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1. Introduction

In this paper we are concerned with the existence of solutions to boundary value
problems (BVP for short) for fractional order differential inclusions. In particular, we
consider the boundary value problem

HDry(t) ∈ F (t, y(t)), for a.e. t ∈ J = [1, T ], 1 < r ≤ 2, (1.1)

y(1) = 0, y(T ) = yT , (1.2)

where HDr is the Hadamard fractional derivative, (E, | · |) is a Banach space, P(E)
is the family of all nonempty subsets of E, F : [1, T ] × E → P(E) is a multivalued
map, and yT ∈ R.

Differential equations of fractional order are valuable in modeling phenomena in
various fields of science and engineering. They can be found in viscoelasticity, electro-
chemistry, control, porous media, electromagnetism, etc. The monographs of Hilfer
[18], Kilbas et al. [19], Podlubny [23], and Momani et al. [21] are very good sources on
the background mathematics and various applications of fractional derivatives. The
literature on Hadamard-type fractional differential equations has not undergone as
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much development as it has for the Caputo and Riemann-Liouville fractional deriva-
tives; see, for example, the papers of Ahmed and Ntouyas [2], Benhamida, Graef, and
Hamani [10], and Thiramanus, Ntouyas, and Tariboon [24].

The fractional derivative that Hadamard [16] introduced in 1892 differs from
other fractional derivatives in the sense that the kernel of the integral in the defini-
tion of the Hadamard derivative contains a logarithmic function with an arbitrary
exponent. A detailed description of the Hadamard fractional derivative and integral
can be found in [11, 12, 13].

In this paper, we present existence results for the problem (1.1)-(1.2) in the
case where the right hand side is convex valued. This result relies on the set-valued
analog of Mönch’s fixed point theorem combined with the technique of measure of
noncompactness. Recently, this has proved to be a valuable tool in studying fractional
differential equations and inclusions in Banach spaces; for additional details, see the
papers of Laosta et al. [20], Agarwal et al. [1], and Benchohra et al. [7, 8, 9]. Our
results here extend to the multivalued case some previous results in the literature and
constitutes what we hope is an interesting contribution to this emerging field. We
include an example to illustrate our main results.

2. Preliminaries

This section contains definitions, concepts, lemmas, and preliminary facts that
will be used in the remainder of this paper. Let C(J,E) be the Banach space of all
continuous functions from J into E with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J},
and let L1(J,E) be the Banach space of Lebesgue integrable functions y : J → E
with the norm

‖y‖L1 =

∫ T

1

|y(t)|dt.

The space AC1(J,E) is the space of functions y : J → E that are absolutely contin-
uous and have an absolutely continuous first derivative.

For any Banach space X, we set
Pcl(X) = {Y ∈ P(X) : Y is closed},
Pb(X) = {Y ∈ P(X) : Y is bounded},
Pcp(X) = {Y ∈ P(X) : Y is compact}, and
Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}.

A multivalued map G : X → P(X) is convex (closed) valued if G(X) is convex
(closed) for all x ∈ X. We say that G is bounded on bounded sets if G(B) = ∪x∈BG(x)
is bounded in X for all B ∈ Pb(X) (i.e., supx∈B{sup{|y| : y ∈ G(x)}} is bounded).

The mapping G is upper semi-continuous (u.s.c) on X if for each x0 ∈ X, the
set G(x0) is a nonempty closed subset of X, and for each open set N of X containing
G(x0), there exists an open neighborhood N0 of x0 such that G(N0) ⊂ N . A map G
is said to be completely continuous if G(B) is relatively compact for every B ∈ Pb(X).

If the multivalued map G is completely continuous with nonempty compact
values, then G is u.s.c if and only if G has a closed graph (i.e., xn → x∗, yn → y∗,
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yn ∈ G(xn) imply y∗ ∈ G(x∗)). The mapping G : X → P(X) has a fixed point if
there exists x ∈ X such that x ∈ G(x). The set of fixed points of the multivalued
operator G will be denoted by FixG. A multivalued map G : J → Pcl(X) is said to
be measurable if for every y ∈ X, the function

t→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable.

