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Abstract. The main target of this article is to present refinements of the matrix
arithmetic-geometric mean inequality. The main difference between these refine-
ments and the ones in the literature is the quadratic behavior of the refining
terms. These refinements include the Löewner partial ordering, determinants,
trace and unitarily invariant norms refinements.
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1. Introduction and motivation

Let Mn be the algebra of n × n complex matrices, M+
n be the cone of positive

semidefinite matrices in Mn and M++
n be the cone of strictly positive matrices in Mn.

For two Hermitian matrices A and B, we write A ≥ B or B ≤ A to mean A−B ∈M+
n ,

while we write A > B or B < A to mean A−B ∈M++
n .

Comparison between Hermitian matrices is receiving a considerable attention
these days, where the possible comparison between the means of these matrices is
extensively considered.

In this article, we compare between matrices using the partial ordering ≤ defined
above and using invariant norms. Recall that a norm ‖| ‖| on Mn is called invariant,
if ‖|UAV ‖| = ‖|A‖| for all A ∈ Mn and all unitary matrices U, V. Among the most
useful invariant norms, is the Hilbert-Schmidt norm ‖ ‖2 defined as follows

‖A‖2 =

 n∑
i,j=1

|aij |2
 1

2

, A = [aij ].

Notice that this is equivalent to ‖A‖2 =
√

tr|A|2, where |A|2 = A∗A and tr is the
trace functional.
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Another possible comparison between matrices is the comparison between their
determinants, where the identity detA =

∏n
i=1 λi(A) becomes handy. In this context,

{λi(A)} refers to the set of eigenvalues of A.
Further, for A,B ∈ M++

n and 0 ≤ t ≤ 1, we define the weighted arithmetic and
geometric means, respectively, as follows

A∇tB = (1− t)A+ tB and A#tB = A
1
2

(
A−

1
2BA−

1
2

)t
A

1
2 .

When t = 1
2 , it is customary to drop it from the notation. So we write A∇B to denote

A∇ 1
2
B, for example. Among the most well established comparisons between matrices

is the following inequality known as the “arithmetic-geometric mean inequality”

A#tB ≤ A∇tB, 0 ≤ t ≤ 1.

Then this means’ inequality is refined and reversed in many ways. Before stating
these refinements, we remind the reader that obtaining such matrix inequalities is done
in different ways, but the most common technique is by a corresponding numerical
inequality. For this, we need to look at the numerical forms of the above inequality.
For the positive numbers a, b and 0 ≤ t ≤ 1, we define the weighted means by
a∇tb = (1 − t)a + tb and a#tb = a1−tbt. The above matrix mean inequality can be
simply proved using the known numerical inequality

a#tb ≤ a∇tb, 0 ≤ t ≤ 1.

This inequality is well known by Young’s inequality. We explain how to move from a
numerical inequality to a matrix inequality in Theorem 2.10 below.

Since the matrix versions are obtained from numerical versions, refinements and
reverses of numerical inequalities imply certain refinements and reverses of matrix
inequalities. We mention here a few refinements known in the literature. In [5] it is
proved that

a#tb+ min{t, 1− t}(
√
a−
√
b)2 ≤ a∇tb (1.1)

or simply
a#tb+ L1(t)f1(a, b) ≤ a∇tb,

for a piecewise linear function L1 and some positive function f1(a, b). On the other
hand, a two-term refinement has been proved in [16]

a#tb+ L1(t)f1(a, b) + L2(t)f2(a, b) ≤ a∇tb,
for another piecewise linear function L2 and another positive function f2. These re-
finements then were generalized in [13], [14] as

a#tb+

N∑
i=1

Li(t)fi(a, b) ≤ a∇tb,N ∈ N

for piecewise linear functions Li and positive functions fi.
Moreover, the reversed version

a∇tb ≤ a#tb+ max{t, 1− t}(
√
a−
√
b)2, 0 ≤ t ≤ 1 (1.2)

was proved in [6], and a generalization was presented recently in [13].
Further related results can be found in [1], [5], [12], [15], [16], [17].
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What is common among these different refinements and reverses is the fact that
all refining terms are linear in t.

