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Generalized versus classical normal derivative
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Abstract. Given a bounded domain with Lipschitz boundary, the general Green
formula permits to justify that the weak solutions of a Neumann elliptic problem
satisfy the Neumann boundary condition in a weak sense. The formula involves
a generalized normal derivative. We prove a general result which establishes that
the generalized normal derivative of an operator coincides with the classical one,
provided that the operator is continuous. This result allows to deduce that, under
usual regularity assumptions, the weak solutions of a Neumann problem satisfy
the Neumann boundary condition in the classical sense. This information is nec-
essary in particular for applying the strong maximum principle.
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1. Introduction and statement of the result

Let Ω ⊂ RN (N ≥ 1) be a bounded domain with Lipschitz boundary. Then, it is
a consequence of Rademacher Theorem that the outward unit normal n(x) is defined
almost everywhere on the boundary ∂Ω (endowed with the Hausdorff measure HN−1).
The normal derivative of a function u ∈ C1(Ω) is then ∂u

∂n = ∇u · n on ∂Ω.

The nonsmooth Green formula ([6], [2]) asserts that∫
Ω

(div a)φdx+

∫
Ω

a · ∇φdx =

∫
∂Ω

γn(a)γ(φ) dHN−1

for all φ ∈W 1,p(Ω) and all a belonging to

V p
′
(Ω,div) = {a ∈ Lp

′
(Ω,RN ) : div a ∈ Lp

′
(Ω)}.
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Here p ∈ (1,+∞) and p′ := p
p−1 is its Hölder conjugate. The formula involves the clas-

sical trace operator γ : W 1,p(Ω)→ W
1
p′ ,p(∂Ω) (see, e.g., [3], [5]) and the generalized

normal derivative γn : V p
′
(Ω,div)→W

− 1
p′ ,p

′
(∂Ω) introduced in [6] and [2].

If φ ∈ C1(Ω), then due to the classical Green formula we have γ(φ) = φ|∂Ω. In
fact, it is well known that the equality γ(φ) = φ|∂Ω holds whenever φ ∈W 1,p(Ω)∩C(Ω)
(see, e.g, [3]).

Similarly, if a ∈ C1(Ω,RN ), then we have γn(a) = a ·n. Our main result ensures
that this equality holds more generally:

Theorem 1.1. Let γn : V q(Ω,div)→W−
1
q ,q(∂Ω) (with q ∈ (1,+∞)) be the generalized

normal derivative. Then, for all a ∈ V q(Ω,div) ∩ C(Ω,RN ), we have γn(a) = a · n.

As far as we know, there was no proof of this result in the literature.
This result can be applied to Neumann elliptic boundary value problems driven

by the p-Laplacian (or a more general nonlinear operator) for showing that a weak
solution u ∈ W 1,p(Ω) (which belongs in fact to C1(Ω) due to nonlinear regularity
theory) satisfies the classical Neumann boundary condition ∂u

∂n = 0. Without the

result stated in Theorem 1.1, we can just say that γn(|∇u|p−2∇u) = 0. The latter
equality can be viewed as a Neumann boundary condition in a weak sense. However,
it is a key point that for applying the strong maximum principle [9] to u (in order
to show for instance that a nonnegative, nontrivial solution is positive on Ω), it is
necessary to know that the strong Neumann condition ∂u

∂n = 0 holds (the weak one is
not sufficient).

The rest of the paper is organized as follows. In Section 2, we present the back-
ground on trace operator, generalized normal derivative, and Green formulas. In Sec-
tion 3, we give the proof of Theorem 1.1. In Section 4, we present the application to
Neumann and, more generally, Steklov boundary value problems.

2. Green formulas

In this section, we recall the generalized normal derivative operator defined in [6]
and [2]. This operator permits to obtain a nonlinear Green formula, which is crucial for
relating weak solutions of quasilinear elliptic problems and their boundary conditions.

Before stating the main definition and the general Green formula (Theorem 2.2),
we review other versions of the Green formula involving relatively regular functions
and operators.

Recall that Ω ⊂ RN (N ≥ 1) is a bounded domain with Lipschitz boundary ∂Ω.
This regularity of the domain implies that we have the (N−1)-dimensional Hausdorff
measure HN−1 on ∂Ω, and the outward unit normal n(·) is defined HN−1-almost
everywhere on ∂Ω.

The classical Green formula states as follows : if a ∈ C1(Ω,RN ) and v ∈
C1(Ω)(:= C1(Ω,R)), then∫

Ω

(div a)v dx+

∫
Ω

a · ∇v dx =

∫
∂Ω

(a · n)v dHN−1 (2.1)
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where div a =
∑N
i=1

∂ai
∂xi

and ∇v = ( ∂v∂x1
, . . . , ∂v

∂xN
), while “ · ” stands for the scalar

product in RN . For a first generalization of the Green formula, we take v in the
Sobolev space W 1,p(Ω) (p > 1) instead of being of class C1. To this end, the notion
of trace is needed:

Theorem 2.1 (see [3, §4.3] and [5, §1.5]). There is a unique bounded linear operator γ :
W 1,p(Ω)→ Lp(∂Ω, HN−1) which extends the operator C∞(Ω)→ C(∂Ω), v 7→ v|∂Ω.