Definition 2.1. A multivalued map F : J × E → P(E) is said to be Carathéodory if:

(1) t→ F (t, u) is measurable for each u ∈ E;
(2) u→ F (t, u) is upper semicontinuous for a.e. t ∈ J .

For each y ∈ AC1(J,E), define the set of selections of F by

SF,y = {v ∈ L1(J,E) : v(t) ∈ F (t, y(t)) a.e. t ∈ J}.

Let (X, d) be a metric space induced from the normed space (X, | · |). The function
Hd : P(X)× P(X)→ R+ ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}

is known as the Hausdorff-Pompeiu metric.
For more details on multivalued maps, see the books of Aubin and Cellina [4],

Aubin and Frankowska [5], Castaing and Valadier [14], and Deimling [15].
For convenience, we first recall the definitions of the Kuratowski measure of

noncompacteness and summarize the main properties of this measure.

Definition 2.2. ([3, 6]) Let E be a Banach space and let ΩE be the bounded subsets of
E. The Kuratowski measure of noncompactness is the map β : ΩE → [0,∞) defined
by

β(B) = inf{ε > 0 : B ⊂
m⋃
j=1

Bj and diam(Bj) ≤ ε} .

Properties: The Kuratowski measure of noncompactness satisfies the following prop-
erties (for more details see [3, 6]):

(P1) β(B) = 0 if and only if B is compact (B is relatively compact).

(P2) β(B) = β(B).

(P3) A ⊂ B implies β(A) ≤ β(B).

(P4) β(A+B) ≤ β(A) + β(B).

(P5) β(cB) = |c|β(B), c ∈ R.

(P6) β(convB) = β(B).

Here B and conv B denote the closure and the convex hull of the bounded set B,
respectively.

For a given set V of functions u : J → E, we set

V (t) = {u(t) : u ∈ V }, t ∈ J,
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and

V (J) = {u(t) : u ∈ V (t), t ∈ J}.

Theorem 2.3. ([17], [22, Theorem 1.3]) Let E be a Banach space and let C be a
countable subset of L1(J,E) such that there exists h ∈ L1(J,R+) with |u(t)| ≤ h(t)
for a.e. t ∈ J and every u ∈ C. Then the function ϕ(t) = β(C(t)) belongs to L1(J,R+)
and satisfies

β

({∫ T

0

u(s)ds : u ∈ C

})
≤ 2

∫ T

0

β(C(s))ds.

Lemma 2.4. ([20, Lemma 2.6]) Let J be a compact real interval, F be a Carathéodory
multivalued map, and let θ be a linear continuous map from L1(J,E) → C(J,E).
Then the operator

θ ◦ SF,y : L1(J,E)→ Pcp,c(C(J,E)), y → (θ ◦ SF,y)(y) = θ(SF,y)

is a closed graph operator in L1(J,E)× C(J,E).

In what follows, log(·) = loge(·), and n = [r] + 1 where [r] denotes the integer
part of r.

Definition 2.5. ([19]) The Hadamard fractional integral of order r for a function h :
[1,+∞)→ R is defined by

Irh(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
h(s)

s
ds, r > 0,

provided the integral exists.

Definition 2.6. ([19]) For a function h on the interval [1,+∞), the Hadamard fractional
derivative of h of order r is defined by

(HDrh)(t) =
1

Γ(n− r)

(
t
d

dt

)n ∫ t

1

(
log

t

s

)n−r−1
h(s)

s
ds, n− 1 < r < n, n = [r] + 1.

Let us now recall Mönch’s fixed point theorem.

Theorem 2.7. ([22, Theorem 3.2]) Let K be a closed and convex subset of a Banach
space E, U be a relatively open subset of K, and N : U → P(K). Assume that graphN
is closed, N maps compact sets into relatively compact sets, and for some x0 ∈ U , the
following two conditions are satisfied:

(i) M ⊂ U , M ⊂ conv(x0 ∪ N(M)), M = C, with C a countable subset of M ,
implies M is compact;

(ii) x 6∈ (1− λ)x0 + λN(x) for all x ∈ U \ U , λ ∈ (0, 1).

Then there exists x ∈ U with x ∈ N(x).
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3. Main results

Let us start by defining what we mean by a solution of the problem (1.1)-(1.2).