In the recent paper [8], a quadratic refinement and reverse of Young’s inequality
were proved. Namely, it is shown that if a, b > 0 and 0 ≤ t ≤ 1 are such that
(b− a)(2t− 1) ≥ 0 then

a#tb+ 2t(1− t)
(√

a−
√
b
)2
≤ a∇tb, (1.3)

while we have the reversed inequality if (b − a)(2t − 1) ≤ 0. Notice that the refining

term in this inequality is 2t(1− t)
(√

a−
√
b
)2

which is quadratic in t.

Our motivation of the current work begins with this observation. In fact, even
(1.3) follows from a more general quadratic refinement. Our main target in this
paper is to show that certain quadratic refinements and reverses can be shown
for the arithmetic-geometric mean inequality, in both multiplicative and additive
forms. Among many other matrix versions, we prove the following inequalities for
A,B ∈M++

n and X ∈Mn under some ordering condition,

τ(1− τ) (A∇νB −A#νB) ≤ ν(1− ν) (A∇τB −A#τB) ,

det(A#νB)
1
n +

ν(1− ν)

τ(1− τ)
det (A∇τB −A#τB)

1
n ≤ det(A∇νB)

1
n ,

tr|A1−νBν |+ ν(1− ν)

τ(1− τ)
(tr(A∇tB)− trA#τ trB) ≤ tr(A∇νB),

and

‖(1− ν)AX + νXB‖22 − ‖AνXB1−ν‖22
ν(1− ν)

≤ ‖(1− τ)AX + τXB‖22 − ‖AτXB1−τ‖22
τ(1− τ)

.

A common aspect of all the refinements in this paper is the quadratic refining
term ν(1− ν) or τ(1− τ).

We remark that in the recent paper [7], quadratic refinements of Heinz inequality
have been shown.

The organization of this paper will be as follows. In the first part, we prove the
needed numerical inequalities, and these will be done by some calculus computations.
Then we present the matrix versions in the same order of the numerical ones to make
it easier for the reader to follow.

2. Main results

Our main results section is divided into two parts. The first part will treat
numerical versions needed to accomplish the matrix versions presented in the second
part of the section.
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2.1. The numerical versions

In the following computations, the reader must be careful about moving from
one variable to another.

Lemma 2.1. For c > 0, let

f(t) =
1∇tc− 1#tc

t(1− t)
, 0 < t < 1.

Then

1. f is increasing on (0, 1) if c > 1.
2. f is decreasing on (0, 1) if c < 1.

Proof. Direct computations show that

f ′(t) =
g(c)

t2(1− t)2
,

where, considering t as a constant,

g(c) = −1 + ct(1− 2t) + 2t+ (c− 1)t2 + ct(t− 1)t log c.

Then
g′(c) = t2h(c), where h(c) = 1− ct−1(1 + (1− t) log c).

Furthermore,
h′(c) = (1− t)2ct−2 log c.

Now if c > 1, then h′(c) > 0 while h′(c) < 0 when c < 1. Therefore h = h(c) attains
its minimum at c = 1. That is h(c) ≥ h(1) = 0. Consequently, g′(c) > 0 and g(c) is
increasing on (0,∞).
If c > 1 then g(c) ≥ g(1) = 0 and f ′(t) > 0. This proves the first statement.
On the other hand, if c < 1, g(c) ≤ g(1) = 0 and f ′(t) < 0. This proves the second
statement. �

This entails the following quadratic refinement and reverse of Young’s inequality.

Proposition 2.2. Let a, b > 0 and 0 ≤ ν, τ ≤ 1. If (b− a)(τ − ν) ≥ 0, then

τ(1− τ)(a∇νb− a#νb) ≤ ν(1− ν)(a∇τ b− a#τ b).

On the other hand, if (b− a)(τ − ν) ≤ 0 then

τ(1− τ)(a∇νb− a#νb) ≥ ν(1− ν)(a∇τ b− a#τ b).

