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Some comments on a linear programming
problem

Marcel Bogdan

Abstract. Besides the very known two exits of the Simplex Algorithm we consider
two more cases when at least a solution exists and to decide whether or not the
solution is unique. This situation occurred in a linear programming problem, on
one hand applying the Simplex Algorithm and on the other hand using Matlab
command linprog, that led to the case of unbounded solution set and its construc-
tion. Some necessary conditions on data are given so that the set of solutions to
be boundedless.
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1. Introduction

The standard form of a linear programming problem with data c ∈ Rn, A ∈Mm,n(R),
and b ∈ Rm is considered to be 

cTx −→ min

A · x = b

x ≥Rn 0Rn .

(1.1)

There are some ways to obtain the solution(s) for this if any. Two algorithms are
usually used: the simplex algorithm and the interior point algorithm. Theoretical
aspects and examples are given in [1, 2, 3, 4, 7], where simplex algorithm is exposed
and [6, 8, 9, 10, 11], where interior point algorithm can be found. On one side, there
is the Simplex algorithm due to George Dantzig in 1947, that can be used to solve
(1.1) with a pen and paper, on the other side there is a personal computer, a software
(viewed as technology; Excel [12], Matlab [13], Octave [14, 15]), then pretending to
understand the answer provided by the implemented algorithm. Comments about
where mathematical programming extensions may be headed can be found in [5].
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The commonly used simplex algorithm has two exits. Either provides a solution
when the problem has one or establishes when there is no solution for the problem, the
objective function being unbounded. When the algorithm is initiated it is not known
if the admissible set is bounded. We propose a continuation of the algorithm when
at least a solution exists and to decide whether or not the solution is unique. Our
objective is to give a criteria for multiple solution (Proposition 3.2) and to indicate
the steps when this is possible, in Algorithm 2.0, Step 4, case a3. This case has two
branches:

a3α) for a convex hull of a finite set of solutions;

a3β) for an unbounded set of solutions.

Some comments are related to the procedures and logistics to obtain a set of solu-
tions, generated by an initial admissible point. In order to justify them and how these
two different approaches work, the simplex algorithm along with Matlab optionally,
we give the following example.

Example 1.1. Let us consider the linear programming problem

x1 − x2 − 3x3 + 5x4 −→ min

−x1 + x2 + x3 + x4 = 1

x1 − 2x2 + 3x3 + x5 = 2

x1 − x2 + x6 = 3

x1, ..., x6 ≥ 0,

(1.2)

with data cT = (1,−1,−3, 5, 0, 0),

A =

 −1 1 1 1 0 0
1 −2 3 0 1 0
1 −1 0 0 0 1

 , and b =

 1
2
3

 .

Denote by Aj ∈ R3 the jth column of the matrix A = (Aj)1≤j≤6. The canonical basis
{A4, A5, A6} is primal admissible. We have B = {4, 5, 6} the set of indexes for which

b =
∑
j∈B

α0jA
j .

By the simplex algorithm, after four steps (see Figure 1), one gets {A1, A2, A3} as
optimal basis, so B = {1, 2, 3}.
The solution xB has the components

xBj =

{
α0j , j ∈ B
0, else

and for this case is

(xB)T = (16, 13, 4, 0, 0, 0).
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Figure 1. Simplex-primal-table(s)

In the fourth table we have α50 = 0, while α52 = −1, α53 = 0, and α51 = −1,
therefore the multiple solution cannot be obtained by replacing one of the vectors from
the optimal basis with A5. The other six bases that are primal admissible {A1, A2, A3},
{A1, A2, A4}, {A1, A4, A6}, {A2, A3, A6}, {A2, A5, A6}, {A3, A4, A6}1 and three bases
that are dual admissible {A1, A2, A3}, {A1, A3, A5}, {A2, A3, A5}, lead to the same
optimal basis {A1, A2, A3}, consequently to the same solution. Nevertheless, it is
incorrectly to be considered as unique.