Moreover, we have the following properties:

(a) γ(v) = v|∂Ω whenever v ∈W 1,p(Ω) ∩ C(Ω).
(b) (Green formula) If a ∈ C1(Ω,RN ) and v ∈W 1,p(Ω), then∫

Ω

(div a)v dx+

∫
Ω

a · ∇v dx =

∫
∂Ω

(a · n)γ(v) dHN−1. (2.2)

(c) ker γ = W 1,p
0 (Ω) and Im γ = W

1
p′ ,p(∂Ω).

In particular, in view of Theorem 2.1 (a)–(b), the Green formula (2.1) remains
valid if we assume that v ∈W 1,p(Ω) ∩ C(Ω) instead of v ∈ C1(Ω).

The final stage of the discussion is to replace the assumption that a ∈ C1(Ω,RN )
by a more general one. To this end, for q > 1, we define

V q(Ω,div) = {a ∈ Lq(Ω,RN ) : div a ∈ Lq(Ω)}
which is a Banach space for the norm

‖a‖V q(Ω,div) =
(
‖a‖q

Lq(Ω,RN )
+ ‖div a‖qLq(Ω)

) 1
q

.

This requires the definition of a new operator which extends a 7→ a · n to the space
V p
′
(Ω,div), where p′ = p

p−1 is the Hölder conjugate of p.

Theorem 2.2 ([6, 2]). There is a unique bounded linear operator

γn : V p
′
(Ω,div)→W

− 1
p′ ,p

′
(∂Ω) = W

1
p′ ,p(∂Ω)∗

which extends the operator C∞(Ω,RN )→ L∞(∂Ω, HN−1), a 7→ a · n.
Moreover, we have the following properties:

(a) (Green formula) If a ∈ V p′(Ω,div) and v ∈W 1,p(Ω), then∫
Ω

(div a)v dx+

∫
Ω

a · ∇v dx = 〈γn(a), γ(v)〉
W
− 1

p′ ,p
′
(∂Ω),W

1
p′ ,p(∂Ω)

. (2.3)

(b) Im γn = W
− 1

p′ ,p
′
(∂Ω).

Remark 2.3. Due to (2.2), (2.3), and the surjectivity of the trace operator γ :

W 1,p(Ω) → W
1
p′ ,p(∂Ω), we have immediately that γn(a) = a · n whenever a ∈

C1(Ω,RN ).

Example 2.4. (a) If p = 2, u ∈ W 1,2(Ω) is such that ∆u := div(∇u) ∈ L2(Ω), then
the Green formula (2.3) reads as∫

Ω

(∆u)v dx+

∫
Ω

∇u · ∇v dx = 〈γn(∇u), γ(v)〉
W−

1
2
,2(∂Ω),W

1
2
,2(∂Ω)

.
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(b) If p > 1 is arbitrary and letting a = |∇u|p−2∇u for u ∈ W 1,p(Ω), then the
Green formula (2.3) becomes∫

Ω

(∆pu)v dx+

∫
Ω

|∇u|p−2∇u · ∇v dx = 〈 ∂u
∂np

, γ(v)〉
W
− 1

p′ ,p
′
(∂Ω),W

1
p′ ,p(∂Ω)

provided that ∆pu ∈ Lp
′
(Ω), where ∆pu := div(|∇u|p−2∇u) is the p-Laplacian op-

erator and we denote ∂u
∂np

:= γn(|∇u|p−2∇u). In the case p ≥ 2, if u ∈ C2(Ω) then

|∇u|p−2∇u ∈ C1(Ω,RN ) and we get ∂u
∂np

= |∇u|p−2∇u ·n (see Remark 2.3). If, more-

over, p = 2, then ∂u
∂n2

= ∇u · n = ∂u
∂n . Thus ∂u

∂np
can be seen as a generalized normal

derivative.

3. Proof of Theorem 1.1

The proof splits into several steps.

Lemma 3.1. Let a ∈ V q(Ω,div) ∩ C(Ω,RN ). Assume that a is the restriction of a′ ∈
V q(Ω′,div) ∩ C(Ω′,RN ) for a bounded domain Ω′ ⊂ RN with Ω ⊂ Ω′. Then, the
equality γn(a) = a · n holds.

In the following proof, whenever ρ ∈ C∞c (RN ) and h ∈ L1
loc(RN ), we consider

the convolution

ρ ∗ h : RN → R, x 7→
∫
RN

ρ(x− y)h(y) dy.

