A dual mapping associated to a closed convex set and some subdifferential properties

Gabriela Apreutesei and Teodor Precupanu

Abstract

In this paper we establish some properties of the multivalued mapping $(x, d) \rightrightarrows D_{C}(x ; d)$ that associates to every element x of a linear normed space X the set of linear continuous functionals of norm $d \geq 0$ and which separates the closed ball $B(x ; d)$ from a closed convex set $C \subset X$. Using this mapping we give links with other important concepts in convex analysis (ε-approximation element, ε-subdifferential of distance function, duality mapping, polar cone). Thus, we establish a dual characterization of ε-approximation elements with respect to a nonvoid closed convex set as a generalization of a known result of Garkavi. Also, we give some properties of univocity and monotonicity of mapping D_{C}.

Mathematics Subject Classification (2010): 32A70, 41A65, 46B20, 46N10.
Keywords: Distance function associated to a set, ε-subdifferential, best approximation element, ε-monotonicity, separating hyperplane.

1. Introduction and preliminaries

Let C be a nonvoid closed convex set in a real linear normed space X and a closed ball $B(x ; d), d>0$ such that $C \cap \operatorname{int} B(x, d)=\emptyset$. It is well known that those two sets can be separated by closed hyperplanes (see, for instance, [1],[2]).

We denote by

$$
\begin{equation*}
d_{C}(x)=\inf _{u \in C}\|x-u\|, x \in X \tag{1.1}
\end{equation*}
$$

the distance function to a set $C \subset X$. Also, let us denote by X^{*} the dual space of X.
In the special case $d=d_{C}(x), x \notin C$, using separating hyperplane, Garkavi [4] has obtained a well known dual characterization of best approximation elements of $x \in X$ in C.

[^0]@๑ఆ囚 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

We recall that an element $z \in C$ is a ε-approximation of x in C if

$$
\begin{equation*}
\|x-z\| \leq\|x-u\|+\varepsilon, \text { for all } u \in C \tag{1.2}
\end{equation*}
$$

Therefore using, the distance of x to the set C the property (1.2) is equivalent to

$$
\|x-z\| \leq d_{C}(x)+\varepsilon
$$

Obviously, here it is necessary that $\varepsilon \geq 0$.
If $\varepsilon=0$, then z is a best approximation of x in C, that is $\|x-z\|=d_{C}(x)$ and $z \in C$.

If $\varepsilon>0$ then the set of ε-approximations of $x \in C$ is always nonvoid, but the set of the best approximations may be void.

Using separating hyperplanes, Garkavi [4] established a well known dual characterization of best approximation elements as follows.

Theorem 1.1. ([4]) An element $z \in C$ is a best approximation element of $x \in X \in C$ if and only if there exists an element $x_{0}^{*} \in X^{*}$ such that
i) $\left\|x_{0}^{*}\right\|=\|x-z\|$;
ii) $x_{0}^{*}(x-u) \geq\|x-z\|^{2}$ for all $u \in C$.

Here, the property ii) is equivalent with the following two properties:
i') $x_{0}^{*}(x-z)=\|x-z\|^{2}$;
ii') $x_{0}^{*}(z)=\sup \left\{x_{0}^{*}(u) ; u \in C\right\}$.
Obviously, if $x \in C$, and z is a best approximation element, then $x=z$, and so we take $x_{0}^{*}=0$. Now, if $x \notin C$, then $d_{C}(x)>0$ and we consider a closed separating hyperplane $\left(x_{0}^{*}, \alpha\right)$ for the sets C and $B\left(x, d_{C}(x)\right)$ such that $\left\|x_{0}^{*}\right\|=\|x-z\|$. Conversely, if $z \in C$ has the property i) and ii) it follows that

$$
\|x-u\|\left\|x_{0}^{*}\right\| \geq x_{0}^{*}(x-u) \geq\|x-z\|^{2}
$$

for all $u \in C$ which prove that z is a best approximation element in C for $x \in X$.
Let us denote by $P_{C}(x)$ the set of all best approximations of x in C. The (multivalued) mapping $x \rightrightarrows P_{C}(x) x \in X$ is called the metric projection associated to the set C. Clearly, $P_{C}(x)=x$ for any $x \in C$. Also, we can have $P_{C}(x)=\emptyset$ for certain elements in X. If $P_{C}(x) \neq \emptyset$ for any $x \in X$ then the set C is called proximinal and if $P_{C}(x)=\emptyset$ for any $x \in X \backslash C$, the set C is called antiproximinal. It is well known that in a reflexive space any closed convex set is proximinal.

