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A dual mapping associated to a closed convex set
and some subdifferential properties

Gabriela Apreutesei and Teodor Precupanu

Abstract. In this paper we establish some properties of the multivalued mapping
(x, d) ⇒ DC (x; d) that associates to every element x of a linear normed space X
the set of linear continuous functionals of norm d ≥ 0 and which separates the
closed ball B (x; d) from a closed convex set C ⊂ X. Using this mapping we give
links with other important concepts in convex analysis (ε-approximation element,
ε-subdifferential of distance function, duality mapping, polar cone). Thus, we
establish a dual characterization of ε-approximation elements with respect to a
nonvoid closed convex set as a generalization of a known result of Garkavi. Also,
we give some properties of univocity and monotonicity of mapping DC .
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1. Introduction and preliminaries

Let C be a nonvoid closed convex set in a real linear normed space X and a
closed ball B (x; d), d > 0 such that C ∩ intB(x, d) = ∅. It is well known that those
two sets can be separated by closed hyperplanes (see, for instance, [1],[2]).

We denote by
dC (x) = inf

u∈C
‖x− u‖ , x ∈ X, (1.1)

the distance function to a set C ⊂ X. Also, let us denote by X∗ the dual space of X.
In the special case d = dC (x), x /∈ C, using separating hyperplane, Garkavi [4]

has obtained a well known dual characterization of best approximation elements of
x ∈ X in C.
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We recall that an element z ∈ C is a ε-approximation of x in C if

‖x− z‖ ≤ ‖x− u‖+ ε, for all u ∈ C. (1.2)

Therefore using, the distance of x to the set C the property (1.2) is equivalent to

‖x− z‖ ≤ dC(x) + ε.

Obviously, here it is necessary that ε ≥ 0.
If ε = 0, then z is a best approximation of x in C, that is ‖x− z‖ = dC (x) and

z ∈ C.
If ε > 0 then the set of ε-approximations of x ∈ C is always nonvoid, but the

set of the best approximations may be void.
Using separating hyperplanes, Garkavi [4] established a well known dual charac-

terization of best approximation elements as follows.

Theorem 1.1. ([4]) An element z ∈ C is a best approximation element of x ∈ X ∈ C
if and only if there exists an element x∗0 ∈ X∗ such that

i) ‖x∗0‖ = ‖x− z‖;
ii) x∗0 (x− u) ≥ ‖x− z‖2 for all u ∈ C.

Here, the property ii) is equivalent with the following two properties:

i’) x∗0 (x− z) = ‖x− z‖2;
ii’) x∗0 (z) = sup {x∗0 (u) ;u ∈ C}.
Obviously, if x ∈ C, and z is a best approximation element, then x = z, and

so we take x∗0 = 0. Now, if x /∈ C, then dC (x) > 0 and we consider a closed sepa-
rating hyperplane (x∗0, α) for the sets C and B(x, dC(x)) such that ‖x∗0‖ = ‖x− z‖.
Conversely, if z ∈ C has the property i) and ii) it follows that

‖x− u‖‖x∗0‖ ≥ x∗0(x− u) ≥ ‖x− z‖2,
for all u ∈ C which prove that z is a best approximation element in C for x ∈ X.

Let us denote by PC (x) the set of all best approximations of x in C. The (mul-
tivalued) mapping x⇒ PC (x) x ∈ X is called the metric projection associated to the
set C. Clearly, PC (x) = x for any x ∈ C. Also, we can have PC (x) = ∅ for certain
elements in X. If PC (x) 6= ∅ for any x ∈ X then the set C is called proximinal and if
PC (x) = ∅ for any x ∈ X\C, the set C is called antiproximinal. It is well known that
in a reflexive space any closed convex set is proximinal.

Given a convex real extended function f : X → R, its ε-subdifferential is de-
fined by

∂εf (x) = {x∗ ∈ X∗;x∗ (x− u) ≥ f (x)− f (u)− ε, for all u ∈ X}, x ∈ X (1.3)

where R = [−∞,+∞].
Here, we suppose that f is a proper function, that is f (u) > −∞ for all u ∈ X and
there exist elements x ∈ X such that f (x) <∞. If ε = 0 we obtain the subdifferential
of function f in x, denoted by ∂f (x).

