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Explicit limit cycles of a cubic polynomial
differential systems

Ahmed Bendjeddou and Rachid Boukoucha

Abstract. In this paper, we determine sufficient conditions for a cubic polynomial
differential systems of the form{

x′ = x+ ax3 + bx2y + cxy2 + ny3

y′ = y + sx3 + ux2y + vxy2 + wy3

where a, b, c, n, s, u, v, w are real constants, to possess an algebraic, non-algebraic
limit cycles, explicitly given. Concrete examples exhibiting the applicability of
our result is introduced.
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1. Introduction

An important problem of the qualitative theory of differential equations is to
determine the limit cycles of a system of the form{

x′ = dx
dt = P (x, y)

y′ = dy
dt = Q(x, y)

(1.1)

where P (x, y) and Q(x, y) are coprime polynomials and we denote by n =
max {degP,degQ} and we say that n is the degree of system (1.1). A limit cycle
of system (1.1) is an isolated periodic solution in the set of all periodic solution of
system (1.1) see [4, 6, 10], and it is said to be algebraic if it is contained in the zero
level set of a polynomial function, see for example [1, 2, 8]. We usually only ask for the
number of such limit cycles, but their location as orbits of the system is also an inter-
esting problem. And an even more difficult problem is to give an explicit expression
of them. We are able to solve this last problem for a given system of the form (1.1).
Until recently, the only limit cycles known in an explicit way were algebraic. In [3, 5, 7]
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examples of explicit limit cycles which are not algebraic are given. For instance, the
limit cycle appearing in van der Pol’s system is not algebraic as it is proved in [9].

In this paper, we determine sufficient conditions for a planar systems of the form{
x′ = x+ ax3 + bx2y + cxy2 + ny3

y′ = y + sx3 + ux2y + vxy2 + wy3
(1.2)

where a, b, c, n, s, u, v and w are real constants, to possess an explicit algebraic, non-
algebraic limit cycles. Concrete examples exhibiting the applicability of our result is
introduced.

We define the trigonometric functions

f (θ) = 3a+ c+ u+ 3w + 4 (a− w) (cos 2θ) + 2 (b+ n+ s+ v) (sin 2θ)

+ (a− c− u+ w) (cos 4θ) + (b− n+ s− v) (sin 4θ)

g (θ) = 3s− 3n− b+ v + 4 (n+ s) (cos 2θ) + 2 (u− c− a+ w) (sin 2θ)

+ (c− a+ u− w) (sin 4θ) + (b− n+ s− v) (cos 4θ)

2. Main result

Our main result is contained in the following theorem.

Theorem 2.1. Consider a multi-parameter cubic polynomial differential system (1.2),
then the following statements hold.

H1) if

3a+ c+ u+ 3w+ 4 |a− w|+ 2 |b+ n+ s+ v|+ |a− c− u+ w|+ |b− n+ s− v| < 0,

3s− 3n− b+ v + 4 |n+ s|+ 2 |u− c− a+ w|+ |c− a+ u− w|+ |b− n+ s− v| < 0,

then system (1.2) has limit cycle explicitly given in polar coordinates (r, θ) , by

r (θ, r∗) = exp

(∫ θ

0

f (µ)

g (µ)
dµ

)√√√√√√√r2∗ + 16

∫ θ

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω

where a, b, c, n, s, u, v , w are real constants, and

r∗ = 4

√√√√√√√√
exp

(
2

∫ 2π

0

f (µ)

g (µ)
dµ

)
1− exp

(
2

∫ 2π

0

f (µ)

g (µ)
dµ

) ∫ 2π

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω

H2) if f (θ) , and g (θ) are not constant functions for all θ ∈ R, then this limit
cycle is non algebraic limit cycle.

Moreover, this limit cycle is a stable hyperbolic limit cycle.
H3) if f (θ) = λ, g (θ) = β are constant functions for all θ ∈ R where λ, β ∈ R∗−,

then this limit cycle is algebraic limit cycle given by r2∗ = −8
λ i e: x2 + y2 = −8

λ is the
circle.
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In short, since it is well known that the polynomial differential systems of degree
1 have no limit cycles, it remains the following open question:

Open question. Are there or not polynomial differential systems of degree 2 exhibiting
explicit non-algebraic limit cycles.