By Matlab we have

>> c = [1 − 1 − 3 5 0 0]

>> Aeq = [−1 1 1 1 0 0 ; 1 − 2 3 0 1 0; 1 − 1 0 0 0 1]

>> beq = [1; 2; 3]

>> lb = zeros(1, 6)

>> [x z] = linprog(c, [ ], [ ], Aeq, beq, lb, [ ]),

with the solution generated by the interior point algorithm

(x1)T = (102.8876, 99.8876, 4.0000, 0, 86.8876, 0)

with the minimal value z = −9.

It seems that solution x1 cannot be obtained by the simplex algorithm. Conse-
quently, in order to find the set of solutions, the simplex algorithm could and should
be improved. Instead, the solution for (1.2) can be obtained analytically. From the
first constraint x4 = 1 + x1− x2− x3 ≥ 0 we have the equivalent linear programming

1none of the other five extremal points is optimum
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problem 

3x1 − 3x2 − 4x3 −→ min

−x1 + x2 + x3 ≤ 1

x1 − 2x2 + 3x3 ≤ 2

x1 − x2 ≤ 3

x1, x2, x3 ≥ 0.

(1.3)

Once again from the first constraint and the third one x3 ≤ 1 + x1 − x2 ≤ 4.
The function to be optimized is

3 · (x1 − x2 − x3)− x3 ≥ 3 · (−1)− x3 ≥ −3− 4,

its minimum value being attained when x1 − x2 − x3 = −1 and x3 = 4, so

x1 − x2 = 3,

at the intersection of the two planes. From{
−x1 + x2 + x3 = 1

x1 − x2 = 3

and from the second constraint of (1.3) we get x2 ≥ 13. The complete solution for
(1.3) is therefore (x1, x2, x3) = (α+ 3, α, 4), with α ≥ 13, or equivalently

(x1, x2, x3) = (16 + α, 13 + α, 4), with α ≥ 0,

thus (x1, x2, x3, x4, x5, x6) = (16 + α, 13 + α, 4, 0, α, 0), with α ≥ 0, for (1.2).
Remark that, for ε1, ε2 > 0, (16− ε1, 13− ε2, 4), (16− ε1, 13, 4), (16, 13− ε2, 4)

are not solutions.
By Matlab we have
>> c′ = [3 − 3 − 4]
>> A′ = [−1 1 1; 1 − 2 3; 1 − 1 0]
>> b = [1; 2; 3]
>> lb = zeros(1, 3)
>> [x z′] = linprog(c′, A′, b, [ ], [ ], lb, [ ]),

with the solution generated by the interior point algorithm

(x2)T = (116.3595, 113.3595, 4.0000),

with the minimal value z′ = −7 (with z = 2z′ + 5).
Let us denote by f : R6 → R and f2 : R3 → R the objective functions and by

S = {x ∈ R6 |A · x = b, x ≥R6 0R6}, S′ = {x ∈ R3 |A′ · x ≤R3 b, x ≥R3 0R3}, the
admissible sets for (1.2) and (1.3), respectively.

Note that, argminx∈Sf(x), the set of solutions for (1.2) can be written as

{xB + α · (x1 − xB) |α ≥ 0},

while for (1.3), one has

argminx∈S′f2(x) = {x0 + α · (x2 − x0) |α ≥ 0},

where (x0)T = (16, 13, 4).
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Every vector x ∈ Rn is seen as a column vector and its transpose, denoted by
xT = (x1, ..., xn) ∈ Rn, as a row vector. In particular, denote by 0TRn = (0, ..., 0) ∈ Rn
and by eTj = (0, ..., 0, 1, 0, ..., 0) with 1 for the jth position. The scalar product of
c ∈ Rn and x is given by

cTx =

n∑
i=1

ci · xi.

For a matrix A ∈Mm,n(R) we denote by Aj ∈ Rm the jth column of A = (Aj)1≤j≤n.
Let us remind two well-known relations in Rn. Along with the already used one

x ≥Rn 0Rn , that is xi ≥ 0, for all i ∈ {1, ..., n}, one has x >Rn 0Rn iff xi ≥ 0, ∀i and
∃i0 with xi0 > 0. Also, x ≤Rn y iff y − x ≥ 0Rn , and x >Rn y iff x− y >Rn 0Rn .