Proof. Letting c = b
a in the function f(t) = 1∇tc−1#tc

t(1−t) and using the monotonicity of

Lemma 2.1 imply both inequalities. �

Letting ν = 1
2 in the above proposition implies the following [8].

Corollary 2.3. Let a, b > 0 and 0 ≤ ν ≤ 1. If (b− a)
(
τ − 1

2

)
≥ 0 then

a#τ b+ 4τ(1− τ)(a∇b− a#b) ≤ a∇τ b.
On the other hand, if (b− a)

(
τ − 1

2

)
≤ 0 then

a#τ b+ 4τ(1− τ)(a∇b− a#b) ≥ a∇τ b.
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This explains the generality of these inequalities. Then squared versions that we
can use to prove some Hilbert-Schmidt norm forms can be obtained as follows.

Proposition 2.4. For c > 0, define f : (0, 1)→ [0,∞) by

f(t) =
(1∇tc)2 − (1#tc)

2

t(1− t)
.

1. If c < 1, then f is decreasing on (0, 1) and
2. if c > 1, then f is increasing on (0, 1).

Proof. Direct computations show that

f ′(t) =
g(c)

t2(1− t)2
, g(c) = −1 + 2t− t2 + c2t2 + c2t(1− 2t+ 2(−1 + t)t log c).

Further,

g′(c) =
2t2

c
h(t), h(t) = c2 + c2t(−1 + 2(−1 + t) log c)

and
h′(t) = 4c2t(t− 1) log2 c.

Clearly h′(t) < 0, hence h(t) ≥ h(1) = 0 and g′(c) ≥ 0. If c < 1, then g(c) ≤
g(1) = 0 and f is decreasing. On the other hand, if c > 1, g(c) ≥ g(1) = 0 and f is
increasing. �

Corollary 2.5. Let a, b > 0 and 0 < ν, τ < 1. If (b− a)(τ − ν) ≥ 0 then

(a∇νb)2 − (a#νb)
2

ν(1− ν)
≤ (a∇τ b)2 − (a#τ b)

2

τ(1− τ)
.

The inequality is reversed if (b− a)(τ − ν) ≤ 0.

Again, letting τ = 1
2 , we obtain the corresponding inequality from [8].

The above two refinements are “additive” versions, where the refining term is
added to one side of the original inequality. Our next result presents a multiplicative
form of these inequalities.

Lemma 2.6. For c > 0, define f : (0, 1)→ [0,∞) by

f(t) =

(
1∇tc
1#tc

) 1
t(1−t)

.

Then

1. f is increasing on (0, 1) if c < 1 and
2. f is decreasing on (0, 1) if c > 1.

Proof. Let F (t) = log f(t). That is

F (t) =
log(1− t+ tc)− t log c

t(1− t)
.

Then

F ′(t) =
g(c)

(1− t)2t2(1− t+ tc)
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where

g(c) = t(c− 1 + t− tc+ t(t− 1− tc) log c) + (2t− 1)(1− t+ tc) log(1− t+ tc).

Now

g′(c) = − t
c
h(c) for h(c) = (c− 1)(t− 1)t+ ct2 log c+ c(1− 2t) log(1− t+ tc).

Furthermore,

h′(c) = t2 log c+ (2t− 1)

[
(c− 1)(t− 1)t

1− t+ tc
− log(1− t+ tc)

]
and

h′′(c) =
(1− t)2t(2c+ (c− 1)2t)

c(1− t+ tc)2
.

Now clearly h′′(c) ≥ 0, hence h′ is increasing in c.
If c < 1, then h′(c) ≤ h′(1) = 0 and h is decreasing when c ≤ 1. That is,

h(c) ≥ h(1) = 0 and g′(c) ≤ 0 when c ≤ 1. Thus, g is decreasing when c ≤ 1, and
hence g(c) ≥ g(1) = 0. Consequently, F ′(t) ≥ 0 and F is increasing in t, when c ≤ 1.
This proves the first assertion. When c > 1, a similar argument implies that F is
decreasing in t. �

As a consequence, we obtain the following multiplicative refinement and reverse
of Young’s inequality.