The multivalued operator x⇒ ∂εf (x), x ∈ X, has the following ε-monotonicity
property

(x∗1 − x∗2) (x1 − x2) ≥ −2ε for all x∗1 ∈ ∂εf (x1) , x∗2 ∈ ∂εf (x2) . (1.4)
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Generally, a multivalued operator A : X ⇒ X∗ which has the property of ε-
monotonicity of type (1.4) is called ε-monotone. Some properties of those mappings
were given in [13]. This type of monotonicity is different of ε-monotonicity defined in
[9].

Also, we recall the definition of duality mapping J : X ⇒ X∗,

J (x) =
{
x∗ ∈ X∗;x∗ (x) = ‖x∗‖2 = ‖x‖2

}
, x ∈ X. (1.5)

It is well known that J is the subdifferential of the function x 7→ 1
2 ‖x‖

2
, x ∈ X

(see, for instance, [1], [2]).
If A is a subset of X, we denote by Ao the polar set of A ⊂ X, that is

Ao = {x∗ ∈ X∗;x∗ (a) ≤ 1 for all a ∈ A} . (1.6)

In this paper we intend to analyze some properties of the (multivalued) mapping
(x, d) ⇒ DC (x; d), x ∈ X, C ⊂ X, d ≥ 0, where

DC (x; d) = {x∗ ∈ X∗;x∗ (v) ≥ x∗ (u) , ‖x∗‖ = d, ∀v ∈ B (x; d) ,∀u ∈ C} . (1.7)

Remark 1.2. Obviously, DC (x; 0) = {0}, for all x ∈ X and DC (x; d) = ∅ whenever
d > dC (x).

Geometrically, for each x ∈ X and d > 0, DC (x; d) coincides with the set of all
linear continuous functionals x∗ ∈ X∗ such that ‖x∗‖ = d and for which x∗ (y) = k,
y ∈ X, is a separating hyperplane for the sets C and B (x; d) for a certain k ∈ R.

Equivalently,

DC (x; d) =
{
x∗ ∈ X∗; ‖x∗‖ = d, x∗ (x− u) ≥ d2,∀u ∈ C

}
. (1.7’)

In the special case d = dC (x) we denote

DC (x) = DC (x; dC (x)) , x ∈ X. (1.7”)

We establish a dual characterization of real number d such that 0 ≤ d ≤ dC (x)
(Theorem 2.1). Consequently, if x /∈ C, we obtain the basic properties of elements in
DC (x; d). Using this multivalued mapping naturally generated by the geometric prob-
lem of separation of a nonvoid closed convex set and a closed ball we give connections
with some important concepts and properties of convex analysis (ε-subdifferentials
of distance function, ε-approximation elements, duality mapping, polar cone). For
example,

x∗ ∈ DC (x; d) if and only if 1
‖x∗‖x

∗ ∈ ∂εdC (x)∩Bd B∗ (0; 1) for ε = dC (x)− d,

where 0 < d ≤ dC (x). Generally, by BdA we denote the boundary of a set A ⊂ X.
Also, we denote by B∗(x∗0; d), x∗0 ∈ X∗, d ≥ 0, the closed balls in X∗.

Consequently, we give an explicit formula for ∂εdC (x) in the case x /∈ C, but ε >
dC (x) (Theorem 2.5, ii). The special case d = dC (x) was considered by Ioffe in [8]. A
detailed study of subdifferential of distance function was given by Penot, Ratsimahalo
in [10] (see also [3] and [6] if P (x) 6= ∅ ). In [5] Hiriart-Urruty (see, also, [6]) has
obtained formula for the ε-subdifferential of a marginal function. Particularly, one
can be obtained formulas for ε-subdifferential of distance function which is considered
either as a marginal function, or as the convolution of the norm and the indicator
function of the set C. But, by Theorem 2.5, we establish some explicit properties of



86 Gabriela Apreutesei and Teodor Precupanu

∂εdC (x). We remark that we have a special situation if ε = dC (x). The assertion
iii) in Theorem 2.5 is similar to the one shown in [10] for the subdifferential distance
function. We also establish a property of univocity of DC .

Following Jofre, Luc and Thera ([9]), we define a new type of ε-monotonicity by
(3.1), in according with DC (Theorem 3.1). Some monotonicity properties of DC are
given in Section 3.