Given a convex real extended function $f: X \rightarrow \overline{\mathbb{R}}$, its ε-subdifferential is defined by

$$
\begin{equation*}
\partial_{\varepsilon} f(x)=\left\{x^{*} \in X^{*} ; x^{*}(x-u) \geq f(x)-f(u)-\varepsilon, \text { for all } u \in X\right\}, x \in X \tag{1.3}
\end{equation*}
$$

where $\overline{\mathbb{R}}=[-\infty,+\infty]$.
Here, we suppose that f is a proper function, that is $f(u)>-\infty$ for all $u \in X$ and there exist elements $\bar{x} \in X$ such that $f(\bar{x})<\infty$. If $\varepsilon=0$ we obtain the subdifferential of function f in x, denoted by $\partial f(x)$.

The multivalued operator $x \rightrightarrows \partial_{\varepsilon} f(x), x \in X$, has the following ε-monotonicity property

$$
\begin{equation*}
\left(x_{1}^{*}-x_{2}^{*}\right)\left(x_{1}-x_{2}\right) \geq-2 \varepsilon \text { for all } x_{1}^{*} \in \partial_{\varepsilon} f\left(x_{1}\right), x_{2}^{*} \in \partial_{\varepsilon} f\left(x_{2}\right) \tag{1.4}
\end{equation*}
$$

Generally, a multivalued operator $A: X \rightrightarrows X^{*}$ which has the property of ε monotonicity of type (1.4) is called ε-monotone. Some properties of those mappings were given in [13]. This type of monotonicity is different of ε-monotonicity defined in [9].

Also, we recall the definition of duality mapping $J: X \Rightarrow X^{*}$,

$$
\begin{equation*}
J(x)=\left\{x^{*} \in X^{*} ; x^{*}(x)=\left\|x^{*}\right\|^{2}=\|x\|^{2}\right\}, x \in X \tag{1.5}
\end{equation*}
$$

It is well known that J is the subdifferential of the function $x \mapsto \frac{1}{2}\|x\|^{2}, x \in X$ (see, for instance, [1], [2]).

If A is a subset of X, we denote by A^{o} the polar set of $A \subset X$, that is

$$
\begin{equation*}
A^{o}=\left\{x^{*} \in X^{*} ; x^{*}(a) \leq 1 \text { for all } a \in A\right\} \tag{1.6}
\end{equation*}
$$

In this paper we intend to analyze some properties of the (multivalued) mapping $(x, d) \rightrightarrows D_{C}(x ; d), x \in X, C \subset X, d \geq 0$, where

$$
\begin{equation*}
D_{C}(x ; d)=\left\{x^{*} \in X^{*} ; x^{*}(v) \geq x^{*}(u),\left\|x^{*}\right\|=d, \forall v \in B(x ; d), \forall u \in C\right\} \tag{1.7}
\end{equation*}
$$

Remark 1.2. Obviously, $D_{C}(x ; 0)=\{0\}$, for all $x \in X$ and $D_{C}(x ; d)=\emptyset$ whenever $d>d_{C}(x)$.

Geometrically, for each $x \in X$ and $d>0, D_{C}(x ; d)$ coincides with the set of all linear continuous functionals $x^{*} \in X^{*}$ such that $\left\|x^{*}\right\|=d$ and for which $x^{*}(y)=k$, $y \in X$, is a separating hyperplane for the sets C and $B(x ; d)$ for a certain $k \in \mathbb{R}$.

Equivalently,

$$
\begin{equation*}
D_{C}(x ; d)=\left\{x^{*} \in X^{*} ;\left\|x^{*}\right\|=d, x^{*}(x-u) \geq d^{2}, \forall u \in C\right\} \tag{1.7’}
\end{equation*}
$$

In the special case $d=d_{C}(x)$ we denote

$$
\begin{equation*}
D_{C}(x)=D_{C}\left(x ; d_{C}(x)\right), x \in X \tag{1.7"}
\end{equation*}
$$

We establish a dual characterization of real number d such that $0 \leq d \leq d_{C}(x)$ (Theorem 2.1). Consequently, if $x \notin C$, we obtain the basic properties of elements in $D_{C}(x ; d)$. Using this multivalued mapping naturally generated by the geometric problem of separation of a nonvoid closed convex set and a closed ball we give connections with some important concepts and properties of convex analysis (ε-subdifferentials of distance function, ε-approximation elements, duality mapping, polar cone). For example,
$x^{*} \in D_{C}(x ; d)$ if and only if $\frac{1}{\left\|x^{*}\right\|} x^{*} \in \partial_{\varepsilon} d_{C}(x) \cap B d B^{*}(0 ; 1)$ for $\varepsilon=d_{C}(x)-d$, where $0<d \leq d_{C}(x)$. Generally, by $B d A$ we denote the boundary of a set $A \subset X$. Also, we denote by $B^{*}\left(x_{0}^{*} ; d\right), x_{0}^{*} \in X^{*}, d \geq 0$, the closed balls in X^{*}.