Corollary 2.7. Let a, b > 0 and 0 < ν, τ < 1. If (b− a)(τ − ν) > 0 then

a#τ b

(
a∇νb
a#νb

) τ(1−τ)
ν(1−ν)

≥ a∇τ b.

On the other hand, if (b− a)(τ − ν) < 0 then

a#τ b

(
a∇νb
a#νb

) τ(1−τ)
ν(1−ν)

≤ a∇τ b.

Proof. Let c = b
a in

f(t) =

(
1∇tc
1#tc

) 1
t(1−t)

.

If b < a, then f is increasing, by Lemma 2.6. Therefore, when ν < τ we have f(ν) ≤
f(τ). This completes the proof of the first inequality. A similar argument implies the
second inequality. �

Remark 2.8. Having introduced our numerical quadratic refinements and reverses, we
compare these results with the linear inequalities. We have seen that, for a, b > 0 and
0 ≤ t ≤ 1, one has

r(t)(
√
a−
√
b)2 ≤ a∇tb− a#tb ≤ R(t)(

√
a−
√
b)2,

where r(t) = min{t, 1− t} and R(t) = max{t, 1− t}. On the other hand, under certain
ordering conditions, we have the quadratic refinement or reverse

a∇tb− a#tb ≤ (≥)2t(1− t)(
√
a−
√
b)2.
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It is natural to ask about the advantage of introducing a quadratic refinement or
reverse over the linear ones.
Direct calculations show that, for 0 ≤ t ≤ 1, one has r(t) ≤ 2t(1 − t) and R(t) ≥
2t(1− t). Therefore, when (b− a)(2t− 1) ≥ 0, we have

a#tb+ r(t)(
√
b−
√
a)2 ≤ a#tb+ 2t(1− t)(

√
b−
√
a)2 ≤ a∇tb,

which is a refinement of the refinement (1.1). On the other hand, if (b−a)(2t−1) ≤ 0,
we have the

a#tb+R(t)(
√
b−
√
a)2 ≥ a#tb+ 2t(1− t)(

√
b−
√
a)2 ≥ a∇tb,

which is a refinement of the reversed version (1.2). Therefore, introducing quadratic
refinements serves as introducing one-term refinements of the already existing linear
refinements.
A similar argument applies for the multiplicative versions.

We conclude this section by the following observation. The inequalities in Propo-
sition 2.2 and Corollary 2.5 give rise to the following quotients

a∇νb− a#νb

a∇τ b− a#τ b
and

(a∇νb)2 − (a#νb)
2

(a∇τ b)2 − (a#τ b)2
.

It is natural to ask about the relation between these quantities. Denoting these quo-

tients by Aν,τ (a, b) and A
(2)
ν,τ (a, b), respectively, we have the following comparison.

Proposition 2.9. Let a, b > 0 and 0 ≤ ν, τ ≤ 1. If (b− a)(τ − ν) ≥ 0, then

A(2)
ν,τ (a, b) ≤ Aν,τ (a, b).

On the other hand, if (b− a)(τ − ν) ≤ 0, then

A(2)
ν,τ (a, b) ≥ Aν,τ (a, b).

Proof. Let f(t) = a∇tb + a#tb. Then, clearly, f is increasing when b > a and is
decreasing if b < a. Now, if (b−a)(τ−ν) ≥ 0, then f(τ) ≥ f(ν), whether b > a or b < a.

Simplifying the inequality f(ν) ≤ f(τ) implies the inequality A
(2)
ν,τ (a, b) ≤ Aν,τ (a, b),

when (b − a)(τ − ν) ≥ 0. A similar argument implies the reversed inequality when
(b− a)(τ − ν) ≤ 0. �

2.2. Matrix versions

Now we present the matrix versions one can obtain from the numerical versions
proved above.

Theorem 2.10. Let A,B ∈M++
n and 0 ≤ ν, τ ≤ 1. If (τ − ν)(B −A) ≥ 0 then

τ(1− τ) (A∇νB −A#νB) ≤ ν(1− ν) (A∇τB −A#τB) .

The inequality is reversed if (τ − ν)(B −A) ≤ 0.