2. A dual mapping associated to a closed convex set and an arbitrary
positive number

Now, we give a dual characterization of the numbers d such that dC (x) ≥ d ≥ 0.

Theorem 2.1. Let C be a nonvoid closed convex set in a linear normed space X. If
x ∈ X is a fixed element then dC (x) ≥ d ≥ 0 if and only if there exists x∗ ∈ X∗ such
that

i) ‖x∗‖ = d;
ii) x∗ (x− u) ≥ d2, for all u ∈ C.

Proof. If d = 0 then i) and ii) are obviously fulfilled taking x∗ = 0 and conversely.
Hence we can suppose that d > 0.

Now, if 0 < d ≤ dC (x) it follows that B (x; d) has nonvoid interior set and
C∩ intB (x; d) = ∅. Thus, using a separation theorem for sets C and B (x; d) (see, for
instance, [1] or [2]), there exists a non null element y∗ ∈ X∗ such that y∗ (v) ≥ y∗ (u)

for all u ∈ C and v ∈ B (x; d). Taking x∗0 = d ‖y∗‖−1 y∗ it follows that

x∗0 (x− dz) ≥ x∗0 (u)

for any z ∈ B (0; 1) and u ∈ C, and so x∗0 (x− u) ≥ d ‖x∗0‖ for all u ∈ C. Obviously,
‖x∗0‖ = d. Therefore, the properties i) and ii) are fulfilled.

Conversely, if i) and ii) hold, then

d2 ≤ x∗0 (x− u) ≤ ‖x∗0‖ ‖x− u‖ ≤ d ‖x− u‖ ,
for all u ∈ C, and so d ≤ dC (x). �

From the proof of Theorem 2.1 in the case 0 < d ≤ dC (x) (and, so, x /∈ C), we
see that every x∗ which verifies i) and ii) is in DC (x; d).

Remark 2.2. Given an element x ∈ X, taking d = ‖x− z‖, where z ∈ C, by Theorem
2.1 it results that ‖x− z‖ ≤ dC (x) if and only if the properties i) and ii) in Theorem
2.1 are fulfilled. But it is clear that ‖x− z‖ ≤ dC (x) and z ∈ C if and only if z is
the best approximation of x in C. Therefore, Theorem 2.1 is a slight extension of a
famous characterization established by Garkavi [4] concerning the best approximation
elements.

Corollary 2.3. Let X be a linear normed space, C a nonvoid closed convex set of X
and ε ≥ 0. Then zε ∈ C is an ε-approximation element for x /∈ C, ε < dC (x), if and
only if there exists x∗ ∈ X∗ such that the properties i) and ii) in Theorem 2.1 are
fulfilled for d = ‖x− zε‖ − ε.
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Proof. According to (1.1) and (1.2) zε ∈ C is an ε-approximation element for x ∈ X
if and only if ‖x− zε‖ − ε ≤ dC (x) .Therefore it is sufficient to apply Theorem 2.1
taking d = ‖x− zε‖ − ε. �

Now, we intent to characterize x∗ ∈ DC (x; d) using the set ∂εdC (x), where
ε = dC (x)− d ≥ 0, whenever x /∈ C.

Proposition 2.4. If x∗ ∈ ∂εdC (x) and ε > 0 then:

‖x∗‖ ≤ 1; (2.1)

‖x∗‖ ≥ 1− ε

dC (x)
, for all x /∈ C. (2.2)

whenever C is a nonvoid closed convex set in X.

Proof. If x∗ ∈ ∂εdC (x) then x∗ (x− y) ≥ dC (x) − dC (y) − ε for any y ∈ X. Taking
y = x+ tz, t > 0 and z ∈ X it follows that

tx∗(z) + dC(x)− ε ≤ dC(x+ tz) ≤ ‖x+ tz − u‖ ≤ t‖z‖+ ‖x− u‖,

for a given u ∈ C. Therefore, x∗(z) − ‖z‖ ≤ 1
t (‖x − u‖ − dC(x)), for any t > 0 and

z ∈ X, and so, for t→∞ we obtain that x∗(z) ≤ ‖z‖, z ∈ X.
If x ∈ C and x∗ ∈ ∂εdC (x) we take y = x+ tz, z ∈ X, t < 0 in inequality

x∗ (x− y) ≥ dC (x)− dC (y)− ε

and we obtain x∗ (x− y) ≥ dC (x)− ε, so ‖x∗‖ ‖x− y‖ ≥ dC (x)− ε, equivalently

‖x∗‖dC(x) ≥ dC(x)− ε.