Consequently, we give an explicit formula for $\partial_{\varepsilon} d_{C}(x)$ in the case $x \notin C$, but $\varepsilon>$ $d_{C}(x)$ (Theorem 2.5, ii). The special case $d=d_{C}(x)$ was considered by Ioffe in [8]. A detailed study of subdifferential of distance function was given by Penot, Ratsimahalo in [10] (see also [3] and [6] if $P(x) \neq \emptyset$). In [5] Hiriart-Urruty (see, also, [6]) has obtained formula for the ε-subdifferential of a marginal function. Particularly, one can be obtained formulas for ε-subdifferential of distance function which is considered either as a marginal function, or as the convolution of the norm and the indicator function of the set C. But, by Theorem 2.5, we establish some explicit properties of
$\partial_{\varepsilon} d_{C}(x)$. We remark that we have a special situation if $\varepsilon=d_{C}(x)$. The assertion iii) in Theorem 2.5 is similar to the one shown in [10] for the subdifferential distance function. We also establish a property of univocity of D_{C}.

Following Jofre, Luc and Thera ([9]), we define a new type of ε-monotonicity by (3.1), in according with D_{C} (Theorem 3.1). Some monotonicity properties of D_{C} are given in Section 3.

2. A dual mapping associated to a closed convex set and an arbitrary positive number

Now, we give a dual characterization of the numbers d such that $d_{C}(x) \geq d \geq 0$.
Theorem 2.1. Let C be a nonvoid closed convex set in a linear normed space X. If $x \in X$ is a fixed element then $d_{C}(x) \geq d \geq 0$ if and only if there exists $x^{*} \in X^{*}$ such that
i) $\left\|x^{*}\right\|=d$;
ii) $x^{*}(x-u) \geq d^{2}$, for all $u \in C$.

Proof. If $d=0$ then i) and ii) are obviously fulfilled taking $x^{*}=0$ and conversely. Hence we can suppose that $d>0$.

Now, if $0<d \leq d_{C}(x)$ it follows that $B(x ; d)$ has nonvoid interior set and $C \cap \operatorname{int} B(x ; d)=\emptyset$. Thus, using a separation theorem for sets C and $B(x ; d)$ (see, for instance, [1] or [2]), there exists a non null element $y^{*} \in X^{*}$ such that $y^{*}(v) \geq y^{*}(u)$ for all $u \in C$ and $v \in B(x ; d)$. Taking $x_{0}^{*}=d\left\|y^{*}\right\|^{-1} y^{*}$ it follows that

$$
x_{0}^{*}(x-d z) \geq x_{0}^{*}(u)
$$

for any $z \in B(0 ; 1)$ and $u \in C$, and so $x_{0}^{*}(x-u) \geq d\left\|x_{0}^{*}\right\|$ for all $u \in C$. Obviously, $\left\|x_{0}^{*}\right\|=d$. Therefore, the properties i) and ii) are fulfilled.

Conversely, if i) and ii) hold, then

$$
d^{2} \leq x_{0}^{*}(x-u) \leq\left\|x_{0}^{*}\right\|\|x-u\| \leq d\|x-u\|,
$$

for all $u \in C$, and so $d \leq d_{C}(x)$.
From the proof of Theorem 2.1 in the case $0<d \leq d_{C}(x)$ (and, so, $x \notin C$), we see that every x^{*} which verifies i) and ii) is in $D_{C}(x ; d)$.

Remark 2.2. Given an element $x \in X$, taking $d=\|x-z\|$, where $z \in C$, by Theorem 2.1 it results that $\|x-z\| \leq d_{C}(x)$ if and only if the properties i) and ii) in Theorem 2.1 are fulfilled. But it is clear that $\|x-z\| \leq d_{C}(x)$ and $z \in C$ if and only if z is the best approximation of x in C. Therefore, Theorem 2.1 is a slight extension of a famous characterization established by Garkavi [4] concerning the best approximation elements.

Corollary 2.3. Let X be a linear normed space, C a nonvoid closed convex set of X and $\varepsilon \geq 0$. Then $z_{\varepsilon} \in C$ is an ε-approximation element for $x \notin C, \varepsilon<d_{C}(x)$, if and only if there exists $x^{*} \in X^{*}$ such that the properties i) and ii) in Theorem 2.1 are fulfilled for $d=\left\|x-z_{\varepsilon}\right\|-\varepsilon$.

