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Convergence of the Neumann series
for a Helmholtz-type equation

Nicolae Valentin Păpară

Abstract. We pursue a constructive solution to the Robin problem of a
Helmholtz-type equation in the form of a single layer potential. This represen-
tation method leads to a boundary integral equation. We study the problem on
a bounded planar domain of class C2. We prove the convergence of the Neu-
mann series of iterations of the layer potential operators to the solution of the
boundary integral equation. This study is inspired by several recent papers which
cover the iteration techniques. In [7], [8], [9], D. Medkova obtained results regard-
ing the successive approximation method for Neumann, Robin and transmission
problems.
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1. Introduction

The study of the Helmholtz equation has received broad attention in
[1], [2], [3]. The equation is connected to several physical phenomena. The general
form of the equation is

∆u+ λ2u = 0

with Im λ > 0. In this paper we study the Robin problem for the Helmholtz equation
in a bounded planar domain D ⊂ R2 of class C2. We present an iteration tech-
nique which is suited to be used for a numerical computation of the solution of the
Robin problem. The technique is based on the Neumann series of iterations of the
layer potential operators. In the past the technique was studied by W.L. Wendland
(see [11], [12]). More recently the Neumann series were used by D. Medkova for sev-
eral problems associated with the Stokes system, including Robin and transmission
problems, in the papers [7], [8], [9].

In general, the boundary value problems associated with the Helmholtz equa-
tion are not uniquely solvable when coupled with the general condition Im λ > 0.
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The values of λ for which the Helmholtz equation is not uniquely solvable are called
irregular frequencies (see also [2], section 2.1). In this paper we restrict the study of
the equation to the case Re λ = 0. In this particular case the equation is

∆u− k2u = 0, (1.1)

with k > 0. This equation is also known as the Klein-Gordon equation. It is connected
to quantum mechanics. We consider the Robin boundary condition

∂u

∂ν
+ αu = g, (1.2)

where ν is the outward unit normal vector of D, α > 0 is a constant and g ∈
C(∂D,R2) .

We pursue the solution u ∈ C2(D,R2)∩C1(D,R2) of the boundary value prob-
lem (1.1),(1.2) in the form of a single layer potential

u(x) =

∫
∂D

E(x, y)h(y) dy,

where E(x, y) is the fundamental solution of the equation (1.1) and h ∈ C(∂D,R2)
is a boundary function called density. The function u defined above as a single layer
potential solves equation (1.1).

The fundamental solution of the Helmholtz equation in R2 is given by

E(x, y) =
1

2π
K0(k|x− y|) =

i

4
H

(1)
0 (k|x− y|),

where K is the modified Bessel function of the second kind and H(1) is the Hankel
function of the first kind.

We will require to assume that the domains D have smooth boundaries because
several proofs in this paper will use Green’s formula and the compactness of the layer
potential operators which are true for smooth domains. There are several established
properties regarding the layer potentials on smooth domains (see [1], [2]). We simply
state the following well known facts. In the sequel we will assume that the bounded
domain D ⊂ R2 is of class C2.

Definition 1.1. For h ∈ C(∂D,C2) define the single layer potential S with density h
by

Sh(x) =

∫
∂D

E(x, y)h(y) dy, x ∈ R2 \ ∂D,

and the double layer potential D with density h by

Dh(x) =

∫
∂D

∂E(x, y)

∂ν
h(y) dy, x ∈ R2 \ ∂D.

Lemma 1.2. The single layer potential operator S : C(∂D,C2)→ C(∂D,C2) is given
by

Sh(x) =

∫
∂D

E(x, y)h(y) dy = lim
z→x

∫
∂D

E(z, y)h(y) dy, x ∈ ∂D.
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The double layer potential operator K : C(∂D,C2) → C(∂D,C2) is given by

Kh(x) =

∫
∂D

∂E(x, y)

∂ν
h(y) dy = lim

z→x, z∈D
Dh(z) +

1

2
h(x), x ∈ ∂D.

The single layer potential operator satisfies

∂Sh(x)

∂ν
=

1

2
h(x) +K ′h(x), x ∈ ∂D,

where K ′ is the adjoint operator of K.

The equalities above are called limiting relations. They relate the values of the
layer potentials in the domain with the boundary values.

Lemma 1.3. The operators S, K and K ′ are compact.

Furthermore there are several other properties of the layer potential operators. If
we define the operators S, K, K ′ on the space L2(∂D), then S, K, K ′ are bounded.