Therefore, if x /∈ C then dc(x) > 0. Thus, we obtain the inequality (2.2). �

We recall that if X is a linear normed space, the conic polar A+ of a set A ⊂ X
is defined by

A+ = {x∗ ∈ X∗;x∗ (a) ≥ 0 for all a ∈ A} .

If A is a cone, then A+ = −A0.
In the next result we establish some special properties of ε-subdifferential dis-

tance function.

Theorem 2.5. Suppose that X is a real normed space, x ∈ X and C ⊂ X is a nonvoid
closed convex set.

i) If x /∈ C, 0 < d ≤ dC (x) and ε = dC (x)− d, then

∂εdC (x) ∩Bd B∗ (0; 1) =
1

d
DC (x; d) ;

ii) If x /∈ C and ε > dC (x) then

∂εdC (x) = (ε− dC (x)) (C − x)o ∩B∗ (0; 1);

iii) If x /∈ C, and ε = dC (x) then ∂εdC (x) = (x− C)
+ ∩B∗ (0; 1).

iv) If x ∈ C then ∂εdC (x) = ε (C − x)
o ∩B∗ (0; 1) for every ε > 0.
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Proof. i) Using (1.3) it follows that z∗ ∈ ∂εdC (x) if and only if

z∗ (x− y) ≥ d− dC (y) for all y ∈ X.

If y ∈ C then z∗ (x− y) ≥ d, which implies z∗ ∈ 1
dDC (x; d) whenever ‖z∗‖ = 1.

Conversely, suppose z∗ ∈ 1
dDC (x; d). Then ‖z∗‖ = 1 and z∗ (x− y) ≥ d for any

y ∈ C, so z∗ (x− y) ≥ d− dC (y) for all y ∈ C.

Now, consider y ∈ X\C and some u ∈ C.

Then z∗ (x− y) = z∗ (x− u)− z∗ (y − u) ≥ d− z∗ (y − u).

But z∗ (y − u) ≤ ‖z∗‖ ‖y − u‖ = ‖y − u‖ . So, z∗ (x− y) ≥ d − ‖y − u‖, for any
u ∈ C. Passing to the sup

u∈C
in this inequality we obtain z∗ ∈ ∂εdC (x) ∩B∗ (0; 1).

ii) If ε > dC (x) denote η = ε − dC (x) > 0. Let x∗ be an element of ∂εdC (x).
Then x∗ (x− y) ≥ −η − dC (y), for all y ∈ X. Taking y ∈ C it results x∗ (y − x) ≤ η

for any y ∈ C, that is x∗ ∈
(
C−x
η

)o
∩ B∗ (0; 1) = η (C − x)

o ∩ B∗ (0; 1) according to

(2.1).

Now, if x∗ ∈ η (C − x)
o ∩B∗ (0; 1) then x∗ (u− x) ≤ ε− dC (x) for all u ∈ C. If

y /∈ C then

x∗ (x− y) = x∗ (x− u) + x∗ (u− y) ≥ dC (x)− ε+ x∗ (u− y)

≥ dC (x)− ε− ‖x∗‖ ‖u− y‖ ≥ dC (x)− ε− ‖u− y‖

for all u ∈ C.
Using (1.1) it follows that x∗ ∈ ∂εdC (x).

iii) Let x∗ be an element in ∂εdC (x) . Taking ε = dC (x) in the definition of
ε-subdifferential of dC and arbitrary y ∈ C one obtains x∗ (y − x) ≤ 0, so x∗ ∈
(x− C)

+
. Now, using (2.1), the conclusion follows.

iv) Let y ∈ X be arbitrary and x ∈ C. If ε > 0 and x∗ ∈ ∂εdC (x) then
x∗ (x− y) ≥ −dC (y)− ε, so x∗ (y − x) ≤ ε, whenever y ∈ C. Hence x∗ ∈ ε (C − x)

o
.

Also, from (2.1) we have ‖x∗‖ ≤ 1.

Conversely, for x∗ ∈ ε (C − x)
o∩B (0; 1) and y ∈ X we have x∗ (y − u) ≤ ‖y − u‖

for all u ∈ C. We deduce

x∗ (x− y) = x∗ (x− u) + x∗ (u− y) ≥ −ε− ‖y − u‖ .