Proof. According to (1.1) and (1.2) $z_{\varepsilon} \in C$ is an ε-approximation element for $x \in X$ if and only if $\left\|x-z_{\varepsilon}\right\|-\varepsilon \leq d_{C}(x)$.Therefore it is sufficient to apply Theorem 2.1 taking $d=\left\|x-z_{\varepsilon}\right\|-\varepsilon$.

Now, we intent to characterize $x^{*} \in D_{C}(x ; d)$ using the set $\partial_{\varepsilon} d_{C}(x)$, where $\varepsilon=d_{C}(x)-d \geq 0$, whenever $x \notin C$.

Proposition 2.4. If $x^{*} \in \partial_{\varepsilon} d_{C}(x)$ and $\varepsilon>0$ then:

$$
\begin{gather*}
\left\|x^{*}\right\| \leq 1 \tag{2.1}\\
\left\|x^{*}\right\| \geq 1-\frac{\varepsilon}{d_{C}(x)}, \text { for all } x \notin C . \tag{2.2}
\end{gather*}
$$

whenever C is a nonvoid closed convex set in X.
Proof. If $x^{*} \in \partial_{\varepsilon} d_{C}(x)$ then $x^{*}(x-y) \geq d_{C}(x)-d_{C}(y)-\varepsilon$ for any $y \in X$. Taking $y=x+t z, t>0$ and $z \in X$ it follows that

$$
t x^{*}(z)+d_{C}(x)-\varepsilon \leq d_{C}(x+t z) \leq\|x+t z-\bar{u}\| \leq t\|z\|+\|x-\bar{u}\|
$$

for a given $\bar{u} \in C$. Therefore, $x^{*}(z)-\|z\| \leq \frac{1}{t}\left(\|x-\bar{u}\|-d_{C}(x)\right)$, for any $t>0$ and $z \in X$, and so, for $t \rightarrow \infty$ we obtain that $x^{*}(z) \leq\|z\|, z \in X$.

If $x \in C$ and $x^{*} \in \partial_{\varepsilon} d_{C}(x)$ we take $y=x+t z, z \in X, t<0$ in inequality

$$
x^{*}(x-y) \geq d_{C}(x)-d_{C}(y)-\varepsilon
$$

and we obtain $x^{*}(x-y) \geq d_{C}(x)-\varepsilon$, so $\left\|x^{*}\right\|\|x-y\| \geq d_{C}(x)-\varepsilon$, equivalently

$$
\left\|x^{*}\right\| d_{C}(x) \geq d_{C}(x)-\varepsilon
$$

Therefore, if $x \notin C$ then $d_{c}(x)>0$. Thus, we obtain the inequality (2.2).
We recall that if X is a linear normed space, the conic polar A^{+}of a set $A \subset X$ is defined by

$$
A^{+}=\left\{x^{*} \in X^{*} ; x^{*}(a) \geq 0 \text { for all } a \in A\right\}
$$

If A is a cone, then $A^{+}=-A^{0}$.
In the next result we establish some special properties of ε-subdifferential distance function.

Theorem 2.5. Suppose that X is a real normed space, $x \in X$ and $C \subset X$ is a nonvoid closed convex set.
i) If $x \notin C, 0<d \leq d_{C}(x)$ and $\varepsilon=d_{C}(x)-d$, then

$$
\partial_{\varepsilon} d_{C}(x) \cap B d B^{*}(0 ; 1)=\frac{1}{d} D_{C}(x ; d)
$$

ii) If $x \notin C$ and $\varepsilon>d_{C}(x)$ then

$$
\partial_{\varepsilon} d_{C}(x)=\left(\varepsilon-d_{C}(x)\right)(C-x)^{o} \cap B^{*}(0 ; 1) ;
$$

iii) If $x \notin C$, and $\varepsilon=d_{C}(x)$ then $\partial_{\varepsilon} d_{C}(x)=(x-C)^{+} \cap B^{*}(0 ; 1)$.
iv) If $x \in C$ then $\partial_{\varepsilon} d_{C}(x)=\varepsilon(C-x)^{o} \cap B^{*}(0 ; 1)$ for every $\varepsilon>0$.