If h ∈ Lq(Ω′) then we set ρ ∗ h = ρ ∗ h̄ where h̄ ∈ Lq(RN ) is the extension by zero of
h.

Proof of Lemma 3.1. Consider a regularizing sequence (ρk)k≥1, that is,

ρk ∈ C∞c (RN ), supp ρk ⊂ B(0, 1
k ),

∫
RN

ρk dx = 1, ρk ≥ 0 in RN .

Choose k0 ≥ 1 such that

Ω +B(0, 1
k0

) ⊂ Ω′. (3.1)

Write a = (a1, . . . , aN ) and a′ = (a′1, . . . , a
′
N ), so that ai = a′i|Ω for all i ∈ {1, . . . , N}.

Then we set

vk = ρk ∗ a′ = (ρk ∗ a′1, . . . , ρk ∗ a′N ).

Thus, vk ∈ C∞(RN ,RN ) ∩ Lq(RN ,RN ) (see [1, Théorème IV.15 and Proposition
IV.20]) and we have that

vk → a′ in Lq(Ω′,RN ) as k →∞ (3.2)

(see [1, Théorème IV.22]) and moreover

vk → a uniformly on Ω as k →∞ (3.3)

(see [1, proof of Proposition IV.21]).
Since div a′ ∈ Lq(Ω′), we have also that ρk ∗ div a′ ∈ C∞(RN ) ∩ Lq(RN ) and

ρk ∗ div a′ → div a′ in Lq(Ω′) as k →∞. (3.4)
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We claim that

div vk = ρk ∗ div a′ in Ω, for all k ≥ k0. (3.5)

The functions on the left- and the right-hand side of (3.5) belong to C∞(RN ), but since

we do not know that the partial derivatives
∂a′i
∂xi

are defined almost everywhere (though

it is the case for div a′ ∈ Lq(Ω′)), we will show (3.5) by reasoning in distributions. So
let ϕ ∈ C∞c (Ω). We compute

〈div vk, ϕ〉 =

N∑
i=1

〈∂(ρk ∗ a′i)
∂xi

, ϕ
〉

= −
N∑
i=1

∫
RN

(ρk ∗ a′i)
∂ϕ

∂xi
dx

= −
N∑
i=1

∫
Ω′
a′i

(
ρ̌k ∗

∂ϕ

∂xi

)
dx

= −
N∑
i=1

∫
Ω′
a′i
∂(ρ̌k ∗ ϕ)

∂xi
dx,

where we denote ρ̌k(x) = ρk(−x) and use [1, Propositions IV.16 and IV.20]. Since
ρk ∈ C∞c (B(0, 1

k )), ϕ ∈ C∞c (Ω), and due to (3.1) and the fact that k ≥ k0, we have
ρ̌k ∗ ϕ ∈ C∞c (Ω′) (see [1, Proposition IV.18]). Hence

〈div vk, ϕ〉 =

N∑
i=1

〈∂a′i
∂xi

, ρ̌k ∗ ϕ
〉

= 〈div a′, ρ̌k ∗ ϕ〉

=

∫
Ω′

(div a′)(ρ̌k ∗ ϕ) dx (since div a′ ∈ Lq(Ω′))

=

∫
RN

(ρk ∗ div a′)ϕdx (by [1, Proposition IV.16])

= 〈ρk ∗ div a′, ϕ〉.

This establishes (3.5).

We have vk ∈ V q(Ω,div) because vk ∈ C∞(RN ,RN ). Formulas (3.2), (3.4), and
(3.5) imply that

vk → a in V q(Ω,div).

Due to the continuity of the operator

γn : V q(Ω,div)→W−1/q,q(∂Ω)

we have

γn(vk)→ γn(a) in W−1/q,q(∂Ω) as k →∞. (3.6)

Since vk ∈ C∞(RN ,RN ), we have

γn(vk) = vk · n on ∂Ω for all k (3.7)

(by definition of γn; see Theorem 2.2). By virtue of (3.3), we have

vk · n→ a · n in L∞(∂Ω, HN−1) as k →∞.
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The continuity of the embeddings L∞(∂Ω, HN−1) ↪→ Lq(∂Ω, HN−1) ↪→W−1/q,q(∂Ω)
now implies that

vk · n→ a · n in W−1/q,q(∂Ω) as k →∞.

Combining this with (3.6) and (3.7), we conclude that

γn(a) = a · n on ∂Ω.