Definition 3.1. A function y ∈ AC1(J,E) is said to be a solution of (1.1)-(1.2) if
there exist a function v ∈ L1(J,E) with v(t) ∈ F (t, y(t)) for a.e. t ∈ J , such that
HDαy(t) = v(t) on J , and the conditions y(1) = 0 and y(T ) = yT are satisfied.

Lemma 3.2. Let h : J → E be a continuous function. A function y is a solution of
the fractional integral equation

y(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
h(s)

ds

s
+

(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
h(s)

ds

s

]
(3.1)

if and only if y is a solution of the fractional BVP
HDry(t) = h(t), for a.e. t ∈ J = [1, T ], 1 < r ≤ 2, (3.2)

y(1) = 0, y(T ) = yT . (3.3)

Proof. Applying the Hadamard fractional integral of order r to both sides of (3.2),
we obtain

y(t) = c1(log t)r−1 + c2(log t)r−2 + HIrh(t). (3.4)

From (3.3), we have c2 = 0 and

c1 =
1

(log T )r−1
[yT − HIrh(T )].

Hence, we obtain (3.1). Conversely, it is clear that if y satisfies equation (3.1), then
(3.2)-(3.3) hold. �

Theorem 3.3. Let R > 0, B = {x ∈ E : ‖x‖ ≤ R}, U = {x ∈ C(J,E) : ‖x‖ ≤ R},
and assume that:

(H1) F : J × E → Pcp,p(E) is a Carathéodory multi-valued map;
(H2) For each R > 0, there exists a function p ∈ L1(J,E) such that

‖F (t, u)‖P = sup{|v| : v(t) ∈ F (t, y)} ≤ p(t)
for each (t, y) ∈ J × E with |y| ≥ R, and

lim inf
R→∞

∫ T
0
p(t)dt

R
= δ <∞;

(H3) There exists a Carathéodory function ψ : J × [1, 2R]→ R+ such that

β(F (t,M)) ≤ ψ(t, β(M)) a.e. t ∈ J and each M ⊂ B;

(H4) The function ϕ = 0 is the unique solution in C(J, [1, 2R]) of the inequality

ϕ(t) ≤ 2

{
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
ψ(s, ϕ(s))

ds

s

+
(log t)r−1

(log T )r−1

[
yT +

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
ψ(s, ϕ(s))

ds

s

]}
for t ∈ J . (3.5)
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Then the BVP (1.1)-(1.2) has at least one solution in C(J,B), provided that

δ <
Γ(r + 1)

(log T )r
. (3.6)

Proof. We wish to transform the problem (1.1)-(1.2) into a fixed point problem, so
consider the multivalued operator

N(y) =

{
h ∈ C(J,R) : h(t) =

1

Γ(r)

∫ t

1

(
log

t

s

)r−1
v(s)

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
v(s)

ds

s

]
, v ∈ SF,y

}
.

Clearly, from Lemma 3.2, the fixed points of N are solutions to (1.1)-(1.2). We shall
show that N satisfies the assumptions of Mönch’s fixed point theorem. The proof will
be given in several steps. First note that U = C(J,B).

Step 1: N(y) is convex for each y ∈ C(J,B).

Take h1, h2 ∈ N(y); then there exist v1, v2 ∈ SF,y such that for each t ∈ J , we have

hi(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
vi(s)

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
vi(s)

ds

s

]
for i = 1, 2. Let 0 ≤ d ≤ 1; then for each t ∈ J ,

(dh1 + (1− d)h2)(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
[dv1 + (1− d)v2]

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
[dv1 + (1− d)v2]

ds

s

]
.

Since SF,y is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ N(y).

Step 2: N(M) is relatively compact for each compact M ⊂ U .

Let M ⊂ U be a compact set and let {hn} be any sequence of elements of
N(M). We will show that {hn} has a convergent subsequence by using the Arzelà-
Ascoli criterion of compactness in C(J,B). Since hn ∈ N(M), there exist yn ∈ M
and vn ∈ SF,y such that

hn(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
vn(s)

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
vn(s)

ds

s

]
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for n ≥ 1. Using Theorem 2.3 and the properties of the Kuratowski measure of
noncompactness, we have

β({hn(t)}) ≤ 2

{
1

Γ(r)

∫ t

1

β

({(
log

t

s

)r−1
vn(s)

s
: n ≥ 1

})
ds

+
(log t)r−1

(log T )r−1

[
yT +

1

Γ(r)

∫ T

1

β

({(
log

T

s

)r−1
vn(s)

s
: n ≥ 1

})
ds

]}
.

