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Abstract. In this paper we present the following variant of contraction principle:
Saturated principle of contraction. Let (X, d) be a complete metric space and
f : X → X be an l-contraction. Then we have:

(i) Ffn = {x∗}, ∀ n ∈ N∗.
(ii) fn(x)→ x∗ as n→∞, ∀ x ∈ X.

(iii) d(x, x∗) ≤ ψ(d(x, f(x))), ∀ x ∈ X where ψ(t) = t
1−l

, t ≥ 0.

(iv) yn ∈ X, d(yn, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞.
(v) yn ∈ X, d(yn+1, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞.

(vi) If Y ⊂ X is a nonempty bounded and closed subset with f(Y ) ⊂ Y , then

x∗ ∈ Y and
⋂
n∈N

fn(Y ) = {x∗}.

The basic problem is: which other metric conditions imply the conclusions of this
variant ? We give some answers for this problem. Some applications and open
problems are also presented.
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1. Introduction and preliminaries

The number of papers on fixed point theory in which appear metric conditions
is a large one (see: [20], [49], [32], [48], [4], [9], [16], [17], [24], [25], [26], [34], [36], [52],
[64], [68],. . . ). In these papers two fixed point theorems appear under the same name,
contraction principle:
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(1) Let (X, d) be a complete metric space and f : X → X be a contraction. Then f
has a unique fixed point (i.e., Ff = {x∗}).

(2) Let (X, d) be a complete metric space and f : X → X be an l-contraction. Then
we have:

(i) Ff = {x∗}.
(ii) fn(x)→ x∗ as n→∞, ∀ x ∈ X.

By Contraction Principle (CP) we understand this (2) variant.
On the other hand, in many papers appear some properties of fixed point equa-

tions, where the corresponding operator is a contraction (see [56], [65], [40], [4], [6],
[32], [25], [47], [49], [50], [51], [52], [53], [54], [56], [57], [64], [65], [72], [73],. . . ). So, in
this paper we present a new variant of contraction principle, a variant with generous
conclusions. This variant is the following:

Theorem 1.1 (Saturated principle of contraction (SPC)). Let (X, d) be a complete
metric space and f : X → X be an l-contraction. Then we have:

(i) There exists x∗ ∈ X such that,

Ffn = {x∗}, ∀ n ∈ N.

(ii) For all x ∈ X, fn(x)→ x∗ as n→∞.
(iii) d(x, x∗) ≤ ψ(d(x, f(x))), ∀ x ∈ X, where ψ(t) = t

1−l , t ≥ 0.

(iv) If {yn}n∈N is a sequence in X such that

d(yn, f(yn))→ 0 as n→∞,

then, yn → x∗ as n→∞.
(v) If {yn}n∈N is a sequence in X such that

d(yn+1, f(yn))→ 0 as n→∞,

then, yn → x∗ as n→∞.
(vi) If Y ⊂ X is a closed subset such that f(Y ) ⊂ Y , then x∗ ∈ Y . Moreover, if in

addition Y is bounded, then ⋂
n∈N

fn(Y ) = {x∗}.

It is clear that, all conclusions in this theorem are well known. For a better
understanding of this variant of contraction principle, some remarks and commentaries
are necessary.

Conclusion (i) is a set-theoretical one. If X is a nonempty set and f : X → X
is an operator such that, Ffn = {x∗}, for all n ∈ N∗, then by definition we call f a
Bessaga operator.

Conclusion (ii) is a topological one. All Picard iterations converge to the unique
fixed point of the operator. If (X,→) is an L-space and f : X → X is an operator
such that we have (i) and (ii), then by definition f is a Picard operator.

Conclusion (iii) is a metrical one and is very important in the theory of fixed
point equations. We obtain from this estimate, for example, a data dependence of the
fixed point under operator perturbation.
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If in a metric space an operator f satisfies (i), (ii) and (iii), then by definition
the operator f is a ψ-Picard operator and the estimation in (iii) is called retraction-
displacement estimation. In this definition, ψ is a function, ψ : R+ → R+, increasing
and continuous in 0 with ψ(0) = 0.