The proof of the lemma is complete. �

Lemma 3.2. There is an open covering

∂Ω =

m⋃
i=1

Γi,

a family of vectors (νi)
m
i=1 ⊂ RN and a constant δ > 0 such that, for every i ∈

{1, . . . ,m},
Ui(δ1, δ2) := {x+ tνi : x ∈ Γi, t ∈ (−δ1, δ2)}

is an open subset of RN for all δ1, δ2 ∈ (0, δ] and the following inclusions hold:

U ′i := {x+ tνi : x ∈ Γi, t ∈ (0, δ)} ⊂ Ω,

U ′′i := {x+ tνi : x ∈ Γi, t ∈ (−δ, 0)} ⊂ RN \ Ω.

Proof. Fix x ∈ ∂Ω. Since Ω is assumed to have Lipschitz boundary, there is an open
neighborhood V ⊂ RN of x and a Lipschitz map χ : RN−1 → R such that (up to
rotating and relabeling the axes)

V ∩ Ω = {(y1, . . . , yN ) ∈ V : χ(y1, . . . , yN−1) < yN},
V ∩ ∂Ω = {(y1, . . . , yN ) ∈ V : χ(y1, . . . , yN−1) = yN}

(see [3, §4.2]). There is δ > 0 and an open neighborhood W ⊂ V of x such that⋃
y∈W

B(y, δ) ⊂ V,

where B(y, δ) stands for the open ball of radius δ with respect to the norm

(y1, . . . , yN ) 7→ max
1≤i≤N

|yi|.

Let Γx = Γ = W ∩ ∂Ω and, given δ1, δ2 ∈ (0, δ], let

U(δ1, δ2) = {y + tν : y ∈ Γ, t ∈ (−δ1, δ2)}

where ν = (0, . . . , 0, 1). Note that we have equivalently

U(δ1, δ2) = {(y1, . . . , yN ) ∈ RN : (y1, . . . , yN−1, χ(y1, . . . , yN−1)) ∈W,
yN − χ(y1, . . . , yN−1) ∈ (−δ1, δ2)},

which shows that U(δ1, δ2) is open. Moreover, for all y = (y1, . . . , yN ) ∈ Γ and t ∈
(−δ, δ), we have y + tν = (y1, . . . , yN−1, yN + t) ∈ B(y, δ) ⊂ V and

χ(y1, . . . , yN−1) = yN

{
< yN + t if t ∈ (0, δ),
> yN + t if t ∈ (−δ, 0),
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whence

U ′ := {y + tν : y ∈ Γ, t ∈ (0, δ)} ⊂ Ω,

U ′′ := {y + tν : y ∈ Γ, t ∈ (−δ, 0)} ⊂ RN \ Ω.

By doing the same construction for every x ∈ ∂Ω and extracting a finite subcov-
ering from the open covering

⋃
x∈∂Ω Γx = ∂Ω so obtained, we get a family of open

subsets/vectors satisfying the conditions stated in the lemma. �

Lemma 3.2 yields an open neighborhood U :=
⋃m
i=1 Ui of the boundary ∂Ω,

where Ui := Ui(δ, δ). Since ∂Ω is compact, we can find a relatively compact, open
neighborhood V of ∂Ω such that V ⊂ U . Let U0 := Ω \ V . Then we have an open
covering

Ω ⊂
m⋃
i=0

Ui.

Let (θi)
m
i=0 be a partition of unity relative to this open covering, i.e.,

• θi ∈ C∞c (Ui) and 0 ≤ θi ≤ 1 for all i ∈ {0, 1, . . . ,m},
• θ0 + θ1 + . . .+ θm = 1 in Ω

(see [1, Lemme IX.3]).

Lemma 3.3. Let a ∈ V q(Ω,div) ∩ C(Ω,RN ). For every i ∈ {0, . . . ,m}, let ai = θia
for θi as above, so that a = a0 + a1 + . . .+ am. Then:

(a) ai ∈ V q(Ω,div) ∩ C(Ω,RN ) and supp ai ⊂ Ui for all i.
(b) In particular supp a0 ⊂ Ω and we have γn(a0) = a0 · n = 0.
(c) If γn(ai) = ai · n for all i ∈ {1, . . . ,m}, then γn(a) = a · n.

Proof. (a) Since ai = θia with θi ∈ C∞c (Ui) and a ∈ C(Ω,RN ), we get ai ∈ C(Ω,RN )
and supp ai ⊂ Ui. Moreover, we have

div ai = θi div a+ a · ∇θi
with div a ∈ Lq(Ω), a ∈ C(Ω,RN ), and θi ∈ C∞c (Ui), whence div ai ∈ Lq(Ω) and,
therefore, ai ∈ V q(Ω,div) for all i ∈ {0, . . . ,m}. This shows (a).

(b) In particular, we get supp a0 ⊂ U0 ⊂ Ω. This guarantees that, if a′0 denotes
the extension by zero of a0, we have a′0 ∈ V q(RN ,div) ∩ C(RN ), and by Lemma 3.1
we deduce that γn(a0) = a0 · n = 0 on ∂Ω.