(3.7)

On the other hand, since M(s) is compact in E, the set {vn(s) : n ≥ 1} is compact.
Consequently, β({vn(s) : n ≥ 1}) = 0 for a.e. s ∈ J . Furthermore,

β

({(
log

t

s

)r−1
vn(s)

s

})
=

(
log

t

s

)r−1
1

s
β({vn(s) : n ≥ 1}) = 0

and

β

({(
log

T

s

)r−1
vn(s)

s

})
=

(
log

T

s

)r−1
1

s
β({vn(s) : n ≥ 1}) = 0

for a.e. t, s ∈ J . Hence, from this and (3.7), {hn(t) : n ≥ 1} is relatively compact in
B for each t ∈ J . In addition, for each t1, t2 ∈ J with t1 < t2, we have

|hn(t2)− hn(t1)| =

∣∣∣∣∣ 1

Γ(α)

∫ t1

1

[(
log

t2
s

)α−1
−
(

log
t1
s

)α−1]
vn(s)

s
ds

+
1

Γ(α)

∫ t2

t1

(
log

t2
s

)α−1
vn(s)

s
ds

∣∣∣∣∣
≤ p(t)

Γ(α)

∫ t1

1

[(
log

t2
s

)α−1
−
(

log
t1
s

)α−1]
ds

s

+
p(t)

Γ(α)

∫ t2

t1

(
log

t2
s

)α−1
ds

s
.

As t1 → t2, the right hand side of the above inequality tends to zero. This shows that
{hn : n ≥ 1} is equicontinuous. Consequently, {hn : n ≥ 1} is relatively compact in
C(J,B).

Step 3: N has a closed graph.

Let yn → y∗, hn ∈ N(yn), and hn → h∗. We need to show that h∗ ∈ N(y∗). Now
hn ∈ N(yn) means that there exists vn ∈ SF,y such that, for each t ∈ J ,

hn(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
vn(s)

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
vn(s)

ds

s

]
.
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Consider the continuous linear operator θ : L1(J,E)→ C(J,E) defined by

θ(v)(t)→ hn(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
vn(s)

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
vn(s)

ds

s

]
.

Clearly, ‖hn(t) − h∗(t)‖ → 0 as n → ∞. From Lemma 2.4 it follows that θ ◦ SF is a
closed graph operator. Moreover, hn(t) ∈ θ(SF,yn). Since yn → y, Lemma 2.4 implies

h(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
v(s)

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
v(s)

ds

s

]
.

Step 4: M is relatively compact in C(J,B).

Suppose M ⊂ U , M ⊂ conv({0} ∪N(M)), and M = C for some countable set
C ⊂ M . Using an argument similar to the one used in Step 2 shows that N(M) is
equicontinuous. Then, since M ⊂ conv({0}∪N(M)), we see that M is equicontinuous
as well. To apply the Arzelà-Ascoli theorem, it remains to show that M(t) is relatively
compact in E for each t ∈ J . Since C ⊂M ⊂ conv({0} ∪N(M)) and C is countable,
we can find a countable set H = {hn : n ≥ 1} ⊂ N(M) with C ⊂ conv({0} ∪ H).
Then, there exist yn ∈M and vn ∈ SF,yn such that

hn(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
vn(s)

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
vn(s)

ds

s

]
.

Since M ⊂ C ⊂ conv({0} ∪ H)), from the properties of the Kuratowski measure of
noncompactness, we have

β(M(t)) ≤ β(C(t)) ≤ β(H(t)) = β({hn(t) : n ≥ 1}).
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Using (3.7) and the fact that vn(s) ∈M(s), we obtain

β(M(t)) ≤ 2

{
1

Γ(r)

∫ t

1

β

({(
log

t

s

)r−1
vn(s)

s
: n ≥ 1

})
ds

+
(log t)r−1

(log T )r−1

[
yT +

1

Γ(r)

∫ T

1

β

({(
log

T

s

)r−1
vn(s)

s
: n ≥ 1

})
ds

]}

≤ 2

{
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
β(M(s))

ds

s

+
(log t)r−1

(log T )r−1

[
yT +

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
β(M(s))

ds

s

]}

≤ 2

{
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
ψ(s, β(M(s)))

ds

s

+
(log t)r−1

(log T )r−1

[
yT +

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
ψ(s, β(M(s)))

ds

s

]}
.