Proof. If (τ − ν)(B − A) ≥ 0, let X = A−
1
2BA−

1
2 . Notice that if τ > ν then B ≥ A

and λi(X) ≥ 1,∀i. That is, (τ − ν)(λi(X) − 1) ≥ 0. A similar conclusion is achieved
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if τ < ν. Now since (τ − ν)(λi(X) − 1) ≥ 0, we may apply the first inequality of
Proposition 2.2, using a = 1 and b = λi(X). This implies

τ(1− τ) (1∇νλi(X)− 1#νλi(X)) ≤ ν(1− ν) (1∇τλi(X)− 1#τλi(X)) ,

which implies

τ(1− τ) (In∇νdiag(λi(X))− In#νdiag(λi(X)))

≤ ν(1− ν) (In∇τdiag(λi(X))− In#τdiag(λi(X))) .

Now since X is Hermitian, X = Udiag(λi(X))U∗ for some unitary matrix U . Conju-
gating the above inequality by U and noticing that conjugation is order preserving,
we get

τ(1− τ) (In∇νX − In#νX) ≤ ν(1− ν) (In∇τX − In#τX) .

Now conjugating this inequality with A
1
2 implies the first desired inequality. The

second inequality follows similarly. �

On the other hand, a determinant version may be obtained as follows. First, we
recall Minkowski inequality, [3], p. 560,(

n∏
i=1

ai

) 1
n

+

(
n∏
i=1

bi

) 1
n

≤

(
n∏
i=1

(ai + bi)

) 1
n

, (2.1)

for the positive numbers {ai, bi : 1 ≤ i ≤ n}.

Theorem 2.11. Let A,B ∈M++
n and 0 < ν, τ < 1. If (τ − ν)(B −A) ≤ 0 then

det(A#νB)
1
n +

ν(1− ν)

τ(1− τ)
det (A∇τB −A#τB)

1
n ≤ det(A∇νB)

1
n . (2.2)

Proof. Let X = A−
1
2BA−

1
2 . If (τ −ν)(B−A) ≤ 0 then (τ −ν)(λi(X)−1) ≤ 0, which

justifies the application of the second inequality of Proposition 2.2 in the following
computations. Now

det (In∇νX)
1
n =

n∏
i=1

λi ((1− ν)In + νX)
1
n

=

n∏
i=1

(1− ν + νλi(X))
1
n (now apply Proposition 2.2 then (2.1))

≥
n∏
i=1

(
ν(1− ν)

τ(1− τ)
(1∇τλi(X)− 1#τλi(X)) + 1#νλi(X)

) 1
n

≥
n∏
i=1

(
ν(1− ν)

τ(1− τ)
(1∇τλi(X)− 1#τλi(X))

) 1
n

+

n∏
i=1

(1#νλi(X))
1
n

=
ν(1− ν)

τ(1− τ)

n∏
i=1

λ
1
n
i (In∇τX − In#τX) +

n∏
i=1

λ
1
n
i (In#νX) .
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Now multiplying both sides with detA
1
2 and using basic properties of the determinant

imply the desired inequality. �

Notice that if we set τ = 1
2 in (2.2), we get

det(A#νB)
1
n + 4ν(1− ν) det (A∇B −A#B)

1
n ≤ det(A∇νB)

1
n ,

when (1− 2ν)(B −A) ≤ 0. Raising both sides to the power n implies

det(A1−νBν) + 4nνn(1− ν)n det (A∇B −A#B)

≤
(

det(A#νB)
1
n + 4ν(1− ν) det (A∇B −A#B)

1
n

)n
≤ det((1− ν)A+ νB).

In [8], it is proved that

det(A1−νBν) + 4nνn(1− ν)n det (A∇B −A#B) ≤ det((1− ν)A+ νB).

Therefore, (2.2) provides a refinement and a generalization of the corresponding result
in this reference. On the other hand, Proposition 2.5 maybe used to obtain squared
determinant versions as follows.