(c) Since γn is linear and γn(a0) = 0, we have γn(a) = γn(a1) + . . . + γn(am).
On the other hand, since a0 · n = 0, we have a · n = a1 · n+ . . .+ am · n. Part (c) of
the lemma ensues. �

Lemma 3.4. Let an open subset Γ ⊂ ∂Ω, a vector ν0 ∈ RN , and a constant δ > 0 such
that

U(δ1, δ2) := {x+ tν0 : x ∈ Γ, t ∈ (−δ1, δ2)}
is an open subset of RN for all δ1, δ2 ∈ (0, δ], and

U ′ := {x+ tν0 : x ∈ Γ, t ∈ (0, δ)} ⊂ Ω,

U ′′ := {x+ tν0 : x ∈ Γ, t ∈ (−δ, 0)} ⊂ RN \ Ω.



36 Lucas Fresse and Viorica V. Motreanu

Let a ∈ V q(Ω,div) ∩ C(Ω,RN ) and suppose that supp a ⊂ U := U(δ, δ). Then, there
is a sequence (vk)k≥1 ⊂ V q(Ω,div) ∩ C(Ω,RN ) satisfying the following properties:

(a) vk → a in V q(Ω,div);
(b) vk → a uniformly on Ω;
(c) for every k ≥ 1, vk is the restriction of v′k ∈ V q(Ωk,div) ∩ C(Ωk,RN ) for a

bounded domain Ωk ⊂ RN with Ω ⊂ Ωk.

In particular, by virtue of Lemma 3.1, we have γn(vk) = vk ·n for all k ≥ 1 and finally
γn(a) = a · n.

Proof. The final conclusion of the lemma can be justified as follows: on the basis
of (c) we can apply Lemma 3.1 which yields γn(vk) = vk · n for all k ≥ 1. Then,
on the one hand, due to (a) and the continuity of γn, we have γn(vk) → γn(a) in

W−
1
q ,q(∂Ω) as k → ∞. On the other hand, due to (b), we have vk · n → a · n in

Lq(∂Ω, HN−1) ⊂W−
1
q ,q(∂Ω). Altogether, this yields γn(a) = a · n as asserted.

Let us now show the rest of the lemma. Let ε ∈ (0, δ) small so that

supp a ⊂Wε := {x+ tν0 : x ∈ Γ, t ∈ (−δ + ε, δ − ε)}.

Let Uε = U(ε, δ− ε) = {x+ tν0 : x ∈ Γ, t ∈ (−ε, δ− ε)} and Vε = {x ∈ RN : x+ εν0 /∈
supp a}. The union Ωε := Uε ∪ Vε is then an open subset which contains Ω. The
latter property can be shown as follows. Let x ∈ Ω and assume that x+ εν0 ∈ supp a
(otherwise, we get immediately x ∈ Vε ⊂ Ωε). Due to the inclusion supp a ⊂Wε, there
are x′ ∈ Γ and t ∈ (−δ+ ε, δ− ε) such that x+ εν0 = x′+ tν0, hence x = x′+(t− ε)ν0.
Moreover, since x ∈ Ω, we must have t− ε ≥ 0. Hence t− ε ∈ [0, δ − 2ε) ⊂ (−ε, δ − ε)
and therefore x ∈ Uε ⊂ Ωε.

Now we define v′ε ∈ C(Ωε,RN ) by

v′ε(x) =

{
a(x+ εν0) if x ∈ Uε,
0 if x ∈ Vε.

If x ∈ Uε then x+ εν0 ∈ U ′ ⊂ Ω hence a(x+ εν0) is well defined. If x ∈ Uε ∩ Vε then
x+ εν0 /∈ supp a (due to the definition of Vε), thus a(x+ εν0) = 0. This shows that v′ε
is well defined and continuous (since a ∈ C(Ω,RN )).

Moreover, we have

div v′ε(x) =

{
div a(x+ εν0) for a.e. x ∈ Uε
0 for x ∈ Vε

= div a(x+ εν0) (3.8)

where div a ∈ Lq(RN ) is the extension by zero of div a. Indeed, if x ∈ Uε, we have
div v′ε(x) = div a(x + εν0) = div a(x + εν0). If x ∈ Vε, then x + εν0 /∈ supp a, hence
either we have x + εν0 ∈ Ω \ supp a in which case div a(x + εν0) = div a(x + εν0) =
0 = div v′ε(x), or we have x+ εν0 /∈ Ω in which case div a(x+ εν0) = 0 = div v′ε(x) (by
definition of div a). This shows (3.8).

Since div a ∈ Lq(RN ) it follows that div v′ε ∈ Lq(Ωε). We define vε := v′ε|Ω. Then

vε ∈ V q(Ω,div) ∩ C(Ω,RN ).
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Moreover, vε satisfies condition (c) of the statement. In addition, in view of (3.8) we
can apply [1, Lemme IV.4] which yields

div vε → div a in Lq(Ω) as ε→ 0.