Proof. In order to prove our results we write the polynomial differential system (1.2) in
polar coordinates (r, θ) , defined by x = r cos θ, and y = r sin θ, then system becomes{

r′ = r + f (θ) r3

θ′ = g (θ) r2
(2.1)

where θ′ = dθ
dt , r

′ = dr
dt .

According to

3s− 3n− b+ v + 4 |n+ s|+ 2 |u− c− a+ w|+ |c− a+ u− w|+ |b− n+ s− v| < 0

hence g (θ) < 0 for all θ ∈ R, then θ′ is negative for all t, which means that the
orbits (r (t) , θ (t)) of system (2.1) have the opposite orientation with respect to those
(x (t) , y (t)) of system (1.2).

Taking as new independent variable the coordinate θ, this differential system
writes

dr

dθ
=
f (θ)

g (θ)
r +

8

g (θ)

1

r
(2.2)

which is a Bernoulli equation.

By introducing the standard change of variables ρ = r2 we obtain the linear
equation

dρ

dθ
=

16

g (θ)
+

2f (θ)

g (θ)
ρ (2.3)

The general solution of linear equation (2.3) is

ρ (θ) = exp

(∫ θ

0

2f (µ)

g (µ)
dµ

)k + 16

∫ θ

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω

 (2.4)

where k ∈ R
Then the general solution of Bernoulli equation (2.2) is

r (θ) = exp

(∫ θ

0

f (µ)

g (µ)
dµ

)√√√√√√√k + 16

∫ θ

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω (2.5)

where k ∈ R
Notice that system (1.2) has a periodic orbit if and only if equation (2.5) has a

strictly positive 2π periodic solution.
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It is easy to check that the solution r (θ; r0) of the differential equation (2.2)
such that r (0, r0) = r0 is

r (θ; r0) = exp

(∫ θ

0

f (µ)

g (µ)
dµ

)√√√√√√√r20 + 16

∫ θ

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω (2.6)

where r0 = r (0) .

A periodic solution of system (2.1) must satisfy the condition r (2π, r0) = r (0, r0) ,
which leads to a unique value r0 = r∗ , given by

r∗ = 4

√√√√√√√ exp
(∫ 2π

0
2f(µ)
g(µ) dµ

)
1− exp

(∫ 2π

0
2f(µ)
g(µ) dµ

) ∫ 2π

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω (2.7)

Since

3a+ c+ u+ 3w + 4 |a− w|+ 2 |b+ n+ s+ v|+ |a− c− u+ w|+ |b− n+ s− v| < 0

and

3s− 3n− b+ v + 4 |n+ s|+ 2 |u− c− a+ w|+ |c− a+ u− w|+ |b− n+ s− v| < 0

we have f (µ) < 0 , g (µ) < 0 for all µ ∈ [0, 2π] hence r∗ > 0.
Injecting this value of r∗ in (2.6), we get the candidate solution

r (θ, r∗) = 4 exp

(∫ θ

0

f (µ)

g (µ)
dµ

)
√√√√√√√√√√√√√√√

exp
(∫ 2π

0
2f(µ)
g(µ)

dµ
)

1−exp
(∫ 2π

0
2f(µ)
g(µ)

dµ
) ∫ 2π

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω

+

∫ θ

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω

So, if r (θ; r∗) > 0 for all θ ∈ R, we shall have r (θ; r∗) > 0 would be periodic
orbit, and consequently a limit cycle. In what follows it is proved that r (θ; r∗) > 0
for all θ ∈ R. Indeed

r (θ, r∗) = 4 exp

(∫ θ

0

f (µ)

g (µ)
dµ

)
√√√√√√√√√√√√√√√

exp
(∫ 2π

0
2f(µ)
g(µ)

dµ
)

1−exp
(∫ 2π

0
2f(µ)
g(µ)

dµ
) ∫ 2π

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω

+

∫ θ

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω
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> 4 exp

(∫ θ

0

f (µ)

g (µ)
dµ

)
√√√√√√√√√√√√√√√

∫ 2π

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
−g (ω)

 dω

+

∫ θ

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω

= 4 exp

(∫ θ

0

f (µ)

g (µ)
dµ

)√√√√√√√√
∫ θ

2π

e
−

∫ ω

0

2f (µ)

g (µ)
dµ

g (ω)

 dω

= 4 exp

(∫ θ

0

f (µ)

g (µ)
dµ

)√√√√√√√∫ 2π

θ

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
−g (ω)

 dω > 0

because f (µ) < 0, g (µ) < 0 for all µ ∈ R , hence f(µ)
g(µ) > 0 for all µ ∈ R

Consequently, this is a limit cycle for the differential system (1.2).
This completes the proof of statement H1 of Theorem 2.1.