Proposition 2.12. Let A,B ∈M++
n and let 0 < ν, τ < 1. If (τ − ν)(B −A) ≥ 0, then

det(A#νB)
2
n +

ν(1− ν)

τ(1− τ)
det (A∇τB −A#τB)

2
n ≤ det(A∇νB)

2
n .

Proof. Following the same notations of Theorem 2.11, we have

det(In∇νX)
2
n =

(
n∏
i=1

(1∇νλi(X))2

) 1
n

(apply Proposition 2.5 then (2.1))

≥
n∏
i=1

(
(1#νλi(X))2 +

ν(1− ν)

τ(1− τ)

[
(1∇τλi(X))2 − (1#τλi(X))2

]) 1
n

≥
n∏
i=1

(
(1#νλi(X))2

) 1
n +

n∏
i=1

(
ν(1−ν)

τ(1−τ)

[
(1∇τλi(X))2−(1#τλi(X))2

]) 1
n

≥
n∏
i=1

(λi(In#νX))
2
n +

ν(1− ν)

τ(1− τ)

n∏
i=1

(1∇τλi(X)− 1#τλi(X))
2
n

= det(In#νX)
2
n +

ν(1− ν)

τ(1− τ)
[det(In∇τX)− det(In#τX)]

2
n ,

where we have used the simple inequality (a2 − b2) ≥ (a − b)2 when a > b > 0 to
obtain the last inequality in the above proof. Now multiplying the last inequality with
detA implies the desired inequality. �

In the following result, we use the well known inequality [4]

tr|A1−νBν | ≤ (trA)1−ν(trB)ν , A,B ∈M+
n . (2.3)
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Proposition 2.13. Let A,B ∈ M++
n and let 0 < ν, τ < 1. If (τ − ν)(trB − trA) ≤ 0,

then

tr|A1−νBν |+ ν(1− ν)

τ(1− τ)
(tr(A∇tB)− trA#τ trB) ≤ tr(A∇νB).

Proof. Under the condition (τ − ν)(trB − trA) ≤ 0, we have

tr(A∇νB) = trA∇νtrB

≥ ν(1− ν)

τ(1− τ)
(trA∇τ trB − trA#τ trB) + trA#νtrB

≥ tr|A1−νBν |+ ν(1− ν)

τ(1− τ)
(tr(A∇tB)− trA#τ trB) ,

where we have used (2.3) to obtain the last inequality and used Proposition 2.2 to
obtain the first inequality. �

On the other hand, the squared version in Proposition 2.5 entails the following
Hilbert-Schmidt norm inequality. For the next result, {λi} will denote the eigenvalues
of A arranged in a decreasing order and {µj} will denote the eigenvalues of B arranged
in a decreasing order too. Moreover, the notation X ◦ Y will mean the Schur product
of X and Y .

Theorem 2.14. Let A,B ∈M+
n and X ∈Mn. If τ > ν and B ≥ λ1In, or if τ < ν and

B ≤ λnIn then

‖(1− ν)AX + νXB‖22 − ‖AνXB1−ν‖22
ν(1− ν)

≤ ‖(1− τ)AX + τXB‖22 − ‖AτXB1−τ‖22
τ(1− τ)

.

The inequality is reversed if τ > ν and B ≤ λnIn or if τ < ν and B ≥ λ1In.

Proof. Since A,B ∈M+
n , there exist unitary matrices U, V and nonnegative numbers

λi, µj such that
A = Udiag(λi)U

∗ and B = V diag(µj)V
∗.

Letting Y = U∗XV , we have

(1− ν)AX + νXB = U ([(1− ν)λi + νµj ] ◦ Y )V ∗.

