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Generalized g-fractional calculus and iterative
methods

George A. Anastassiou and Ioannis K. Argyros

Abstract. We approximated solutions of some iterative methods on a generalized
Banach space setting in [5]. Earlier studies such as [7-12] the operator involved
is Fréchet-differentiable. In [5] we assumed that the operator is only continu-
ous. This way we extended the applicability of these methods to include gener-
alized fractional calculus and problems from other areas. In the present study
applications include generalized g-fractional calculus. Fractional calculus is very
important for its applications in many applied sciences.
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1. Introduction

Many problems in Computational sciences can be formulated as an operator
equation using Mathematical Modelling [8, 10, 13, 14, 15]. The fixed points of these
operators can rarely be found in closed form. That is why most solution methods are
usually iterative.

The semilocal convergence is, based on the information around an initial point,
to give conditions ensuring the convergence of the method.

We presented a semilocal convergence analysis for some iterative methods on a
generalized Banach space setting in [5] to approximate fixed point or a zero of an
operator. A generalized norm is defined to be an operator from a linear space into a
partially order Banach space (to be precised in section 2). Earlier studies such as [7-12]
for Newton’s method have shown that a more precise convergence analysis is obtained
when compared to the real norm theory. However, the main assumption is that the
operator involved is Fréchet-differentiable. This hypothesis limits the applicability of
Newton’s method. In [5] study we only assumed the continuity of the operator. This
may be expanded the applicability of these methods.
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The rest of the paper is organized as follows: section 2 contains the basic concepts
on generalized Banach spaces and the semilocal convergence analysis of these methods.
Finally, in the concluding section 3, we present special cases and applications in
generalized g-fractional calculus.

2. Generalized Banach spaces

We present some standard concepts that are needed in what follows to make the
paper as self contained as possible. More details on generalized Banach spaces can be
found in [5-12], and the references there in.

Definition 2.1. A generalized Banach space is a triplet (X,E, /·/) such that

(i) X is a linear space over R (C) .

(ii) E = (E,K, ‖·‖) is a partially ordered Banach space, i.e.

(ii1) (E, ‖·‖) is a real Banach space,

(ii2) E is partially ordered by a closed convex cone K,

(iii3) The norm ‖·‖ is monotone on K.

(iii) The operator /·/ : X → K satisfies

/x/ = 0⇔ x = 0, /θx/ = |θ| /x/ ,

/x+ y/ ≤ /x/ + /y/ for each x, y ∈ X, θ ∈ R(C).

(iv) X is a Banach space with respect to the induced norm ‖·‖i := ‖·‖ · /·/ .

Remark 2.2. The operator /·/ is called a generalized norm. In view of (iii) and (ii3)
‖·‖i , is a real norm. In the rest of this paper all topological concepts will be understood
with respect to this norm.

Let L
(
Xj , Y

)
stand for the space of j-linear symmetric and bounded opera-

tors from Xj to Y , where X and Y are Banach spaces. For X,Y partially ordered
L+

(
Xj , Y

)
stands for the subset of monotone operators P such that

0 ≤ ai ≤ bi ⇒ P (a1, ..., aj) ≤ P (b1, ..., bj) .

Definition 2.3. The set of bounds for an operator Q ∈ L (X,X) on a generalized
Banach space (X,E, /·/) is defined to be:

B (Q) := {P ∈ L+ (E,E) , /Qx/ ≤ P /x/ for each x ∈ X} .

Let D ⊂ X and T : D → D be an operator. If x0 ∈ D the sequence {xn} given by

xn+1 := T (xn) = Tn+1 (x0)

is well defined. We write in case of convergence

T∞ (x0) := lim (Tn (x0)) = lim
n→∞

xn.