We also have that the function ϕ given by ϕ(t) = β(M(t)) belongs to
C(J, [1, 2R]). Consequently, by (H4), ϕ = 0; that is, β(M(t)) = 0 for all t ∈ J .
Now, by the Arzelà-Ascoli theorem, M is relatively compact in C(J,B).

Step 5: Let h ∈ N(y) with y ∈ U . We claim that N(U) ⊂ U . If this were not the case,
then in view of (H2), there exists functions v ∈ SF,y and p ∈ L1(J,E) such that

h(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
v(s)

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
v(s)

ds

s

]
,

and

R < ‖N(y)‖P ≤
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
|v(s)|ds

s

+
(log t)r−1

(log T )r−1

[
|yT |+

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
|v(s)|ds

s

]

≤ (log T )r

Γ(r + 1)

∫ t

1

p(s)ds+
(log T )r

Γ(r + 1)

∫ T

1

p(s)ds

≤ 2
(log T )r

Γ(r + 1)

∫ t

1

p(s)ds.

Dividing both sides by R and taking the lim inf as R→∞, we have

2

[
(log T )r

Γ(r + 1)

]
δ ≥ 1
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which contradicts (3.6). Hence, N(U) ⊂ U .
As a consequence of Steps 1-5 and Mönch’s Theorem (Theorem 2.7 above), N

has a fixed point y ∈ C(J,B) that in turn is a solution of problem (1.1)-(1.2). �

4. An example

We conclude this paper with an example to illustrate our main result, namely,
Theorem 3.3 above.

Consider the fractional differential inclusion

HDαy(t) ∈ F (t, y(t)), for a.e. t ∈ J = [1, e], 0 < α ≤ 1, (4.1)

y(1) = 0, y(e) = 1. (4.2)

Here, F : [1, e]× R→ P(R) is a multivalued map satisfying

F (t, y) = {v ∈ R : f1(t, y) ≤ v ≤ f2(t, y)},
where f1, f2 : [1, e] × R → R, f1(t, ·) is lower semi-continuous (i.e., the set {y ∈ R :
f1(t, y) > µ} is open for each µ ∈ R), and f2(t, ·) is upper semi-continuous (i.e., the
set the set {y ∈ R : f2(t, y) < µ} is open for each µ ∈ R). We assume that there is a
function p ∈ L1(J,R) such that

‖F (t, u)‖P = sup{|v|, v(t) ∈ F (t, y)}
= max(|f1(t, y)|, |f2(t, y)|} ≤ p(t), t ∈ [1, e], y ∈ R.

It is clear that F is compact and convex valued, and is upper semi-continuous.
Choose C(s) to be the space of linear functions and choose ϕ(t) = β(C(t)) such that

β(u(s)) =
u(s)

2

with

u(s) = as, a > 0,
2

a
≤ s ≤ 4R

a
.

For (t, y) ∈ J × R with |y| ≥ R, we have

lim inf
R→∞

∫ e
0
p(t)dt

R
= δ <∞.

Finally, we assume that there exists a Carathéodory function ψ : J [1, 2R]→ R+ such
that

β(F (t,M)) ≤ ψ(t, β(M)) a.e. t ∈ J and each M ⊂ B = {x ∈ R : |x| ≤ R},
and ϕ = 0 is the unique solution in C(J, [1, 2R]) of the inequality

ϕ(t) ≤ 2

{
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
ψ(s, ϕ(s))

ds

s

+ (log t)r−1
[
1 +

1

Γ(r)

∫ e

1

(
log

e

s

)r−1
ψ(s, ϕ(s))

ds

s

]}
.

for t ∈ J .
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Since all the conditions of Theorem 3.3 are satisfied, problem (4.1)-(4.2) has at
least one solution y on [1, e].
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