In the next section we give an easy example, a common type of situation when
the solution is on the size of a polyhedron, i.e. the solution is not a unique point, in
order to indicate when a subcase of step 4 of the new proposed algorithm occurs. In
section 3, in step 4 of the Simplex Algorithm 2.0 are inserted the cases containing the
bounded set of solutions as a convex combination and the unbounded set of solutions,
respectively. These are summary formulated in Proposition 3.2. In its proof we indicate
the direction, a vector denoted by c̄, for the case of unboundedness (see also Lemma
3.1). The last section consists on the inductive construction of the unbounded set of
solutions. Besides this, some necessary conditions on data are given in Proposition
4.5 so that the set of solutions to be boundedless.

Some basic motivations for this level of exposition could be finding the closest
solution of (1.1) to a given point or, to find the point with integer coordinates, the
closest one to the set of solutions.

2. An Elementary Example for Multiple Solution

Let us consider a simple linear programming problem with multiple solutions
−x1 − x2 −→ min

x1 + x2 ≤ 2

x1 ≤ 1

x1, x2 ≥ 0.

(2.1)

From its standard form 
−x1 − x2 −→ min

x1 + x2 + x3 = 2

x1 + x4 = 1

x1, x2, x3, x4 ≥ 0,

we have data cT = (−1,−1, 0, 0),

A =

(
1 1 1 0
1 0 0 1

)
= (Aj)1≤j≤4, A

j ∈ R2, and b =

(
2
1

)
.

From the very first step, {A1, A2} is an optimal basis. Using the usual simplex algo-
rithm we get the solution (x10)T = (1, 1, 0, 0). Replacing A4 with A1 (see Figure 2),
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we obtain another solution (x20)T = (0, 2, 0, 1). Therefore, the solution for (2.1) is the
convex combination of (1, 1)T and (0, 2)T , that is

{(1− γ, 1 + γ)T | γ ∈ [0, 1]}.

Figure 2. Interchanging vectors

Our comment is that in contrast to this example, in Example 1.1 we cannot
introduce A5 in the optimal basis. It is a known fact that the optimum, if there is
any, is attained at least in a point and at most on a hyperplane. How this should be
done, eventually using tables?

Remark 2.1. It can be observed in the previous example(s) that max
i∈B

αi0 = 0. This

does not imply that the solution is not unique. For the following problem

−x1 − x2 − 2x3 −→ min

x1 + x2 + x4 = 1

x1 + x3 + x5 = 1

x3 + x6 = 1

x1, ..., x6 ≥ 0,

we can obtain optimal bases {A2, A3, A5}, α10 = 0 and {A1, A2, A3}, α50 = 0, respec-
tively with the unique solution (0, 1, 1, 0, 0, 0). In this case min

j∈B
α0j = 0.

3. The Simplex Algorithm 2.0

Let

S = {x ∈ Rn |A · x = b, x ≥Rn 0n}
be the admissible set related to (1.1).

In Step 4 we add the situations that provide the multiplicity solution.

Algorithm 2.0
Step 1. Chose primal admissible basis B from (Aj)1≤j≤n = A;

Determine α0j (j ∈ B := {j ∈ {1, 2, ..., n} |Aj ∈ B}) such that b =
∑
j∈B α0jA

j ;

Put s := 0;
Step 2. Determine αij (i ∈ B := {1, 2, ..., n} \ B, j ∈ B) such that Ai =

∑
j∈B αijA

j ;
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Step 3. Compute

αi0 =
∑
j∈B

αijcj − ci,∀i ∈ B; α00 =
∑
j∈B

α0jcj ;