Let (X, (E,K, ‖·‖) , /·/) and Y be generalized Banach spaces, D ⊂ X an open
subset, G : D → Y a continuous operator and A (·) : D → L (X,Y ). A zero of operator
G is to be determined by a method starting at a point x0 ∈ D. The results are
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presented for an operator F = JG, where J ∈ L (Y,X). The iterates are determined
through a fixed point problem:

xn+1 = xn + yn, A (xn) yn + F (xn) = 0 (2.1)

⇔ yn = T (yn) := (I −A (xn)) yn − F (xn) .

Let U (x0, r) stand for the ball defined by

U (x0, r) := {x ∈ X : /x− x0/ ≤ r}

for some r ∈ K.
Next, we state the semilocal convergence analysis of method (2.1) using the

preceding notation.

Theorem 2.4. [5] Let F : D ⊂ X, A (·) : D → L (X,Y ) and x0 ∈ D be as defined
previously. Suppose:

(H1) There exists an operator M ∈ B (I −A (x)) for each x ∈ D.
(H2) There exists an operator N ∈ L+ (E,E) satisfying for each x, y ∈ D

/F (y)− F (x)−A (x) (y − x)/ ≤ N /y − x/ .

(H3) There exists a solution r ∈ K of

R0 (t) := (M +N) t+ /F (x0)/ ≤ t.

(H4) U (x0, r) ⊆ D.
(H5) (M +N)

k
r → 0 as k →∞.

Then, the following hold:
(C1) The sequence {xn} defined by

xn+1 = xn + T∞n (0) , Tn (y) := (I −A (xn)) y − F (xn) (2.2)

is well defined, remains in U (x0, r) for each n = 0, 1, 2, ... and converges to the unique
zero of operator F in U (x0, r) .

(C2) An apriori bound is given by the null-sequence {rn} defined by r0 := r and
for each n = 1, 2, ...

rn = P∞n (0) , Pn (t) = Mt+Nrn−1.

(C3) An aposteriori bound is given by the sequence {sn} defined by

sn := R∞n (0) , Rn (t) = (M +N) t+Nan−1,

bn := /xn − x0/ ≤ r − rn ≤ r,
where

an−1 := /xn − xn−1/ for each n = 1, 2, ...

Remark 2.5. The results obtained in earlier studies such as [7-12] require that operator
F (i.e. G) is Fréchet-differentiable. This assumption limits the applicability of the
earlier results. In the present study we only require that F is a continuous operator.
Hence, we have extended the applicability of these methods to include classes of
operators that are only continuous.
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Example 2.6. The j-dimensional space Rj is a classical example of a generalized
Banach space. The generalized norm is defined by componentwise absolute values.
Then, as ordered Banach space we set E = Rj with componentwise ordering with
e.g. the maximum norm. A bound for a linear operator (a matrix) is given by the
corresponding matrix with absolute values. Similarly, we can define the ”N” operators.
Let E = R. That is we consider the case of a real normed space with norm denoted
by ‖·‖. Let us see how the conditions of Theorem 2.4 look like.

Theorem 2.7. (H1) ‖I −A (x)‖ ≤M for some M ≥ 0.
(H2) ‖F (y)− F (x)−A (x) (y − x)‖ ≤ N ‖y − x‖ for some N ≥ 0.

(H3) M +N < 1,

r =
‖F (x0)‖

1− (M +N)
. (2.3)

(H4) U (x0, r) ⊆ D.
(H5) (M +N)

k
r → 0 as k →∞, where r is given by (2.3).

Then, the conclusions of Theorem 2.4 hold.

3. Applications to g-fractional calculus

We apply Theorem 2.7 in this section. Here basic concepts and facts come
from [4]. We need

Definition 3.1. Let α > 0, α /∈ N, dαe = m, d·e the ceiling of the number. Here
g ∈ AC ([a, b]) (absolutely continuous functions) and g is strictly increasing.