Passing to the infimum for u ∈ C it results x∗ (x− y) ≥ −ε − dC (y) for all
y ∈ X as claimed. �

Corollary 2.6. Let X be a linear normed space. Then:

i) 1
dD{0} (x; d) = ∂ε ‖·‖ (x) ∩Bd B (0; 1) where ε = ‖x‖ − d > 0, d > 0;

ii) D{0} (x; ‖x‖) = J (x).

Proof. i) Observe that dC (x) = ‖x‖ if C = {0}. Now, we apply Theorem 2.5, i).

ii) Consider x∗ ∈ D{0} (x; ‖x‖), that is ‖x∗‖ = ‖x‖ and x∗ (x) ≥ ‖x‖2. But

x∗ (x) ≤ ‖x‖2 and so x∗ (x) = ‖x‖2. According to (1.5) we obtain that x∗ ∈ J (x). �
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Remark 2.7. The assertion iii) of Theorem 2.5 has obtained by Hiriart-Urruty in [5]
(see also, [6], [7]). The special case ε = 0 was studied by Penot and Ratsimahalo [10].

Remark 2.8. Theorem 2.5, i), can be reformulated as

1

d
DC (x; d) = ∂λ (d · dC (x)) ∩Bd B (0; 1),

where λ = d (dC (x)− d), 0 < d ≤ dC (x) .

We recall that X is a smooth space (see [1], [3]) if there is exactly one supporting
hyperplane through each boundary point of closed unit ball.

Generally, closed convex set A ⊂ X is called smooth at a point x0 if there exists
only one closed hyperplane which separates x0 at A. Obviously, it is necessary that

x0 ∈ Bd A.

Theorem 2.9. Let C be a nonvoid closed convex set in X and a fixed element x ∈ X.
Then, for any d ∈ [0, dC (x)] we have:

i) DC (x; d) = {0} if and only if d = 0;
ii) Dom DC = (X × {0}) ∪ {(x, d) ;x /∈ C, d ∈ (0; dC (x)]};
iii) If DC (x; d) is a singleton then d = 0 or d = dC (x).
iv) DC (x; dC (x)) is a singleton if and only if the set C−B (x; dC (x)) is smooth

at origin.

Proof. The properties i), ii) are obvious.
Also, in the sequel we can suppose that x /∈ C, and so dC (x) > 0.
Now, we prove properties (iii) and (iv): if d = 0 then DC (x; 0) = {0} is a

singleton. Let us consider an arbitrary element x /∈ C and d ∈ (0, dc (x)]. But, if d <
dC (x) then C and B (x; d) are strongly separated, that is there exists many parallel
separating hyperplanes (see, for example, [1], Remark 1.46). Therefore, DC (x; d) is
not a singleton. If d = dC (x) there exists a unique hyperplane which separates C and
B (x; dC (x)) if and only if there exists a unique hyperplane which separates the origin
and C −B (x; dC (x)), that is C −B (x; dC (x)) is smooth at the origin. �

Remark 2.10. In the spacial case when PC (x) 6= ∅, the property iii) was established
by Garkavi ([4]).

Now, if PC (x) 6= ∅, we have

DC (x) =
{
x∗ ∈ X∗; ‖x∗‖ = ‖x− z‖ , x∗ (x− u) ≥ ‖x− z‖2 ∀u ∈ C

}
,

z ∈ PC (x) (2.3)

since dC (x) = ‖x− z‖ for any z ∈ PC (x).
In the sequel we prove that the mapping DC can be equivalently defined using a

min-max property. Since B∗ (x; d) is a convex w∗-compact set in X∗ and the function
Fx (x∗, u) = x∗ (x− u), (u, x∗) ∈ X ×X∗ is convex-concave, using a min-max result
(see, for instance, [1], [11] and [12]), it implies the following equality:

max
x∗∈B∗(0;d)

inf
u∈C

x∗ (x− u) = inf
u∈C

max
x∗∈B∗(0;d)

x∗ (x− u) for all x ∈ X, d > 0. (2.4)
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Here, by ”max”, we mean that ”sup” is attained. The elements x∗0 ∈ B∗ (0; d),
where ”max” is attained in the left hand of (2.4) and make valid the equality (2.4)
are called the solutions of the max-inf problem (2.4).