This will show condition (a) of the statement once we will have shown condition (b).

Let ε > 0. Since a is continuous on Ω which is compact, it is uniformly continu-
ous, hence there is α > 0 such that

(x, y ∈ Ω and |x− y| < α) =⇒ |a(x)− a(y)| < ε,

where | · | : (x1, . . . , xN ) ∈ RN 7→ max1≤i≤N |xi| is the infinite norm. Assume ε small

enough so that ε ∈ (0, α). For x ∈ Ω ∩ Uε, we deduce that

|vε(x)− a(x)| = |a(x+ εν0)− a(x)| ≤ ε.

Now let x ∈ Ω ∩ Vε. If x /∈ supp a, then we have

|vε(x)− a(x)| = 0.

If x ∈ supp a, knowing that supp a ⊂Wε, by definition of Wε we have that x+ εν0 ∈
U ′ ⊂ Ω (since x ∈ U ∩ Ω) and x+ εν0 /∈ supp a (since x ∈ Vε), hence

|vε(x)− a(x)| = |0− a(x)| = |a(x+ εν0)− a(x)| ≤ ε.

Finally we have shown

‖vε − a‖∞ ≤ ε.
This establishes the convergence

vε → a in C(Ω,RN ) as ε→ 0.

We obtain condition (b) of the statement. The proof of the lemma is therefore com-
plete. �

Theorem 1.1 follows from the above lemmas. Specifically, Lemma 3.3 shows that
it is sufficient to deal with elements a as those considered in Lemma 3.4. Then, the
result follows from Lemma 3.4.

Remark 3.5. (a) Our proof of Theorem 1.1 relies on ideas used in [6] for showing that
C∞(Ω,RN ) is dense in V q(Ω,div).

(b) Theorem 1.1 could be already deduced from Lemma 3.1 if one can show that
every element in V q(Ω,div)∩C(Ω,RN ) admits an extension to V q(Ω′,div)∩C(Ω′,RN )
for some larger domain Ω′ ⊃ Ω. We have no indication whether this general extension
property holds.

4. Boundary conditions for weak solutions of elliptic Neumann and
Steklov problems

In this section, we first consider a Neumann problem involving the Carathéodory
functions

a : Ω× R× RN → RN and f : Ω× R× RN → R
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(i.e., a(·, s, ξ) is measurable for all (s, ξ) ∈ R× RN and a(x, ·, ·) is continuous for a.e.

x ∈ Ω, and similarly for f). Let p∗ be the Sobolev critical exponent given by p∗ = Np
N−p

if p < N and p∗ = +∞ otherwise. In what follows, we assume:

Assumption 4.1. There are constants r ∈ (p, p∗) and a1, a2, a3, c1 ∈ (0,+∞) such that

|a(x, s, ξ)| ≤ a1(|ξ|p−1 + |s|r/p
′
+ 1), (4.1)

a(x, s, ξ) · ξ ≥ a2|ξ|p − a3(|s|r + 1), (4.2)

|f(x, s, ξ)| ≤ c1(|ξ|p−1 + |s|r−1 + 1) (4.3)

for a.e. x ∈ Ω, all (s, ξ) ∈ R× RN .

Parts (4.1) and (4.3) of this assumption guarantee that:

u ∈W 1,p(Ω) =⇒ a(x, u,∇u) ∈ Lp
′
(Ω,RN ) and f(x, u,∇u) ∈ Lr

′
(Ω)

=⇒ a(x, u,∇u), f(x, u,∇u) ∈W 1,p(Ω)∗

so that the following definition makes sense.

Definition 4.2. A weak solution of the Neumann problem{
−div a(x, u,∇u) = f(x, u,∇u) in Ω,
∂u
∂n = 0 on ∂Ω

(4.4)

is a function u ∈W 1,p(Ω) such that the equality∫
Ω

a(x, u,∇u) · ∇v dx =

∫
Ω

f(x, u,∇u) v dx (4.5)

holds for all v ∈W 1,p(Ω).

For the moment, the boundary condition “ ∂u∂n = 0” in problem (4.4) is just a
notation, in the sense that the normal derivative is a priori not defined for elements
in W 1,p(Ω). However, in Proposition 4.6, by using Theorem 1.1, we will show that
the boundary condition is satisfied in the classical sense, under suitable regularity
conditions on the operator a and the boundary ∂Ω.

In the following lemma, we show that weak solutions to problem (4.4) satisfy a
Neumann-type boundary condition in the “weak” sense.

Lemma 4.3. Assume that u ∈W 1,p(Ω) is a weak solution of problem (4.4). Then:

(a) u ∈ L∞(Ω).