Step 4. Look for the signs of the numbers αi0 (i ∈ B)

a) ∀i ∈ B, αi0 ≤ 0 then declare: ”point xs ∈ Rn

xsj =

{
α0j , j ∈ B
0, j ∈ B

is a solution for problem (1.1)” and α00 is the minimum value of the objective
function;
a1) max

i∈B
αi0 < 0, then declare:

”xs is the unique solution generated by B”.
a2) max

i∈B
αi0 = 0 and min

j∈B
α0j = 0, then declare:

”xs is the unique solution generated by B”.
a3) max

i∈B
αi0 = 0 and min

j∈B
α0j > 0, then declare:

”xs is NOT the unique solution”;
form the set

B0 = {i ∈ B |αi0 = 0} = {̄i1, ī2, ..., īp};
a3α) ∀i ∈ B0, ∃j ∈ B such that αij > 0, chose an index h ∈ B0;

s := s+ 1;
If s ≤ p declare: ”each element of co{x0, xs} is solution for problem
(1.1)”, and go to Step 6;

a3β) ∃ī ∈ B0 such that ∀j ∈ B, αīj ≤ 0 then declare:
”the set of solutions is unbounded”;

b) ∃i ∈ B, αi0 > 0 then form the set

B+ = {i ∈ B |αi0 > 0};
Step 5. ∀i ∈ B+, Look for the signs of the numbers αij (j ∈ B)

a) ∃i ∈ B+ such that ∀j ∈ B, αij ≤ 0 then declare: ”the objective function for (1.1)
is unbounded from below over S, therefore (1.1) has no solution”.

b) ∀i ∈ B+, ∃j ∈ B such that αij > 0, chose an index h ∈ B+;

Step 6. Choose an index k ∈ B such that αhk > 0 and

α0k

αhk
= min

{
α0j

αhj
| j ∈ B, αhj > 0

}
;

Step 7. Replace in B, vector Ak with Ah then go to Step 2.
We are going to use the following lemma.

Lemma 3.1. Let n > 1 and c ∈ Rn, c 6= 0Rn . Suppose that

max
i∈B

αi0 = 0

and let B0 = {i ∈ B |αi0 = 0}.
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Suppose that exists ī ∈ B0 such that αīk ≤ 0, ∀k ∈ B.
Then, there exists c̄ ∈ Rn with c̄ >Rn 0Rn such that{

cT c̄ = 0

A · c̄ = 0Rm .
(3.1)

Proof. We have

αī0 =
∑
j∈B

αīj · cj − cī = 0.

Define the following set of indexes Bī0 = {k ∈ B |αīk = 0} and the vector

c̄T = (c̄1, ..., c̄n)

by

c̄j =


−αīj , j ∈ B \ Bī0
1, j = ī

0, otherwise.

Clearly c̄ >Rn 0Rn and cT c̄ = 0.
For i ∈ B we have Ai =

∑
j∈B αijA

j so, on the components

aki =
∑
j∈B

αijakj , k ∈ {1, ...,m},

thus for i = ī
akī =

∑
j∈B

αīj · akj . (3.2)

For i ∈ {1, ...,m}, by (3.2) one has
n∑
j=1

aij · c̄j =
∑

j∈B∪{ī}

aij · c̄j =
∑
j∈B

aij · (−αīj) + aīi · 1 = 0.

�

Note that if x1, x2 are two different solutions of (1.1) then x1−x2 satisfies (3.1).
If more, x1 >Rn x

2 then c̄ can be taken x1 − x2 and called direction of recession. We
can define c̄ except Bī0, in a similar way

c̄j =


−αīj , j ∈ B
1, j = ī

0, otherwise,

if B \ {̄i} 6= ∅,

else

c̄j =

{
−αīj , j ∈ B
1, j = ī.

Involving Bī0 we underline on the components where x1 >Rn x
2.

As regards the three situations of Step 4 of the algorithm, when there is a
unique solution, a bounded set of solutions (but not a singleton) or the unbounded
set of solutions, we formulate the following result.
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Proposition 3.2. Suppose that x0 = xB is a solution for (1.1) obtained in Step 4 a) of
the algorithm and that B is the optimal basis. The following implications apply:

1. If max
i∈B

αi0 < 0, then there is no other solution generated by the optimal basis B.