Let G : [a, b]→ R such that
(
G ◦ g−1

)(m) ◦ g ∈ L∞ ([a, b]).
We define the left generalized g-fractional derivative of G of order α as follows:(

Dα
a+;gG

)
(x) :=

1

Γ (m− α)

∫ x

a

(g (x)− g (t))
m−α−1

g′ (t)
(
G ◦ g−1

)(m)
(g (t)) dt,

(3.1)
a ≤ x ≤ b, where Γ is the gamma function.

We also define the right generalized g-fractional derivative of G of order α as
follows:(

Dα
b−;gG

)
(x) :=

(−1)
m

Γ (m− α)

∫ b

x

(g (t)− g (x))
m−α−1

g′ (t)
(
G ◦ g−1

)(m)
(g (t)) dt,

(3.2)
a ≤ x ≤ b.

Both
(
Dα
a+;gG

)
,
(
Dα
b−;gG

)
∈ C ([a, b]).

(I) Let a < a∗ < b. In particular we have that
(
Dα
a+;gG

)
∈ C ([a∗, b]). We notice

that

∣∣(Dα
a+;gG

)
(x)
∣∣ ≤

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Γ (m− α)

(∫ x

a

(g (x)− g (t))
m−α−1

g′ (t) dt

)
(3.3)
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=

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Γ (m− α)

(g (x)− g (a))
m−α

(m− α)

=

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Γ (m− α+ 1)
(g (x)− g (a))

m−α
, ∀ x ∈ [a, b] .

We have proved that

∣∣(Dα
a+;gG

)
(x)
∣∣ ≤

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Γ (m− α+ 1)
(g (x)− g (a))

m−α

≤

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Γ (m− α+ 1)
(g (b)− g (a))

m−α
<∞, ∀ x ∈ [a, b] , (3.4)

in particular true ∀ x ∈ [a∗, b] .
We obtain that (

Dα
a+;gG

)
(a) = 0. (3.5)

Therefore there exist x1, x2 ∈ [a∗, b] such that Dα
a+;gG (x1) = minDα

a+;gG (x), and
Dα
a+;gG (x2) = maxDα

a+;gG (x), for x ∈ [a∗, b].
We assume that

Dα
a+;gG (x1) > 0. (3.6)

(i.e. Dα
a+;gG (x) > 0, ∀ x ∈ [a∗, b]).

Furthermore ∥∥Dα
a+;gG

∥∥
∞,[a∗,b] = Dα

a+;gG (x2) . (3.7)

Here it is
J (x) = mx, m 6= 0. (3.8)

The equation
JG (x) = 0, x ∈ [a∗, b] , (3.9)

has the same set of solutions as the equation

F (x) :=
JG (x)

2Dα
a+;gG (x2)

= 0, x ∈ [a∗, b] . (3.10)

Notice that

Dα
a+;g

(
G (x)

2Dα
a+;gG (x2)

)
=

Dα
a+;gG (x)

2Dα
a+;gG (x2)

≤ 1

2
< 1, ∀ x ∈ [a∗, b] . (3.11)

We call

A (x) :=
Dα
a+;gG (x)

2Dα
a+;gG (x2)

, ∀ x ∈ [a∗, b] . (3.12)

We notice that

0 <
Dα
a+;gG (x1)

2Dα
a+;gG (x2)

≤ A (x) ≤ 1

2
. (3.13)

Hence it holds

|1−A (x)| = 1−A (x) ≤ 1−
Dα
a+;gG (x1)

2Dα
a+;gG (x2)

=: γ0, ∀ x ∈ [a∗, b] . (3.14)
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Clearly γ0 ∈ (0, 1) .
We have proved that

|1−A (x)| ≤ γ0 ∈ (0, 1) , ∀ x ∈ [a∗, b] . (3.15)

Next we assume that F (x) is a contraction over [a∗, b], i.e.

|F (x)− F (y)| ≤ λ |x− y| ; ∀ x, y ∈ [a∗, b] , (3.16)

and 0 < λ < 1
2 .