2. Convergence of the Neumann series

Consider a solution of the problem (1.1),(1.2) in the form of a single layer po-
tential u = Sh with h ∈ C(∂D,R2). Since the single layer potential satisfies the
limiting relations in Lemma 1.2, the Robin boundary condition (1.2) becomes

1

2
h(x) +K ′h(x) + αSh(x) = g(x), x ∈ ∂D. (2.1)

This is a boundary integral equation. The invertibility of the operator

1

2
I +K ′ + αS

and the solvability of the equation were proved in [4]. The proof of the invertibility
uses the Fredholm theory. Since the operators S and K ′ are compact, the operator
I/2 + K ′ + αS has index 0. One can use Green’s formula to prove the injectivity of
the operator, from which it follows that the operator I/2 +K ′ + αS is invertible.

We will prove the convergence of a series of iterations of the layer potential
operators to the solution of the boundary integral equation (2.1). The series is called
Neumann series. In this way we give a constructive solution to the boundary value
problem (1.1),(1.2).

In the proof of the convergence we will use the following lemmas which were
proved for the Stokes system by D.Medkova in [7], [8], [10]. We prove the lem-
mas corresponding to the layer potential operators associated with the Klein-Gordon
equation. They are instrumental in finding a range for the spectrum of the operator
I/2 +K ′ + αS.

Lemma 2.1. Denote ‖S‖L2(∂D,C2) = M . Let h ∈ C(∂D,C2). Then∫
∂D

|Sh|2 dy ≤M
∫
∂D

h · Sh dy.
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Proof. For f, g ∈ L2(∂D,C2) define

〈f, g〉 =

∫
∂D

f · Sg dy.

The integral operator S has a symmetric kernel E(x, y). Therefore the product defined
before is conjugate symmetric. Since the kernel E(x, y) is positive, we deduce that
the product 〈·, ·〉 is positive definite. Then 〈·, ·〉 is an inner product on L2(∂D,C2).
Holder’s inequality gives∫

∂D

|Sh|2 dy =

(
sup

f∈L2,‖f‖=1

|〈f, h〉|

)2

.

From the Schwartz inequality we deduce∫
∂D

|Sh|2 dy ≤ 〈h, h〉 sup
f∈L2,‖f‖=1

〈f, f〉,

from which we get∫
∂D

|Sh|2 dy ≤ 〈h, h〉 sup
f∈L2,‖f‖=1

(∫
∂D

|Sf |2 dy
)1/2

.

This means ∫
∂D

|Sh|2 dy ≤ ‖S‖L2(∂D,C2)

∫
∂D

h · Sh dy.

The lemma is proved. �

Lemma 2.2. Let h ∈ C(∂D,C2). Then∫
∂D

Sh ·
(
∂Sh

∂ν
+ αSh

)
dy =

∫
D

(
k2|Sh|2 + |∇Sh|2

)
dy +

∫
∂D

α|Sh|2 dy.

Proof. If we apply Green’s formula∫
G

(ψ∆ϕ+∇ϕ · ∇ψ) dy =

∫
∂G

ψ
∂ϕ

∂ν
dy

for the vector components of Sh and Sh on the domain D, we obtain∫
D

(
Sh ·∆Sh+∇Sh · ∇Sh

)
dy =

∫
∂D

Sh · ∂Sh
∂ν

dy.

The equality implies∫
D

(
Sh · k2Sh+ |∇Sh|2

)
dy =

∫
∂D

Sh · ∂Sh
∂ν

dy,

and therefore∫
∂D

Sh ·
(
∂Sh

∂ν
+ αSh

)
dy =

∫
D

(
k2|Sh|2 + |∇Sh|2

)
dy +

∫
∂D

α|Sh|2 dy. �

Lemma 2.3. Let h ∈ C(∂D,C2). Then∫
R2\∂D

(
k2|Sh|2 + |∇Sh|2

)
dy =

∫
∂D

h · Sh dy.
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Proof. From Green’s formula we have∫
D

(
Sh · k2Sh+ |∇Sh|2

)
dy =

∫
∂D

Sh · ∂Sh
∂ν

dy,

Using the limiting relations in Lemma 1.2, we get∫
D

(
k2|Sh|2 + |∇Sh|2

)
dy =

∫
∂D

Sh · (h/2 +K ′h)dy. (2.2)

If we apply Green’s formula on the expanding domains Dc ∩B(0, r) that converge to
Dc and we use the Sommerfeld condition (see also [2], [10])

∂u

∂|x|
(x) + ku(x) = o

(
|x|−1/2

)
,

then we deduce∫
Dc

(
k2|Sh|2 + |∇Sh|2

)
dy =

∫
∂D

Sh · (h/2−K ′h)dy. (2.3)

From (2.2) and (2.3) we get∫
R2\∂D

(
k2|Sh|2 + |∇Sh|2

)
dy =

∫
∂D

h · Sh dy. �

The following theorem gives a range for the spectrum of the operator I/2 +K ′+αS.
It will be used to find a suitable norm on C(∂D,C2), in order to prove the convergence
of the Neumann series.