2. If max
i∈B

αi0 = 0 and min
j∈B

α0j = 0, then there is no other solution generated by the

optimal basis B.
3. If max

i∈B
αi0 = 0 and min

j∈B
α0j > 0, then

{x0} ( argminx∈Sf(x);

if more
a3α) for some ī ∈ B0 = {i ∈ B |αi0 = 0}, there exists k ∈ B such that αīk > 0,

then the set of solutions contains

co{x0, x1, ..., xp},

with p ≤ cardB0, where

B0+ = {i ∈ B0 | ∃k ∈ B such that αik > 0};

a3β) for some ī ∈ B0, αīk ≤ 0, ∀k ∈ B, then the set of solutions is (convex)
unbounded.

Proof. Let f(x) = cTx.
1. The proof is adapted from the literature (see [3, 4]), inspired by the variation

of the objective function when a vector is replaced from the primal basis. Suppose
xB

′ ∈ argminx∈Sf(x), xB
′ 6= x0.

Let h ∈ B. Passing from the optimal basis B to the other optimal one B′, suppose
that B′ is constructed by replacing a vector Ak with Ah. Let B′ = (B \ {k}) ∪ {h}.

Let θ = α0k

αhk
. The new coordinates are

α′0j =

{
α0j − θ · αhj , j 6= k

θ, j = h.

Denote by (xB
′
)T = (xB

′

1 , ..., xB
′

n ) ∈ Rn, where xB
′

j =

{
α′0j , j ∈ B′

0, j ∈ B′.
For xB

′
the value of the objective function is

f(xB
′
) = α00 = cTxB

′
=
∑
j∈B′

α′0j · cj =
∑
j∈B

[α0j − θ · αhj ] · cj + θ · ch

=
∑
j∈B

α0j · cj + θ · [ch −
∑
j∈B

αhj · cj ] = α00 + θ · (ch − zh),

where zh =
∑
j∈B αhj · cj . We obtained

α00 = α00 + θ · (ch − zh).

Now we have

0 < −αh0 = ch − zh = ch −
∑
j∈B

αhj · cj = 0,
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thus we get the contradiction.

2. Let ī ∈ B0+. By replacing vector Aī with Aj̄ , α0j̄ = 0, the value of the
objective function does not change

f(x0)− αī0 ·
α0j̄

αīj̄
= f(x0),

and B′ = (B \ {j̄}) ∪ {̄i}, α0ī = 0.

3.

a3α) Let ī ∈ B0+. The optimal basis can be changed by replacing vector Aī with Ak,
to obtain another solution x1. We have

f(x1) = f(x0)− αī0 ·
α0k

αīk
= f(x0) = α00,

and that (1 − γ) · x0 + γ · x1, (γ ∈ [0, 1]) is solution for (1.1) as well. It is
easy to check that (1 − γ) · x0 + γ · x1 ∈ S and by the linearity of f we obtain
cT [(1− γ) · x0 + γ · x1] = (1− γ) · cTx0 + γ · cTx1 = cTx0.

a3β) Since x0 is a solution given by the (classic) simplex algorithm, it is an extremal
point. Let ī ∈ B0 be fixed such that αīk ≤ 0, ∀k ∈ B. From Lemma 3.1 there
exists c̄ >Rn 0Rn with cT c̄ = 0 and A · c̄ = 0Rm . Let

x̄ = x0 + c̄, with c̄ =
∑

j∈B∪{ī}\Bī0

c̄jej ,

where Bī0 = {k ∈ B |αīk = 0} is defined in the proof of Lemma 3.1.
We claim that this direction x̄−x0, gives the unboundedness of the solution set.
Firstly, we prove that x0 + α · (x̄− x0) is admissible. We have

A · x0 + α ·A · (x̄− x0) = b+ α ·A · c̄ = b.