Notice that the condition B ≥ λ1In implies µj ≥ λi,∀i, j and the condition B ≤ λnIn
implies µj ≤ λi,∀i, j. Therefore, the conditions τ > ν and B ≥ λ1In, or if τ < ν and
B ≤ λnIn imply (τ − ν)(µj − λi) ≥ 0,∀i, j. Under these conditions, and noting that
‖ ‖2 is unitarily invariant, we have

‖(1− ν)AX + νXB‖22
=
∑
i,j

{
(λi∇νµj)2|yij |2

}
(now apply Corollary 2.5)

≤
∑
i,j

{
(λi#νµj)

2 +
ν(1− ν)

τ(1− τ)

(
(λi∇τµj)2 − (λi#τµj)

2
)}
|yij |2

= ‖A1−νXBν‖22 +
ν(1− ν)

τ(1− τ)

(
‖(1− τ)AX + τXB‖22 − ‖A1−τXBτ‖22

)
,
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which completes the proof for the first set of conditions. A similar argument implies
the reversed inequality for the other conditions. �

Notice that the above inequalities provide a refinement and a reverse of the
inequality ‖A1−τXBτ‖2 ≤ ‖(1− τ)AX + τXB‖2.

Next, we present a matrix version of Corollary 2.7. For this result, we adopt the
notation of Theorem 2.14.

Theorem 2.15. Let A,B ∈ M++
n , X ∈ Mn, 0 < ν, τ < 1 and let m,M be two positive

numbers such that mIn ≤ A,B ≤ MIn. If τ > ν and B ≥ λ1In, or if τ < ν and
B ≤ λnIn then

‖A1−τXBτ‖22 ≥
(m
M

) 2τ(1−τ)
ν(1−ν) ‖(1− τ)AX + τXB‖22.

Proof. Adopting the notation of Theorem 2.14, notice that the condition mIn ≤ A,
B ≤MIn implies m ≤ λi, µj ≤M and hence

m

M
≤ λi#νµj
λi∇νµj

≤ M

m
,∀i, j.

Furthermore, the conditions τ > ν and B ≥ λ1In, or if τ < ν and B ≤ λnIn imply
that (µj − λi)(τ − ν) ≥ 0,∀i, j. Therefore, applying Corollary 2.7 we have

‖A1−τXBτ‖22 =
∑
i,j

(λi#τµj)
2 |yij |2

≥
∑
i,j

(
λi#νµj
λi∇νµj

) 2τ(1−τ)
ν(1−ν)

(λi∇τµj)2|yij |2

≥
(m
M

) 2τ(1−τ)
ν(1−ν) ∑

i,j

(λi∇τµj)2|yij |2

=
(m
M

) 2τ(1−τ)
ν(1−ν) ‖(1− τ)AX + τXB‖22.

This completes the proof. �

Notice that Theorem 2.15 provides a reverse of the well known inequality
‖A1−τXBτ‖2 ≤ ‖(1− τ)AX + τXB‖2. Further, notice that the condition B ≥ λ1In
means thatB ≥ ‖A‖ In where ‖A‖ is the operator norm, while the conditionB ≤ λnIn
means that A ≥ ‖B‖ In.

On the other hand, unitarily invariant norm inequalities can be obtained as
follows. Recall first that for A,B ∈ M++

n and X ∈ Mn, we have the well known
Hölder inequality [4]

‖|A1−tXBt‖| ≤ ‖|AX‖1−t‖|XB‖|t, 0 ≤ t ≤ 1, (2.4)

for any unitarily invariant norm ‖| ‖| on Mn. Applying Young’s inequality on the left
side implies the known matrix Young inequality

‖|A1−tXBt‖| ≤ (1− t)‖|AX‖|+ t‖|XB‖|.
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We remark that the inequality ‖|A1−tXBt‖| ≤ ‖|(1 − t)AX + tXB‖| is not true in
general, however, it is true for the norm ‖ ‖2.

In [11], it has been shown that the function f(t) = ‖|A1−tXBt‖|, 0 ≤ t ≤ 1 is
log-convex. We use this fact to present the following reverse of (2.4).

Lemma 2.16. Let A,B ∈ M++
n , X ∈ Mn and ‖| ‖| be a unitarily invariant norm on

Mn such that ‖|A1−tXBt‖| 6= 0 for any 0 ≤ t ≤ 1. Then

‖|A1−tXBt‖|
(
‖|AX‖| ‖|XB‖|
‖|A 1

2XB
1
2 ‖|2

)R(t)

≥ ‖|AX‖1−t‖|XB‖|t, (2.5)

where R(t) = max{t, 1− t}.
Proof. Let f(t) = ‖|A1−tXBt‖|. Then f is log-convex. For 0 ≤ t ≤ 1

2 , notice that

1

2
= αt+ (1− α) where α =

1

2− 2t
.