If f (θ) and g (θ) are not constant functions for all θ ∈ R, the curve
(r (θ) cos θ, r (θ) sin (θ)) in the (x, y) plane with

r (θ; r∗)
2

= exp

(∫ θ

0

2f (µ)

g (µ)
dµ

)r2∗ + 16

∫ θ

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω


is not algebraic. More precisely, in Cartesian coordinates r (θ; r∗)

2
= x2 + y2 and

θ = arctan
(
y
x

)
, the curve defined by this limit cycle is

f (x, y) = x2 + y2 − exp

(∫ arctan( yx )

0

2f (µ)

g (µ)
dµ

)

×

r2∗ + 16

∫ arctan( yx )

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω

 = 0.
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But there is no integer n for which both ∂(n)f
∂xn and ∂(n)f

∂yn vanish identically.

To be convinced by this fact, one has to compute for example ∂f
∂x , that is

∂f

∂x
(x, y) = 2x+

y exp

(
2f(arctan( yx ))
g(arctan( yx ))

)
exp

(∫ arctan( yx )

0

2f (µ)

g (µ)
dµ

)
x2 + y2

r2∗

+16

y exp

(
2f(arctan( yx ))
g(arctan( yx ))

)
exp

(∫ arctan( yx )

0

2f (µ)

g (µ)
dµ

)
x2 + y2

×
∫ arctan( yx )

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω +
16y

(x2 + y2) g
(
arctan

(
y
x

))
Since f (x, y) appears again, it will remains in any order of derivation, therefore the
curve f (x, y) = 0 is non-algebraic and the limit cycle will also be non-algebraic.

In order to prove the hyperbolicity of the limit cycle notice that the Poincaré
return map is Π (ρ0) = ρ (2π, ρ0), for more details see [5, section 1.6].

An easy computation shows that

dr (2π; r0)

dr0

∣∣∣∣
r0=r∗

= exp

(∫ 2π

0

2f (µ)

g (µ)
dµ

)
> 1.

because f (µ) g (µ) > 0 for all µ ∈ R
Therefore the limit cycle of the differential equation (2.2) is unstable and hy-

perbolic. Consequently, this is a stable and hyperbolic limit cycle for the differential
system (1.2). This completes the proof of statement H2 of Theorem 2.1.

Suppose now that f (θ) = λ, g (θ) = β are constant functions for all θ ∈ R.
According to

3a+ c+ u+ 3w + 4 |a− w|+ 2 |b+ n+ s+ v|+ |a− c− u+ w|+ |b− n+ s− v| < 0

3s− 3n− b+ v + 4 |n+ s|+ 2 |u− c− a+ w|+ |c− a+ u− w|+ |b− n+ s− v| < 0

hence f (θ) = λ < 0, g (θ) = β < 0 for all θ ∈ R. then

r∗ =

√√√√√√√√16

β

exp

(
2

∫ 2π

0

λ

β
dµ

)
1− exp

(
2

∫ 2π

0

λ

β
dµ

) (∫ 2π

0

(
exp

(
−2

∫ ω

0

λ

β
dµ

))
dω

)
=

√
− 8

λ
> 0,

Injecting this value of r∗ in (2.6), we get the solution

r (θ, r∗) = exp

(
λ

β
θ

)√
−8

λ
+

16

β

∫ θ

0

(
exp

(
−2

∫ ω

0

λ

β
dµ

))
dω

r (θ, r∗) =

√
− 8

λ
> 0,
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for all θ ∈ R
In Cartesian coordinates

r (θ; r∗)
2

= x2 + y2 = − 8

λ

this limit cycle is algebraic (is the circle).
This completes the proof of statement H3 of Theorem 2.1. �

The following examples are given to illustrate our result.