Proof. i) Using (1.3) it follows that $z^{*} \in \partial_{\varepsilon} d_{C}(x)$ if and only if

$$
z^{*}(x-y) \geq d-d_{C}(y) \text { for all } y \in X
$$

If $y \in C$ then $z^{*}(x-y) \geq d$, which implies $z^{*} \in \frac{1}{d} D_{C}(x ; d)$ whenever $\left\|z^{*}\right\|=1$.
Conversely, suppose $z^{*} \in \frac{1}{d} D_{C}(x ; d)$. Then $\left\|z^{*}\right\|=1$ and $z^{*}(x-y) \geq d$ for any $y \in C$, so $z^{*}(x-y) \geq d-d_{C}(y)$ for all $y \in C$.

Now, consider $y \in X \backslash C$ and some $u \in C$.
Then $z^{*}(x-y)=z^{*}(x-u)-z^{*}(y-u) \geq d-z^{*}(y-u)$.
But $z^{*}(y-u) \leq\left\|z^{*}\right\|\|y-u\|=\|y-u\|$. So, $z^{*}(x-y) \geq d-\|y-u\|$, for any $u \in C$. Passing to the $\sup _{u \in C}$ in this inequality we obtain $z^{*} \in \partial_{\varepsilon} d_{C}(x) \cap B^{*}(0 ; 1)$.
ii) If $\varepsilon>d_{C}(x)$ denote $\eta=\varepsilon-d_{C}(x)>0$. Let x^{*} be an element of $\partial_{\varepsilon} d_{C}(x)$. Then $x^{*}(x-y) \geq-\eta-d_{C}(y)$, for all $y \in X$. Taking $y \in C$ it results $x^{*}(y-x) \leq \eta$ for any $y \in C$, that is $x^{*} \in\left(\frac{C-x}{\eta}\right)^{o} \cap B^{*}(0 ; 1)=\eta(C-x)^{o} \cap B^{*}(0 ; 1)$ according to (2.1).

Now, if $x^{*} \in \eta(C-x)^{o} \cap B^{*}(0 ; 1)$ then $x^{*}(u-x) \leq \varepsilon-d_{C}(x)$ for all $u \in C$. If $y \notin C$ then

$$
\begin{aligned}
x^{*}(x-y) & =x^{*}(x-u)+x^{*}(u-y) \geq d_{C}(x)-\varepsilon+x^{*}(u-y) \\
& \geq d_{C}(x)-\varepsilon-\left\|x^{*}\right\|\|u-y\| \geq d_{C}(x)-\varepsilon-\|u-y\|
\end{aligned}
$$

for all $u \in C$.
Using (1.1) it follows that $x^{*} \in \partial_{\varepsilon} d_{C}(x)$.
iii) Let x^{*} be an element in $\partial_{\varepsilon} d_{C}(x)$. Taking $\varepsilon=d_{C}(x)$ in the definition of ε-subdifferential of d_{C} and arbitrary $y \in C$ one obtains $x^{*}(y-x) \leq 0$, so $x^{*} \in$ $(x-C)^{+}$. Now, using (2.1), the conclusion follows.
iv) Let $y \in X$ be arbitrary and $x \in C$. If $\varepsilon>0$ and $x^{*} \in \partial_{\varepsilon} d_{C}(x)$ then $x^{*}(x-y) \geq-d_{C}(y)-\varepsilon$, so $x^{*}(y-x) \leq \varepsilon$, whenever $y \in C$. Hence $x^{*} \in \varepsilon(C-x)^{o}$.

Also, from (2.1) we have $\left\|x^{*}\right\| \leq 1$.
Conversely, for $x^{*} \in \varepsilon(C-x)^{o} \cap B(0 ; 1)$ and $y \in X$ we have $x^{*}(y-u) \leq\|y-u\|$ for all $u \in C$. We deduce

$$
x^{*}(x-y)=x^{*}(x-u)+x^{*}(u-y) \geq-\varepsilon-\|y-u\| .
$$

Passing to the infimum for $u \in C$ it results $x^{*}(x-y) \geq-\varepsilon-d_{C}(y)$ for all $y \in X$ as claimed.

Corollary 2.6. Let X be a linear normed space. Then:
i) $\frac{1}{d} D_{\{0\}}(x ; d)=\partial_{\varepsilon}\|\cdot\|(x) \cap B d B(0 ; 1)$ where $\varepsilon=\|x\|-d>0, d>0$;
ii) $D_{\{0\}}(x ;\|x\|)=J(x)$.

Proof. i) Observe that $d_{C}(x)=\|x\|$ if $C=\{0\}$. Now, we apply Theorem 2.5, i).
ii) Consider $x^{*} \in D_{\{0\}}(x ;\|x\|)$, that is $\left\|x^{*}\right\|=\|x\|$ and $x^{*}(x) \geq\|x\|^{2}$. But $x^{*}(x) \leq\|x\|^{2}$ and so $x^{*}(x)=\|x\|^{2}$. According to (1.5) we obtain that $x^{*} \in J(x)$.