Theorem 2.4. The spectrum σ of the operator

1

2
I +K ′ + αS : C(∂D,C2)→ C(∂D,C2)

satisfies

σ(I/2 +K ′ + αS) ⊂ (0, 1 +Mα].

Proof. Suppose λ is a complex eigenvalue of the operator I/2 + K ′ + αS with the
corresponding eigenvector h ∈ C(∂D,C2). Then

λ

∫
∂D

h · Sh dy =

∫
∂D

Sh · (I/2 +K ′ + αS)h dy,

from which it follows

λ

∫
∂D

h · Sh dy =

∫
∂D

Sh

(
∂Sh

∂ν
+ αSh

)
dy.

We showed in Lemma 2.3 that∫
∂D

h · Sh dy =

∫
R2\∂D

(
k2|Sh|2 + |∇Sh|2

)
dy ≥ 0.

Assume that
∫
∂D

h · Sh dy = 0. Then Sh ≡ 0 and therefore

(I/2 +K ′ + αS)h =
∂Sh

∂ν
+ αSh = 0.
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From the invertibility of the operator I/2 + K ′ + αS we deduce h = 0, which is a
contradiction. Therefore ∫

∂D

h · Sh dy > 0.

In Lemma 2.2 we proved that∫
∂D

Sh

(
∂Sh

∂ν
+ αSh

)
dy ≥ 0.

It follows that λ ≥ 0 and, since the operator I/2 +K ′ +αS is invertible, we obtain
λ > 0, which proves the first part of the estimate of the range of

σ

(
1

2
I +K ′ + αS

)
.

If we use Lemmas 2.1, 2.2 and 2.3, then we successively deduce

λ =

∫
∂D

Sh
(
∂Sh
∂ν + αSh

)
dy∫

∂D
h · Sh dy

,

λ =

∫
D

(
k2|Sh|2 + |∇Sh|2

)
dy +

∫
∂D

α|Sh|2 dy∫
R2\∂D (k2|Sh|2 + |∇Sh|2) dy

,

λ ≤ 1 +

∫
∂D

α|Sh|2 dy∫
R2\∂D (k2|Sh|2 + |∇Sh|2) dy

,

λ ≤ 1 +

∫
∂D

α|Sh|2 dy∫
∂D

h · Sh dy
≤ 1 +Mα.

The theorem is proved. �

Theorem 2.5. Let g ∈ C(∂D,R2) and 0 < c < 2/(1 + Mα). Define the operator
T = I − c(I/2 +K ′ + αS). Then the series

∞∑
j=0

c T jg (2.4)

converges in C(∂D,R2) to the solution of the boundary integral equation

1

2
h+K ′h+ αSh = g.

Remark 2.6. The series (2.4) is called Neumann series. We will use the spectrum of
the operator I/2 +K ′+αS to prove the convergence. It is well known (see [8]) that
if ‖T‖ < 1, then

∞∑
j=0

T j = (I − T )−1.

We need the following lemma about the relation between the eigenvalues and the
norms in a complex Banach space. We state the lemma without proof. The lemma
can be found in [8].
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Lemma 2.7. Let X be a complex Banach space and B the set of the norms on X that
are equivalent to the original norm. Suppose A is a bounded linear operator in X and
r(A) is the spectral radius of A. Then

r(A) = inf
‖·‖∈B

‖A‖.

Proof. (proof of theorem 2.5) From Theorem 2.4 we have

σ(I/2 +K ′ + αS) ⊂ (0, 1 +Mα].

Using the definitions that we made, T = I − c(I/2 +K ′ + αS) and

c ∈
(

0,
2

1 +Mα

)
,

we obtain σ(T ) ⊂ (−1, 1) and therefore r(T ) < 1.
From Lemma 2.7 we deduce that there is an equivalent norm ‖·‖∗ on C(∂D,C2),

such that ‖T‖∗ < 1. It follows that the Neumann series
∞∑
j=0

c T jg

converges to

c(I − T )−1g =

(
1

2
I +K ′ + αS

)−1
g = h,

which ends the proof. �
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