Using log-convexity of f , we have

f

(
1

2

)
≤ fα(t)f1−α(1).

Simplifying this inequality implies the result for 0 ≤ t ≤ 1
2 . Similar computations

yield the result for 1
2 ≤ t ≤ 1. �

On the other hand, notice that the function f(t) = ‖|(1 − t)AX + tXB‖| is
convex. This fact follows immediately because ‖| ‖| is a norm. This entails the
following reverse of ‖|(1 − t)AX + tXB‖| ≤ (1 − t)‖|AX‖| + t‖|XB‖|. The proof
is similar to the above one. However, the reader is encouraged to look at [10] for a
general discussion of these refinements and reverses of convex functions.

Lemma 2.17. Let A,B ∈ M++
n , X ∈ Mn and ‖| ‖| be a unitarily invariant norm on

Mn. Then

‖|(1− t)AX + tXB‖|+R(t) (‖|AX‖|+ ‖|XB‖| − ‖|AX +XB‖|)
≤ (1− t)‖|AX‖|+ t‖|XB‖|. (2.6)

Now we are ready to find quadratic refinements and reverses of

‖|A1−tXBt‖| ≤ ‖|AX‖|1−t‖|XB‖|t ≤ (1− t)‖|AX‖|+ t‖|XB‖|.
Theorem 2.18. Let A,B ∈M++

n , X ∈Mn and ‖| ‖| be a unitarily invariant norm on
Mn such that ‖|A1−tXBt‖| 6= 0 for any 0 ≤ t ≤ 1. If (‖|XB‖| − ‖|AX‖|) (τ − ν) > 0
then

‖|(1− τ)AX + τXB‖|
≤ (1− τ)‖|AX‖|+ τ‖|XB‖|

≤ ‖|AX‖|1−τ‖|XB‖|τ
(

(1− ν)‖|AX‖|+ ν‖|XB‖|
‖|AX‖|1−ν‖|XB‖|ν

) τ(1−τ)
ν(1−ν)

≤ ‖|A1−τXBτ‖|
(
‖|AX‖| ‖|XB‖|
‖|A 1

2XB
1
2 ‖|2

)R(τ)(
(1− ν)‖|AX‖|+ ν‖|XB‖|

‖|A1−νXBν‖|

) τ(1−τ)
ν(1−ν)

.
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On the other hand, if (‖|XB‖| − ‖|AX‖|) (τ − ν) < 0, then

‖|A1−τXBτ‖|

(
‖|A 1

2XB
1
2 ‖|2

‖|AX‖| ‖|XB‖|

)R(ν)(
‖|(1− ν)AX + νXB‖|
‖|A1−νXBν‖|

) τ(1−τ)
ν(1−ν)

≤ ‖|AX‖|1−τ‖|XB‖|τ
(

(1− ν)‖|AX‖|+ ν‖|XB‖|
‖|AX‖|1−ν‖|XB‖|ν

) τ(1−τ)
ν(1−ν)

≤ (1− τ)‖|AX‖|+ τ‖|XB‖|
≤ ‖|(1− τ)AX + τXB‖|+R(τ) (‖|AX‖|+ ‖|XB‖| − ‖|AX +XB‖|) .

Proof. When (‖|XB‖| − ‖|AX‖|) (τ − ν) > 0, the first inequality follows immediately
because ‖| ‖| is a norm. The second inequality follows from Corollary 2.7 on replacing
(a, b) by (‖|AX‖|, ‖|XB‖|). Then the third inequality follows from (2.5) and the fact
that ‖A1−νXBν‖| ≤ ‖|AX‖|1−ν‖|XB‖|ν .

Now when (‖|XB‖| − ‖|AX‖|) (τ − ν) < 0, we apply Corollary 2.7, (2.4), (2.5)
and (2.6) to obtain the desired inequalities. �
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