Since x̄ >Rn x
0, it follows that for α ≥ 0 we have x0 + α · (x̄− x0) ≥Rn 0Rn .

Now,

f
(
x0 + α · (x̄− x0)

)
= cTx0 + α · cT (x̄− x0) = cTx0. �

The statement about the convex hull containment, generated by step a3α is a
partial result. At this point we were not able to generate the complete solution.

Remark 3.3. The following are related to the case a3α from Step 4 of the Simplex
Algorithm 2.0. If for some index ī ∈ B0 = {i ∈ B |αi0 = 0}, there exists another index
k ∈ B such that αīk > 0, then we cannot conclude on the boundedness of the solution
set of (1.1). Precisely, two different situations can occur, the set of solutions could be
bounded or boundedless, considering the following two problems:

1. 
x1 + x2 + x4 −→ min

x1 + x3 − x4 = 2

x2 − x3 + 2x4 = 3

x1, x2, x3, x4 ≥ 0,

(3.3)
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with the complete solution (convex) bounded. From data cT = (1, 1, 0, 1),

A =

(
1 0 1 −1
0 1 −1 2

)
= (Aj)1≤j≤4, and b =

(
2
3

)
, B = {A1, A2}

is an optimal basis, (x0)T = (2, 3, 0, 0) is a solution generated by B, and
B0 = {3, 4}. After replacing A1 with A3 we obtain solution (x1)T = (0, 5, 2, 0),
replacing A2 with A4 we get solution (x2)T = (0, 0, 7, 5), replacing A3 with A1

we obtain solution (x3)T = (7/2, 0, 0, 3/2).
Problem (3.3) reduces to the system of inequalities

x3 − x4 ≤ 2

−x3 + 2x4 ≤ 3

x3, x4 ≥ 0,

that represents co{(0, 0), (2, 0), (7, 5), (0, 3/2)}.
The set of solutions for problem (3.3) is

co{x0, x1, x2, x3}.
2. 

x1 + x2 −→ min

x1 + x3 − x4 = 2

x2 − x3 + x4 = 3

x1, x2, x3, x4 ≥ 0,

(3.4)

with the complete solution (convex) boundedless. From data cT = (1, 1, 0, 0),

A =

(
1 0 1 −1
0 1 −1 1

)
= (Aj)1≤j≤4, and b =

(
2
3

)
, B = {A1, A2}

is an optimal basis with solution (x0)T = (2, 3, 0, 0) and B0 = {3, 4}. After
replacing A1 with A3 we obtain solution (x1)T = (0, 5, 2, 0), and the case a3β
with ī = 4 (see Figure 3). The set of solutions is unbounded.

Figure 3. a3β
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Since x0 and x1 are not comparable in R4, the direction of recession cannot be
taken x0 − x1. The set of solutions contains co{x0, x1}. By the proof of Lemma
3.1, with B = {2, 3} and B40 = {2}, we have

B ∪ {4} \ B40 = {2, 3} ∪ {4} \ {2} = {3, 4},

therefore we get c̄T = (0, 0, 1, 1). Problem (3.4) reduces to the system of inequal-
ities 

x3 − x4 ≤ 2

−x3 + x4 ≤ 3

x3, x4 ≥ 0.

The complete solution is

{x0 + α · c̄ |α ≥ 0} = {(2, 3, α, α)T |α ≥ 0}.

In Example 1.1 was underlined the case for a3β. Going back to it, via Lemma 3.1,
we have B = {1, 2, 3}, B0 = {5}, ī = 5, B50 = {3}, therefore c̄T = (1, 1, 0, 0, 1, 0).

4. Comments

In Section 2, we had the situation in Step 4, a3α. In order to follow easily the
description of indexes we give this obvious example.

Example 4.1. Consider the linear programming problem
−x1 − x2 − x3 −→ min

x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0,

(4.1)

in its standard form. Data are cT = (−1,−1,−1), A = (1 1 1) = (Aj)1≤j≤3, and
b = 1.
A3 can be considered as basis, that is optimal. We are in the case a3α, B = {2, 3} =
B0+. Simplex algorithm provides the solution x0 = (0, 0, 1). After replacing succes-
sively A3 with A1, we get x1 = (1, 0, 0), then A1 with A2, we get x2 = (0, 1, 0).
Therefore the solution for (4.1) is co{x0, x1, x2}.