Equivalently we have

|JG (x)− JG (y)| ≤ 2λ
(
Dα
a+;gG (x2)

)
|x− y| , ∀ x, y ∈ [a∗, b] . (3.17)

We observe that

|F (y)− F (x)−A (x) (y − x)| ≤ |F (y)− F (x)|+ |A (x)| |y − x|

≤ λ |y − x|+ |A (x)| |y − x| = (λ+ |A (x)|) |y − x| =: (ξ1) , ∀ x, y ∈ [a∗, b] . (3.18)

Hence by (3.4), ∀ x ∈ [a∗, b] we get that

|A (x)| =
∣∣Dα

a+;gG (x)
∣∣

2Dα
a+;gG (x2)

≤ (g (b)− g (a))
m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
a+;gG (x2)

<∞. (3.19)

Consequently we observe

(ξ1) ≤

λ+
(g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
a+;gG (x2)

 |y − x| , (3.20)

∀ x, y ∈ [a∗, b] .
Call

0 < γ1 := λ+
(g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
a+;gG (x2)

, (3.21)

choosing (g (b)− g (a)) small enough we can make γ1 ∈ (0, 1).
We proved that

|F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| , where γ1 ∈ (0, 1) , ∀ x, y ∈ [a∗, b] .
(3.22)

Next we call and need

0 < γ := γ0 + γ1 = 1−
Dα
a+;gG (x1)

2Dα
a+;gG (x2)

+ λ

+
(g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
a+;gG (x2)

< 1, (3.23)

equivalently we find,

λ+
(g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
a+;gG (x2)

<
Dα
a+;gG (x1)

2Dα
a+;gG (x2)

, (3.24)
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equivalently,

2λDα
a+;gG (x2)+

(g (b)− g (a))
m−α

Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

< Dα
a+;gG (x1) , (3.25)

which is possible for small λ, (g (b)− g (a)).
That is γ ∈ (0, 1). Hence equation (3.9) can be solved with our presented iterative
algorithms.

Conclusion 3.2. (for (I))
Our presented earlier semilocal results, see Theorem 2.7, can apply in the above

generalized fractional setting for g (x) = x for each x ∈ [a, b] since the following
inequalities have been fulfilled:

‖1−A‖∞ ≤ γ0, (3.26)

and
|F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| , (3.27)

where γ0, γ1 ∈ (0, 1), furthermore it holds

γ = γ0 + γ1 ∈ (0, 1) , (3.28)

for all x, y ∈ [a∗, b], where a < a∗ < b.
The specific functions A (x), F (x) have been described above, see (3.12) and

(3.10), respectively.

(II) Let a < b∗ < b. In particular we have that
(
Dα
b−;gG

)
∈ C ([a, b∗]). We notice

that

∣∣(Dα
b−;gG

)
(x)
∣∣ ≤

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Γ (m− α)

(∫ b

x

(g (t)− g (x))
m−α−1

g′ (t) dt

)
(3.29)

=

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Γ (m− α+ 1)
(g (b)− g (x))

m−α

≤

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Γ (m− α+ 1)
(g (b)− g (a))

m−α
<∞, ∀ x ∈ [a, b] , (3.30)

in particular true ∀ x ∈ [a, b∗] .
We obtain that (

Dα
b−;gG

)
(b) = 0. (3.31)

Therefore there exist x1, x2 ∈ [a, b∗] such that Dα
b−;gG (x1) = minDα

b−;gG (x), and

Dα
b−;gG (x2) = maxDα

b−;gG (x), for x ∈ [a, b∗].
We assume that

Dα
b−;gG (x1) > 0. (3.32)

(i.e. Dα
b−;gG (x) > 0, ∀ x ∈ [a, b∗]).