(b) a(x, u,∇u) ∈ V p′(Ω,div) and u satisfies the weak Neumann condition

γn(a(x, u,∇u)) = 0 in W
− 1

p′ ,p
′
(∂Ω).

Proof. Part (a) can be shown by Moser iteration technique; see [4].

(b) First we note that part (a) combined with (4.3) ensures that

f(x, u,∇u) ∈ Lp
′
(Ω).
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Taking any smooth function v ∈ C∞c (Ω) as test function, and using the definition of
the divergence (as a distribution) and the fact that u is a weak solution of problem
(4.4) gives∫

Ω

−div a(x, u,∇u) v dx =

∫
Ω

a(x, u,∇u) · ∇v dx =

∫
Ω

f(x, u,∇u)v dx.

This implies that −div a(x, u,∇u) = f(x, u,∇u) ∈ Lp′(Ω), and yields in particular

a(x, u,∇u) ∈ V p
′
(Ω,div)

so that γn(a(x, u,∇u)) is a well-defined element of W
− 1

p′ ,p
′
(∂Ω). Now taking an ar-

bitrary v ∈ W 1,p(Ω) as test function in (4.5) and using the Green formula (2.3), we
get

〈γn(a(x, u,∇u)), γ(v)〉

=

∫
Ω

div a(x, u,∇u) v dx+

∫
Ω

a(x, u,∇u) · ∇v dx

= −
∫

Ω

f(x, u,∇u) v dx+

∫
Ω

f(x, u,∇u) v dx = 0

(here, for making the notation easier, we have dropped the reference to the pair

(W
− 1

p′ ,p
′
(∂Ω),W

1
p′ ,p(∂Ω)) in the duality brackets 〈·, ·〉). Since v ∈ W 1,p(Ω) is arbi-

trary and the trace map γ : W 1,p(Ω) → W
1
p′ ,p(∂Ω) is surjective (see Theorem 2.1),

it follows that

γn(a(x, u,∇u)) = 0 in W
− 1

p′ ,p
′
(∂Ω),

which concludes the proof. �

In order to apply the regularity theory and relate the generalized normal deriv-
ative with the classical one, in Proposition 4.6 and Corollary 4.8 below we assume
that the domain Ω has C1,γ boundary ∂Ω, for some γ ∈ (0, 1), and we also need to
strengthen the hypothesis on a.

Assumption 4.4. (a) a : Ω×R×RN → R is continuous and its restriction to Ω×R×
(RN \ {0})→ R is of class C1. Moreover, a is of the form

a(x, s, ξ) = α(x, s, ξ)ξ

with α : Ω× R× RN → (0,+∞).
(b) There are constants µ, ν ∈ (0, 1), R ∈ [0,+∞), a nonincreasing map κ1 :

[0,+∞)→ (0,+∞) and a nondecreasing map κ2 : [0,+∞)→ (0,+∞) such that

a′ξ(x, s, ξ)η · η ≥ κ1(|s|)(R+ |ξ|)p−2|η|2,
‖a′ξ(x, s, ξ)‖ ≤ κ2(|s|)(R+ |ξ|)p−2,

|a(x, s, η)− a(y, t, η)| ≤ κ2(|s|+|t|)(|x− y|µ + |s− t|ν)(1 + |η|)p−2|η|

for all x, y ∈ Ω, s, t ∈ R, ξ, η ∈ RN , ξ 6= 0. Here a′ξ(x, s, ·) denotes the differential of

the map a(x, s, ·) and ‖ · ‖ denotes the norm in the space of linear endomorphisms of
RN .
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Example 4.5. For p > 1, the mapping a : (x, s, ξ) 7→ |ξ|p−2ξ satisfies Assumption 4.4
with the map α given by

α : (x, s, ξ) 7→
{
|ξ|p−2 if ξ 6= 0,
1 if ξ = 0.

(Note that Assumption 4.4 does not require α to be continuous.) This mapping
corresponds to the p-Laplacian operator ∆p : u ∈ W 1,p(Ω) 7→ div a(x, u,∇u) =
div(|∇u|p−2∇u).

Under Assumptions 4.1 and 4.4, we have:

Proposition 4.6. Let u ∈W 1,p(Ω) be a weak solution of problem (4.4). Then:

(a) u ∈ C1,λ(Ω) for some λ ∈ (0, 1).

(b) a(x, u,∇u) ∈ V p′(Ω,div)∩C(Ω,RN ) and u satisfies the classical Neumann con-
dition ∂u

∂n = 0 on ∂Ω.

Proof. Part (a) follows from nonlinear regularity theory [7]. The first claim of Part
(b) then follows from Lemma 4.3 and the continuity of a in Assumption 4.4. Then,
Theorem 1.1 combined with Lemma 4.3 yields

a(x, u,∇u) · n = γn(a(x, u,∇u)) = 0 on ∂Ω.