When the size of the problem is not large, finding all the extremal points is not
difficult. What remains to be done when it is not possible to introduce Aī in the
optimal basis ? A possibility is to combine the classical solution with one provided by
Matlab command linprog. So, when case a3β shows up, the complete solution contains
the set

{x0 + α · (x1 − x0) |α ≥ 0},
with x1 6= x0, a solution that can be obtained unconventionally with respect to the
algorithm. More questions arise then.

Similar to Example 1.1, we consider the following trivial one.
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Example 4.2. Being given the linear programming problem
x1 − x2 −→ min

−x1 + x2 ≤ 0

x1, x2 ≥ 0,

(4.2)

from its standard form 
x1 − x2 −→ min

−x1 + x2 + x3 = 0

x1, x2, x3 ≥ 0,

the simplex algorithm provides the solution (0, 0, 0)T , thus for (4.2) we take (x0)T =
(0, 0). We are in the case a3β. Another solution for (4.2) is (x1)T = (1, 1), (or the one
provided by Matlab (84.7173, 84.7173)T can be used) therefore the set of solutions is

{(α, α)T |α ≥ 0}.
Worth noted or not, its dual problem has a unique solution −1.

What is the algebraic dimension of the unboundedness in the case a3β ?
At least empirically, with no intention to prove that this is true at this stage,

we claim that it would be cardBβ0 where Bβ0 = B0− ∪ {̄i ∈ B0+ | B0− 6= ∅}, with

B0− = {i ∈ B0 |αik ≤ 0,∀k ∈ B}. Clearly, if B0− = ∅ then Bβ0 = ∅, and the set
of solutions is bounded, that is conform to the algorithm. Also, [B0− = {̄i} and

B0+ = ∅] iff cardBβ0 = 1. Example 1.1 involves B0 = {5} = B0−, B0+ = ∅, Bβ0 = {5}.

Example 4.3. Being given the linear programming problem
x1 − x2 − x3 −→ min

−x1 + x2 + x3 ≤ 0

x1, x2, x3 ≥ 0,

(4.3)

from its standard form, the simplex algorithm provides the solution (x0)T = (0, 0, 0).

We are in the case a3β, with cardBβ0 = 2, given by B = {1}, B = {2, 3} =

B0 = B0−, B0+ = ∅, Bβ0 = {2, 3}. Other solutions for (4.3) are (x1)T = (1, 0, 1)
and (x2)T = (1, 1, 0), or possibly other two provided by Matlab using two different
starting points. By this eventually, we mean the logistic part of exposure that in-
terfere. For example, along with data c = [1 − 1 − 1], A = [−1 1 1], b = 0, and
lb = zeros(1, 3), if (admissible) starting points x0 = [1 1 1] and x0 = [2 2 2] are
chosen, then using command linprog as x = linprog(c, A, b, [ ], [ ], lb, [ ], x0) solutions
provided (with some care to the approximations) are (x1)T = (0.6667, 0.3333, 0.3333)
and (x2)T = (1.3333, 0.6667, 0.6667), respectively. More accurate, rats(x) returns
(x1)T = (2/3, 1/3, 1/3) and (x2)T = (4/3, 2/3, 2/3), respectively. By this random
choice rank(x0, x1, x2) = 1. By using x0 = [3 1 2] as starting point Matlab returns

solution (x3)T = (1.8681, 0.3899, 0.4783), getting rank(x0, x1, x3) = 2 = cardBβ0 . The
set of solutions is

{(α1 + α2, α1, α2)T |α1, α2 ≥ 0}.
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By the examples above we claim that in the case a3β we have

argminx∈Sf(x) ⊇
{(

1−
∑
k∈Bβ0

αk
)
· x0 +

∑
k∈Bβ0

αk · xk |αk ≥ 0

}
,

where xk, k ∈ Bβ0 , are different solutions, such that rank(xk)
k∈Bβ0

= cardBβ0 ,
eventually obtained by Matlab using different starting points.