Remark 2.7. The assertion iii) of Theorem 2.5 has obtained by Hiriart-Urruty in [5] (see also, [6], [7]). The special case $\varepsilon=0$ was studied by Penot and Ratsimahalo [10].

Remark 2.8. Theorem 2.5, i), can be reformulated as

$$
\frac{1}{d} D_{C}(x ; d)=\partial_{\lambda}\left(d \cdot d_{C}(x)\right) \cap B d B(0 ; 1)
$$

where $\lambda=d\left(d_{C}(x)-d\right), 0<d \leq d_{C}(x)$.
We recall that X is a smooth space (see [1], [3]) if there is exactly one supporting hyperplane through each boundary point of closed unit ball.

Generally, closed convex set $A \subset X$ is called smooth at a point x_{0} if there exists only one closed hyperplane which separates x_{0} at A. Obviously, it is necessary that $x_{0} \in B d A$.

Theorem 2.9. Let C be a nonvoid closed convex set in X and a fixed element $x \in X$. Then, for any $d \in\left[0, d_{C}(x)\right]$ we have:
i) $D_{C}(x ; d)=\{0\}$ if and only if $d=0$;
ii) $\operatorname{Dom} D_{C}=(X \times\{0\}) \cup\left\{(x, d) ; x \notin C, d \in\left(0 ; d_{C}(x)\right]\right\}$;
iii) If $D_{C}(x ; d)$ is a singleton then $d=0$ or $d=d_{C}(x)$.
iv) $D_{C}\left(x ; d_{C}(x)\right)$ is a singleton if and only if the set $C-B\left(x ; d_{C}(x)\right)$ is smooth at origin.

Proof. The properties i), ii) are obvious.
Also, in the sequel we can suppose that $x \notin C$, and so $d_{C}(x)>0$.
Now, we prove properties (iii) and (iv): if $d=0$ then $D_{C}(x ; 0)=\{0\}$ is a singleton. Let us consider an arbitrary element $x \notin C$ and $d \in\left(0, d_{c}(x)\right]$. But, if $d<$ $d_{C}(x)$ then C and $B(x ; d)$ are strongly separated, that is there exists many parallel separating hyperplanes (see, for example, [1], Remark 1.46). Therefore, $D_{C}(x ; d)$ is not a singleton. If $d=d_{C}(x)$ there exists a unique hyperplane which separates C and $B\left(x ; d_{C}(x)\right)$ if and only if there exists a unique hyperplane which separates the origin and $C-B\left(x ; d_{C}(x)\right)$, that is $C-B\left(x ; d_{C}(x)\right)$ is smooth at the origin.

Remark 2.10. In the spacial case when $P_{C}(x) \neq \emptyset$, the property iii) was established by Garkavi ([4]).

Now, if $P_{C}(x) \neq \emptyset$, we have

$$
\begin{align*}
& D_{C}(x)=\left\{x^{*} \in X^{*} ;\left\|x^{*}\right\|=\|x-z\|, x^{*}(x-u) \geq\|x-z\|^{2} \forall u \in C\right\} \\
& z \in P_{C}(x) \tag{2.3}
\end{align*}
$$

since $d_{C}(x)=\|x-z\|$ for any $z \in P_{C}(x)$.
In the sequel we prove that the mapping D_{C} can be equivalently defined using a min-max property. Since $B^{*}(x ; d)$ is a convex w^{*}-compact set in X^{*} and the function $F_{x}\left(x^{*}, u\right)=x^{*}(x-u),\left(u, x^{*}\right) \in X \times X^{*}$ is convex-concave, using a min-max result (see, for instance, [1], [11] and [12]), it implies the following equality:

$$
\begin{equation*}
\max _{x^{*} \in B^{*}(0 ; d)} \inf _{u \in C} x^{*}(x-u)=\inf _{u \in C} \max _{x^{*} \in B^{*}(0 ; d)} x^{*}(x-u) \text { for all } x \in X, d>0 \tag{2.4}
\end{equation*}
$$

Here, by "max", we mean that "sup" is attained. The elements $x_{0}^{*} \in B^{*}(0 ; d)$, where "max" is attained in the left hand of (2.4) and make valid the equality (2.4) are called the solutions of the max-inf problem (2.4).