By Assumption 4.4, we have that a(x, u,∇u) = α(x, u,∇u)∇u with α(x, u,∇u) ∈
(0,+∞), whence finally

∂u

∂n
= 0 on ∂Ω.

Note that this equality holds everywhere on ∂Ω. Theorem 1.1 and Lemma 4.3 yield
an equality almost everywhere, but in the present proposition due to the regularity
assumption on the domain, the outward unit normal n is defined everywhere on ∂Ω
so that the equality makes sense and holds everywhere by continuity. �

We strengthen our assumption in order to apply the strong maximum principle:

Assumption 4.7. (a) The mapping a(x, s, ξ) = a(x, ξ) is independent of the variable
s. Moreover, there are constants d1, d2, d3, δ ∈ (0,+∞) such that

a′ξ(x, ξ)η · η ≥ d1|ξ|p−2|η|2,
‖a′ξ(x, ξ)‖ ≤ d2|ξ|p−2,

|ξ| < δ ⇒ ‖a′x(x, ξ)‖ ≤ d3|ξ|p−1

for all x ∈ Ω, ξ, η ∈ RN , ξ 6= 0.

(b) There is a constant c > 0 such that f(x, s, ξ) ≥ −csp−1 for a.e. x ∈ Ω, all
s ∈ [0, δ), ξ ∈ RN .

Under Assumptions 4.1, 4.4, 4.7, we have:

Corollary 4.8. Let u ∈ C1,λ(Ω) be a weak solution of problem (4.4), as in Proposition
4.6. Assume that u ≥ 0 on Ω and u 6≡ 0. Then we have u > 0 on Ω.
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Proof. By Assumption 4.7 (b), (4.3), and u ∈ C1(Ω), we find c̃ > 0 with

div a(x,∇u) ≤ c̃up−1 in Ω.

This combined with Assumption 4.7 allows us to invoke the strong maximum principle
[8, Theorem 8.27], which yields u > 0 on Ω and

∀x ∈ ∂Ω, u(x) = 0 ⇒ ∂u

∂n
(x) < 0.

Since we know that ∂u
∂n (x) = 0 for all x ∈ ∂Ω (by Proposition 4.6), we get u(x) > 0

for all x ∈ ∂Ω. Whence u > 0 on Ω as asserted. �

Finally we consider more general (Steklov-type) boundary conditions. Let g :
∂Ω× R→ R be a Carathéodory function satisfying the growth condition

|g(x, s)| ≤ c2(|s|σ−1 + 1) for a.e. x ∈ ∂Ω, all s ∈ R, (4.6)

for a constant c2 > 0 and some σ ∈ (1, (N−1)p
N−p ) if p < N and an arbitrary σ ∈ (1,+∞)

if p ≥ N . Given a, f satisfying respectively (4.1) and (4.3) in Assumption 4.1, we say
that u ∈W 1,p(Ω) is a weak solution of the problem{

−div a(x, u,∇u) = f(x, u,∇u) in Ω,
∂u
∂na

= g(x, u) on ∂Ω
(4.7)

if the equality∫
Ω

a(x, u,∇u) · ∇v dx =

∫
Ω

f(x, u,∇u) v dx

+

∫
∂Ω

g(x, γ(u))γ(v) dHN−1 (4.8)

holds for all v ∈ W 1,p(Ω) (there is a continuous embedding W
1
p′ ,p(∂Ω) ⊂

Lσ(∂Ω, HN−1), so the definition makes sense).

Proposition 4.9. Let u ∈ C1(Ω) be a weak solution of (4.7) such that a(x, u,∇u) ∈
C(Ω,RN ). Then,

a(x, u,∇u) · n = g(x, u) on ∂Ω.

In particular, if a(x, u,∇u) = |∇u|p−2∇u, then |∇u|p−2 ∂u
∂n = g(x, u) on ∂Ω.

Proof. Arguing as in the proof of Lemma 4.3, one has div a(x, u,∇u) = −f(x, u,∇u) ∈
Lp
′
(Ω) hence a(x, u,∇u) ∈ V p′(Ω,div). For every v ∈W 1,p(Ω), by virtue of Theorem

2.2 and formula (4.8), we get

〈γn(a(x, u,∇u)), γ(v)〉 =

∫
Ω

a(x, u,∇u) · ∇v dx

−
∫

Ω

f(x, u,∇u) v dx

=

∫
∂Ω

g(x, u)γ(v) dHN−1,
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and Theorem 2.1 (c) yields γn(a(x, u,∇u)) = g(x, u) in W
− 1

p′ ,p
′
(∂Ω). On the other

hand, Theorem 1.1 implies that γn(a(x, u,∇u)) = a(x, u,∇u)·n on ∂Ω. The conclusion
follows. �
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