Furthermore ∥∥Dα
b−;gG

∥∥
∞,[a,b∗] = Dα

b−;gG (x2) . (3.33)
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Here it is

J (x) = mx, m 6= 0. (3.34)

The equation

JG (x) = 0, x ∈ [a, b∗] , (3.35)

has the same set of solutions as the equation

F (x) :=
JG (x)

2Dα
b−;gG (x2)

= 0, x ∈ [a, b∗] . (3.36)

Notice that

Dα
b−;g

(
G (x)

2Dα
b−;gG (x2)

)
=

Dα
b−;gG (x)

2Dα
b−;gG (x2)

≤ 1

2
< 1, ∀ x ∈ [a, b∗] . (3.37)

We call

A (x) :=
Dα
b−;gG (x)

2Dα
b−;gG (x2)

, ∀ x ∈ [a, b∗] . (3.38)

We notice that

0 <
Dα
b−;gG (x1)

2Dα
b−;gG (x2)

≤ A (x) ≤ 1

2
. (3.39)

Hence it holds

|1−A (x)| = 1−A (x) ≤ 1−
Dα
b−;gG (x1)

2Dα
b−;gG (x2)

=: γ0, ∀ x ∈ [a, b∗] . (3.40)

Clearly γ0 ∈ (0, 1) .

We have proved that

|1−A (x)| ≤ γ0 ∈ (0, 1) , ∀ x ∈ [a, b∗] . (3.41)

Next we assume that F (x) is a contraction over [a, b∗], i.e.

|F (x)− F (y)| ≤ λ |x− y| ; ∀ x, y ∈ [a, b∗] , (3.42)

and 0 < λ < 1
2 .

Equivalently we have

|JG (x)− JG (y)| ≤ 2λ
(
Dα
b−;gG (x2)

)
|x− y| , ∀ x, y ∈ [a, b∗] . (3.43)

We observe that

|F (y)− F (x)−A (x) (y − x)| ≤ |F (y)− F (x)|+ |A (x)| |y − x| ≤

λ |y − x|+ |A (x)| |y − x| = (λ+ |A (x)|) |y − x| =: (ξ2) , ∀ x, y ∈ [a, b∗] . (3.44)

Hence by (3.30), ∀ x ∈ [a, b∗] we get that

|A (x)| =

∣∣∣Dα
b−;gG (x)

∣∣∣
2Dα

b−;gG (x2)
≤ (g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
b−;gG (x2)

<∞. (3.45)
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Consequently we observe

(ξ2) ≤

λ+
(g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
b−;gG (x2)

 |y − x| , (3.46)

∀ x, y ∈ [a, b∗] .
Call

0 < γ1 := λ+
(g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
b−;gG (x2)

, (3.47)

choosing (g (b)− g (a)) small enough we can make γ1 ∈ (0, 1).
We proved that

|F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| , where γ1 ∈ (0, 1) , ∀ x, y ∈ [a, b∗] .
(3.48)

Next we call and need

0 < γ := γ0 + γ1 = 1−
Dα
b−;gG (x1)

2Dα
b−;gG (x2)

+ λ

+
(g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
b−;gG (x2)

< 1, (3.49)

equivalently we find,

λ+
(g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
b−;gG (x2)

<
Dα
b−;gG (x1)

2Dα
b−;gG (x2)

, (3.50)

equivalently,

2λDα
b−;gG (x2) +

(g (b)− g (a))
m−α

Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

< Dα
b−;gG (x1) , (3.51)

which is possible for small λ, (g (b)− g (a)).
That is γ ∈ (0, 1). Hence equation (3.35) can be solved with our presented iterative
algorithms.

Conclusion 3.3. (for (II))
Our presented earlier semilocal iterative methods, see Theorem 2.7, can apply

in the above generalized fractional setting for g (x) = x for each x ∈ [a, b] since the
following inequalities have been fulfilled:

‖1−A‖∞ ≤ γ0, (3.52)

and
|F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| , (3.53)

where γ0, γ1 ∈ (0, 1), furthermore it holds

γ = γ0 + γ1 ∈ (0, 1) , (3.54)

for all x, y ∈ [a, b∗], where a < b∗ < b.
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The specific functions A (x), F (x) have been described above, see (3.38) and (3.36),
respectively.
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