Proposition 2.11. Given an element $x \in X$ and a nonvoid convex, closed set $C \subset X$, then $x^{*} \in D_{C}(x)$ if and only if x^{*} is a solution of max-inf problem (2.4), where $d=d_{C}(x)$, that is

$$
\begin{equation*}
D_{C}(x)=\left\{x^{*} \in B^{*}\left(0 ; d_{C}(x)\right) ; \inf _{u \in C} x^{*}(x-u)=d_{C}^{2}(x)\right\} \tag{2.5}
\end{equation*}
$$

Proof. We remark that the saddle value of (2.4) is equal to $d_{C}(x) d$. Consequently, for $d=d_{C}(x)$, the properties i), ii) in Theorem 2.1 are equivalent to the assertion that x^{*} is a solution of max-inf problem (2.4).

Remark 2.12. If in the equality (2.4) "inf" is also attained, these elements of C are even the best approximation elements of x in C. Therefore, if $P_{C}(x) \neq \emptyset$ and $d=d_{C}(x)$, then the set of all saddle elements of max-min problem associated to (2.4) is $D_{C}(x) \times P_{C}(x)$.

Now, if we return to the dual characterization of the best approximation elements, we observe that in the special case $P_{C}(x) \neq \emptyset$, we have a conection with the duality map J. Firstly, we remark that if we put in equality (1.7) $d=\|x-z\|$ it results that $D_{C}(X)$ is exactly the set of all $x^{*} \in X^{*}$ with the properties of Garkavi Theorem 1.1. But, the properties i) and $\left.\mathrm{i}^{\prime}\right)$ in Theorem 1.1 prove that $x_{0}^{*} \in J(z-x)$. Also, ii') say that $x^{*} \in(x-C)^{*}$. Consequently we have the following equality

$$
D_{C}(x)=J(x-z) \cap(C-x)^{+} \text {whenever } z \in P_{C}(x) \text { and } x \in X
$$

3. Properties of monotonicity

It is well known the relationship between the subdifferentials of convex functions and their property of monotonicity ([9]). Also, the ε-subdifferentials are ε-monotone in the sense of definition (1.4) and they have some good properties (see, for e.g., [13]).

Because the multivalued mapping $x \rightrightarrows D_{C}(x ; d)$ is expressed using the ε subdifferential of $d_{C}(\cdot)$ (Theorem 2.5, i)), it is expected to have an ε-monotonicity property.

Now, we establish two special monotonicity properties of D_{C}.

Theorem 3.1. The mapping $(x, d) \rightrightarrows D_{C}(x ; d)$ is monotone in the following sense:

$$
\forall x_{i} \in X \backslash C, 0<d_{i} \leq d_{C}\left(x_{i}\right), \varepsilon_{i}=d_{C}\left(x_{i}\right)-d_{i} \text { and } \forall x_{i}^{*} \in D_{C}\left(x_{i} ; d_{i}\right), i=1,2,
$$ then

$$
\begin{equation*}
\left(x_{1}^{*}-x_{2}^{*}\right)\left(x_{1}-x_{2}\right) \geq-\varepsilon_{2} d_{1}-\varepsilon_{1} d_{2} . \tag{3.1}
\end{equation*}
$$

Proof. Let us consider $x_{i}^{*} \in D_{C}\left(x_{i}, d_{i}\right), i=1,2$. By property ii) in Theorem 2.1 and the definition of D_{C} we have $\left(x_{i}^{*}, x_{i}-u_{i}\right) \geq d_{i}^{2}$ for any $u_{i} \in C, i=1,2$. Therefore it follows that

$$
\begin{aligned}
\left(x_{1}^{*}-x_{2}^{*}\right)\left(x_{1}-x_{2}\right) & =x_{1}^{*}\left(x_{1}-u_{1}\right)+x_{2}^{*}\left(x_{2}-u_{2}\right)-x_{1}^{*}\left(x_{2}-u_{1}\right)-x_{2}^{*}\left(x_{1}-u_{2}\right) \\
& \geq d_{1}^{2}+d_{2}^{2}-x_{1}^{*}\left(x_{2}-u_{1}\right)-x_{2}^{*}\left(x_{1}-u_{2}\right) \\
& \geq d_{1}^{2}+d_{2}^{2}-d_{1}\left\|x_{2}-u_{1}\right\|-d_{2}\left\|x_{1}-u_{2}\right\| .
\end{aligned}
$$

Since u_{1}, u_{2} are arbitrary elements in C we get

$$
\left(x_{1}^{*}-x_{2}^{*}\right)\left(x_{1}-x_{2}\right) \geq d_{1}^{2}+d_{2}^{2}-d_{1} d_{C}\left(x_{2}\right)-d_{2} d_{C}\left(x_{1}\right)=-d_{1} \varepsilon_{2}-d_{2} \varepsilon_{1}
$$

as claimed.
Also, the mapping D_{C} has a property of monotonicity with respect to corresponding best approximation elements.