For cardBβ0 = 1 the result is contained in the following lemma.

Lemma 4.4. ([3]) Let M ⊂ Rn be nonempty, convex, closed. Then

M is unbounded ⇐⇒ ∃x̄ ∈ Rn \ {0n} such that M + α · x̄ ⊆M, ∀α ∈ R+.

We can use the classic result above with x̄ := x1 − x0 and α := α1. Then, we
can repeatedly apply Lemma 4.4 for M = argminx∈Sf(x) :

argminx∈Sf(x)+α1 · (x1−x0)+α2 · (x2−x0)+ · · ·+αk · (xk−x0) ⊆ argminx∈Sf(x).

To end up with our comments, for case a3β, we have the following assertion.

Proposition 4.5. For the canonical form of the linear programming problem with data
c ∈ Rn, A ∈Mm,n(R), and b ∈ Rm

f(x) = cTx −→ min

A · x ≤Rm b

x ≥Rn 0Rn ,

(4.4)

if the solution set is unbounded, then there exist I ⊆ {1, ...,m} and d ∈ RI− such that

f(x) =
∑
i∈I

di

n∑
j=1

aijxj ,

consequently

{c, (aij)j}i∈I is a linearly dependent algebraic system.

Proof. The admissible set S′ = {x ∈ Rn |A·x ≤Rm b, x ≥Rn 0Rn} must be unbounded.
By Lemma 4.4, there exists x̄ ∈ Rn \ {0Rn} such that

argminx∈S′f(x) + α · x̄ ⊆ argminx∈S′f(x), ∀α ∈ R+.

Let x0 be an arbitrary solution for (4.4). By Karush-Kuhn-Tucker theorem, there
exist an active set of indexes I and v ∈ RI+ such that

[∇f(x0) +
∑
i∈I

vi · ∇gi(x0)]T (x− x0) ≥ 0, ∀x ∈ S′,

where gi(x) = (A · x− b)i, i ∈ I.
Let x′ be another solution. Denote by

dα,x0 = {x0 + α · (x′ − x0) |α ≥ 0}.
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We have dα,x0 ∩ intaS
′ 6= ∅, (here intaY denotes the algebraic interior of a set Y ). Let

x̄0 ∈ dα,x0 ∩ intaS
′. Then

∇f(x̄0) +
∑
i∈I

vi · ∇gi(x̄0) = 0TRn ,

that is

cT = −
∑
i∈I

vi · ∇gi(x̄0).

Integrating on the segment [x̄0, x′], for v = (vi)i∈I we obtain

f + vT [(A · x)i]i∈I = constant.

By the linearity of both terms, the constant is 0. Now take d := −v. �

One more time back to Example 1.1, there exist I = {1, 3} and d = (−4,−1) ∈ RI−
such that f(x1, x2, x3) = 3x1 − 3x2 − 4x3 = (−4) · (−x1 + x2 + x3) + (−1) · (x1 − x2),
consequently (c′)T = (3,−3,−4), aT1 = (−1, 1, 1), and aT3 = (1,−1, 0) are linearly
dependent.

The reverse implication is not true (see section 2), unless S′ is unbounded. This
is still not sufficient as one can see from this one with no solution

x1 − x2 −→ min

x1 − x2 ≤ 0

x1, x2 ≥ 0.

The nonemptiness of the solution set must be imposed. Not even so would be the
enough, since the following problem

x1 − x2 −→ min

−x1 + x2 ≤ 0

x2 ≤ 1

x1, x2 ≥ 0,

has a bounded solution set. Maybe, if the direction of the unboundedness for S′, say
c̃, to overlap on the vector c, in some sense, for example

cT c̃ = 0

and A · c̃ = 0Rm , could be the challenge.
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