we will consider the following problem: x(t) =
b∫
a

K(s, t, x(s), y(s))ds

y′′(t) = f(s, x(s), y(s)), y(a) = 0 y(b) = 0

(3.1)

This problem is equivalent to
x(t) =

b∫
a

K(s, t, x(s), y(s))ds

y(t) = −
b∫
a

G(t, s)f(s, x(s), y(s))ds,

where G : [a, b]× [a, b]→ R is given by

G(t, s) :=

{ (s−a)(b−t)
b−a , if s ≤ t

(t−a)(b−s)
b−a , if s ≥ t

.

Assumption (*) Suppose that K : [a, b]2 × R2 → R and f : [a, b]2 × R2 → R are
continuous functions and satisfy the following Lipschitz conditions

|K(t, s, u1, v1)−K(t, s, u2, v2)| ≤ α |u1 − u2|+ β |v1 − v2|
|f(s, u1, v1)− f(s, u2, v2)| ≤ γ |u1 − u2|+ δ |v1 − v2| ,

for every t, s ∈ [a, b] and u1, v1, u2, v2 ∈ R, where α, β, γ, δ > 0 such that

max

{
(α(b− a) + γ

(b− a)2

8
),

(
β(b− a) + δ

(b− a)2

8

)}
< 1.

Let X = (C[a, b], ‖·‖C) be the Banach space of continuous functions endowed
with the norm

‖x‖c := max
t∈[a,b]

|x(t)| .

We define the following operators

T1, T2 : X ×X → X, (x, y)→ T1(x, y) and (x, y)→ T2(x, y),

where

T1(x, y)(t) =

b∫
a

K(s, t, x(s), y(s))ds



Fixed point theorems for a system of operator equations 93

T2(x, y)(t) = −
b∫
a

G(t, s)f(s, x(s), y(s))ds.

An existence and uniqueness result for the system (3.1) is the following theorem.

Theorem 3.1. Consider the problem (3.1) with K, f : [a, b]2 × R2 → R and suppose
that Assumption (*) is satisfied. Then there exists a unique solution (x∗, y∗) of the
problem (3.1).

Proof. We verify that T1 and T2 satisfy the hypotheses of Theorem 2.1. Indeed, for
every t ∈ [a, b], we have

|T1(x, y)(t)− T1(u, v)(t)| =

∣∣∣∣∣∣
b∫
a

K(s, t, x(s), y(s))ds−
b∫
a

K(s, t, u(s), v(s))ds

∣∣∣∣∣∣
≤

b∫
a

|K(s, t, x(s), y(s))−K(s, t, u(s), v(s))| ds

≤ α
b∫
a

|x(s)− u(s)| ds+ β

b∫
a

|y(s)− v(s)| ds

≤ α ‖x− u‖C (b− a) + β ‖y − v‖C (b− a).

Taking the max
t∈[a,b]

in the above relation we get that

‖T1(x, y)− T1(u, v)‖C ≤ α(b− a) ‖x− u‖C + β(b− a) ‖y − v‖C .

On the other hand, for every t ∈ [a, b], we have

|T2(x, y)(t)− T2(u, v)(t)| =

∣∣∣∣∣∣−
b∫
a

G(t, s)f(s, x(s), y(s))ds+

b∫
a

G(t, s)f(s, u(s), v(s))ds

∣∣∣∣∣∣
≤

b∫
a

G(t, s) |f(s, u(s), v(s))− f(s, x(s), y(s))| ds

≤ γ
b∫
a

G(t, s) |u(s)− x(s)| ds+ δ

b∫
a

G(t, s) |v(s)− y(s)| ds

≤ γ ‖u− x‖C

b∫
a

G(t, s)ds+ δ ‖v − y‖C

b∫
a

G(t, s)ds.

Taking the max
t∈[a,b]

in the above relation we obtain

‖T2(x, y)− T2(u, v)‖C ≤ γ
(b− a)2

8
‖u− x‖C + δ

(b− a)2

8
‖v − y‖C .
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Hence we get that

‖T1(x, y)− T1(u, v)‖C + ‖T2(x, y)− T2(u, v)‖C

≤ [α(b− a) + γ
(b− a)2

8
] ‖x− u‖C + [β(b− a) + δ

(b− a)2

8
] ‖y − v‖C

≤ max

{
(α(b− a) + γ

(b− a)2

8
), (β(b− a) + δ

(b− a)2

8
)

}
(‖x− u‖C + ‖y − v‖C).

Since the hypothesis of Theorem 2.1 is satisfied we get that the problem (3.1) has a
unique solution on I. �
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