Proposition 2.11. Given an element x ∈ X and a nonvoid convex, closed set C ⊂ X,
then x∗ ∈ DC (x) if and only if x∗ is a solution of max-inf problem (2.4), where
d = dC (x), that is

DC (x) =

{
x∗ ∈ B∗ (0; dC (x)); inf

u∈C
x∗ (x− u) = d2C (x)

}
. (2.5)

Proof. We remark that the saddle value of (2.4) is equal to dC (x) d. Consequently,
for d = dC (x), the properties i), ii) in Theorem 2.1 are equivalent to the assertion
that x∗ is a solution of max-inf problem (2.4). �

Remark 2.12. If in the equality (2.4) ”inf” is also attained, these elements of C
are even the best approximation elements of x in C. Therefore, if PC (x) 6= ∅ and
d = dC (x), then the set of all saddle elements of max-min problem associated to (2.4)
is DC (x)× PC (x).

Now, if we return to the dual characterization of the best approximation ele-
ments, we observe that in the special case PC (x) 6= ∅, we have a conection with the
duality map J . Firstly, we remark that if we put in equality (1.7) d = ‖x − z‖ it
results that DC(X) is exactly the set of all x∗ ∈ X∗ with the properties of Garkavi
Theorem 1.1. But, the properties i) and i′) in Theorem 1.1 prove that x∗0 ∈ J (z − x).
Also, ii′) say that x∗ ∈ (x− C)∗. Consequently we have the following equality

DC (x) = J (x− z) ∩ (C − x)
+

whenever z ∈ PC (x) and x ∈ X.

3. Properties of monotonicity

It is well known the relationship between the subdifferentials of convex functions
and their property of monotonicity ([9]). Also, the ε-subdifferentials are ε-monotone
in the sense of definition (1.4) and they have some good properties (see, for e.g., [13]).

Because the multivalued mapping x ⇒ DC (x; d) is expressed using the ε-
subdifferential of dC (·) (Theorem 2.5, i)), it is expected to have an ε-monotonicity
property.

Now, we establish two special monotonicity properties of DC .

Theorem 3.1. The mapping (x, d) ⇒ DC (x; d) is monotone in the following sense:

∀xi ∈ X\C, 0 < di ≤ dC (xi), εi = dC (xi) − di and ∀x∗i ∈ DC (xi; di), i = 1, 2,
then

(x∗1 − x∗2) (x1 − x2) ≥ −ε2d1 − ε1d2. (3.1)
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Proof. Let us consider x∗i ∈ DC (xi, di) , i = 1, 2. By property ii) in Theorem 2.1 and
the definition of DC we have (x∗i , xi − ui) ≥ d2i for any ui ∈ C, i = 1, 2. Therefore it
follows that

(x∗1 − x∗2) (x1 − x2) = x∗1 (x1 − u1) + x∗2 (x2 − u2)− x∗1(x2 − u1)− x∗2 (x1 − u2)

≥ d21 + d22 − x∗1(x2 − u1)− x∗2 (x1 − u2)

≥ d21 + d22 − d1 ‖x2 − u1‖ − d2 ‖x1 − u2‖ .

Since u1, u2 are arbitrary elements in C we get

(x∗1 − x∗2) (x1 − x2) ≥ d21 + d22 − d1dC (x2)− d2dC (x1) = −d1ε2 − d2ε1,
as claimed. �

Also, the mapping DC has a property of monotonicity with respect to corre-
sponding best approximation elements.

Proposition 3.2. If x∗i ∈ DC (xi; di) and zi ∈ PC (xi), i = 1, 2, then

(x∗1 − x∗2) (z1 − z2) ≥ 0.

Proof. Taking u1 = z2 and u2 = z1 in Theorem 2.1, we have

(x∗1 − x∗2) (z1 − z2) = x∗1 (x1 − z2) + x∗2 (x2 − z1)− x∗1 (x1 − z1)− x∗2 (x2 − z2)

≥ d21 + d22 − x∗1 (x1 − z1)− x∗2 (x2 − z2) .

By properties i) and ii) in Theorem 1.1 it follows that
(x∗1 − x∗2) (z1 − z2) ≥ d21 + d22 − d1 ‖x1 − z1‖ − d2 ‖x2 − z2‖ = 0. �
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