Proposition 3.2. If $x_{i}^{*} \in D_{C}\left(x_{i} ; d_{i}\right)$ and $z_{i} \in P_{C}\left(x_{i}\right), i=1,2$, then

$$
\left(x_{1}^{*}-x_{2}^{*}\right)\left(z_{1}-z_{2}\right) \geq 0
$$

Proof. Taking $u_{1}=z_{2}$ and $u_{2}=z_{1}$ in Theorem 2.1, we have

$$
\begin{aligned}
\left(x_{1}^{*}-x_{2}^{*}\right)\left(z_{1}-z_{2}\right) & =x_{1}^{*}\left(x_{1}-z_{2}\right)+x_{2}^{*}\left(x_{2}-z_{1}\right)-x_{1}^{*}\left(x_{1}-z_{1}\right)-x_{2}^{*}\left(x_{2}-z_{2}\right) \\
& \geq d_{1}^{2}+d_{2}^{2}-x_{1}^{*}\left(x_{1}-z_{1}\right)-x_{2}^{*}\left(x_{2}-z_{2}\right) .
\end{aligned}
$$

By properties i) and ii) in Theorem 1.1 it follows that

$$
\left(x_{1}^{*}-x_{2}^{*}\right)\left(z_{1}-z_{2}\right) \geq d_{1}^{2}+d_{2}^{2}-d_{1}\left\|x_{1}-z_{1}\right\|-d_{2}\left\|x_{2}-z_{2}\right\|=0
$$

Acknowledgement. I like to thank the anonymous referee for his improvements and comments.

References

[1] Barbu, V., Precupanu, T., textitConvexity and Optimization in Banach Spaces, Fourth Edition, Springer, 2012.
[2] Diestel, J., Geometry of Banach spaces, Selected Topics, Lecture Note in Mathematics no. 485, Springer, Berlin, 1975.
[3] Fitzpatrick, S., Metric projection and the subdifferentiability of distance function, Bull. Austral. Math. Soc., 22(1980), 773-802.
[4] Garkavi, A.L., Duality theorems for approximation by elements of convex sets, Usp. Mat. Nauk, 16(1961), 141-145.
[5] Hiriart-Urruty, J.-B., Lipshitz r-continuity of the approximate subdifferential of a convex function, Math. Scand., 47(1980), 123-134.
[6] Hiriart-Urruty, J.-B., Moussaoui, M., Seeger, A., Volle, M., Subdifferential calculus without qualification conditions, using approximate subdifferentials: A survey, Nonlinear Anal., 24(1995), 1727-1754.
[7] Hiriart Urruty, J.-B., Phelps, R.R., Subdifferential calculus using ع-subdifferentials, J. Functional Analysis, 118(1993), 154-166.
[8] Ioffe, A.D., Proximal analysis and approximate subdifferentials, J. London Math. Soc., 41(1990), 175-192.
[9] Jofre, A., Luc, D.T., Thera, M., ε-Subdifferential and ε-monotonicity, Nonlinear Analysis - Theory Methods \& Applications, 33(1998), no. 1, 71-90.
[10] Penot, J.-P., Ratsimahalo, R., Subdifferentials of distance functions, approximations and enlargements, Acta Math. Sinica, 23(2007), no. 3, 507-520.
[11] Precupanu, T., Duality in best approximation problem, An. St. Iasi, 26(1980), 23-30.
[12] Precupanu, T., Some duality results in convex optimization, Rev. Roum. Math. Pure Appl., 26(1981), 769-780.
[13] Precupanu, T., Apetrii, M., About ع-monotonicity of an operator, An. St. Iasi, 52(2006), 81-94.
[14] Rockafellar, R.T., On a maximal monotonicity of subdifferential mappings, Pacific J. Math., 33(1970), 209-216.

Gabriela Apreutesei
"Al.I. Cuza" University of Iaşi, Faculty of Mathematics,
Bd. Carol I, nr. 11, 700506, Iaşi, Romania
e-mail: gabriela@uaic.ro
Teodor Precupanu
"Al.I. Cuza" University of Iaşi, Faculty of Mathematics,
Bd. Carol I, nr. 11, 700506, Iaşi, Romania
e-mail: tprecup@uaic.ro

[^0]: Received 18 May 2023; Accepted 27 November 2023.
 (C) Studia UBB MATHEMATICA. Published by Babeş-Bolyai University