Example 2.2. If we take a = s = w = −1, b = 2, c = −2, n = 1, and u = v = 0 then
system (1.2) reads {

x′ = x− x3 + 2x2y − 2xy2 + y3

y′ = y − x3 − y3

equivalent to {
x′ = x+ (y − x)

(
x2 − xy + y2

)
y′ = y − (y + x)

(
x2 − xy + y2

)
has a non-algebraic limit cycle whose expression in polar coordinates (r, θ) is,

r (θ, r∗) = eθ

√
r2∗ − 4

∫ θ

0

(
e−2ω

2− sin 2ω

)
dω

where θ ∈ R, with f (θ) = g (θ) = −8 + 4 (sin 2θ), and the intersection of the limit
cycle with the OX+ axis is the point having r∗

r∗ =

√
2e4π

e4π − 1

∫ 2π

0

(
2

2− sin 2ω
e−2ω

)
dω ' 1. 191 2

Moreover
dr (2π; r0)

dr0

∣∣∣∣
r0=r∗

= e4π > 1.

This limit cycle is a stable hyperbolic limit cycle.
Is the results presented by Jaume Llibre and Benterki Rebiha in [3] .

Example 2.3. If we take a = s = w = −2, b = 5, c = −5, n = 2, and u = v = 1 then
system (1.2) reads {

x′ = x− 2x3 + 5x2y − 5xy2 + 2y3

y′ = y − 2x3 + x2y + xy2 − 2y3

has a non-algebraic limit cycle whose expression in polar coordinates (r, θ) is,

r (θ, r∗) = exp (θ)

√
r2∗ + 4

∫ θ

0

(
exp (−2ω)

−4 + 3 (sin 2ω)

)
dω

where θ ∈ R, with f (θ) = −16 + 12 (sin 2θ) , g (θ) = −16 + 12 (sin 2θ), and the
intersection of the limit cycle with the OX+ axis is the point having r∗

r∗ = 4

√
exp (4π)

1− exp (4π)

(∫ 2π

0

(
exp (−2ω)

−16 + 12 (sin 2ω)

)
dω

)
' 1. 001 0
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Moreover
dr (2π; r0)

dr0

∣∣∣∣
r0=r∗

= e4π > 1.

This limit cycle is a stable hyperbolic limit cycle.

Example 2.4. If we take a = c = u = s = v = w = −1 and b = n = 1, the system
(1.2) reads {

x′ = x− x3 + x2y − xy2 + y3

y′ = y − x3 − x2y − xy2 − y3

in polar coordinates (r, θ) we obtained f (θ) = λ = −8, g (θ) = β = −8, and r∗ =√
−8
λ = 1 hence

r (θ, r∗) = r (θ, 1) = exp

(∫ θ

0

dµ

)√√√√√√√1 + 16

∫ θ

0

exp

(
−
∫ ω

0

2dµ

)
−8

 dω = 1

for all θ ∈ R.
The system has a algebraic limit cycle whose expression in Cartesian coordinates

(x, y) becomes

r (θ; r∗)
2

= x2 + y2 = 1

this limit cycle is the circle.

Example 2.5. If we take a = c = u = w = − 1
2 , b = n = 1

4 , and s = v = − 1
4 , the

system (1.2) reads {
x′ = x− 1

2x
3 + 1

4x
2y − 1

2xy
2 + 1

4y
3

y′ = y − 1
4x

3 − 1
2x

2y − 1
4xy

2 − 1
2y

3

in polar coordinates (r, θ) we obtained f (θ) = λ = −4, g (θ) = β = −2 and r∗ =√
−8
λ =

√
2 hence

r (θ, r∗) = r
(
θ,
√

2
)

= exp

(∫ θ

0

2ds

)√√√√√√√2 + 16

∫ θ

0

exp

(
−
∫ ω

0

4ds

)
−2

 dω =
√

2

for all θ ∈ R.
The system has a algebraic limit cycle whose expression in Cartesian coordinates

(x, y) becomes

r (θ; r∗)
2

= x2 + y2 = 2

this limit cycle is the circle.
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