If in a metric space (X, d) an operator f : X → X satisfies (i) and (iv) then by
definition the fixed point problem for f is well posed. We remark that we can present
this notion in a linear L-space. Let (X,+,R,→) be a linear L-space and f : X → X
be an operator. By definition the fixed point problem for f is well posed if:

(i) Ff = {x∗}.
(ii) If {yn}n∈N is a sequence in X such that yn−f(yn)→ 0 as n→∞, then yn → x∗

as n→∞.

If in a metric space (X, d) an operator satisfies (i) and (v), then by definition the
operator f has the Ostrowski property. We remark that we can present this notion in
a linear L-space.

Let (X,+,R,→) be a linear L-space and f : X → X be an operator. By defini-
tion the operator f has the Ostrowski property if:

(i) Ff = {x∗}.
(ii) If {yn}n∈N is a sequence in X such that yn+1 − f(yn) → 0 as n → ∞, then

yn → x∗ as n→∞.

First part of conclusion (vi) is useful for the localization of the fixed point.
Second part is a set-theoretical one, under metrical conditions. If X is a nonempty
set and f : X → X is an operator such that⋂

n∈N
fn(X) = {x∗},

then by definition f is a Janos operator. On the other hand, from (vi) we have the
following property of a contraction:

If (X, d) is a complete metric space and f : X → X is a contraction with
Ff = {x∗} and {yn}n∈N is a bounded sequence in X, then fn(yn)→ x∗ as n→∞.

It is well known that there is an extensive bibliography of the generalized con-
tractions (see Ortega and Rheinboldt [32], Istrăţescu [20], Rhoades [48], Krasnoselskii
and Zabrejko [26], Kirk and Sims [25], Granas and Dugundji [17], Goebel [16], Berinde
[4], Rus [49], Rus [52], Rus, Petruşel and Petruşel [64], Rus and Şerban [65], Petruşel,
Rus and Şerban [41], Rus and Şerban [65], Kirk and Shahzad [24],. . . ). The prob-
lem is which metrical conditions which appear in the metrical fixed point theorems
imply conclusions in the SPC ? We shall consider the problem in this paper. Some
applications are given and open problems are presented.

Throughout this paper the notations and terminologies in [56], [65] and [40] are
used. Moreover we consider these references as starting papers for our study.

The structure of the paper is the following:
2. Some variants of SPC
3. Examples of relevant metrical conditions
4. The case of generalized metric spaces
5. Applications
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6. Other research directions

2. Some variants of SPC

We start our considerations with the following useful variant.

Theorem 2.1 (SPC with respect to a strongly equivalent metric). Let X be a nonempty
set, d and ρ be two metrics on X and f : X → X be an operator. We suppose that:

(a) (X, ρ) is a complete metric space.
(b) There exist c1, c2 > 0 such that

c1d(x, y) ≤ ρ(x, y) ≤ c2d(x, y), ∀ x, y ∈ X.
(c) f is an l-contraction with respect to the metric ρ.

Then we have:

(i) Ffn = {x∗}, ∀ n ∈ N∗.
(ii) fn(x)

d→ x∗ as n→∞.
(iii) d(x, x∗) ≤ ψ(d(x, f(x))), ∀ x ∈ X, where

ψ(t) =
c2t

c1(1− l)
, t ≥ 0.

(iv) The fixed point problem for f is well posed with respect to the metric d.
(v) The operator f has the Ostrowski property with respect to the metric d.

(vi) If Y ⊂ X is a bounded and close subset in (X, d) with f(Y ) ⊂ Y , then x∗ ∈ Y
and ⋂

n∈N
fn(Y ) = {x∗}.

Proof. The proof follows from SPC in (X, ρ) and the condition (b) of strongly equiv-
alence of the metrics d and ρ (see [40]). �

An other variant is the following.

Theorem 2.2 (Saturated Principle of Quasicontraction (SPQC)). Let (X, d) be a met-
ric space and f : X → X be an operator. We suppose that there exists a fixed point
x∗ of f and 0 < l < 1 such that:

d(f(x), x∗) ≤ ld(x, x∗), ∀ x ∈ X.
Then, we have (i)-(vi) in Theorem 1.1.

Proof. For (i)-(v) the proofs are similar with the proofs in Theorem 1.1.
(vi) Let x ∈ Y . Then fn(x) ∈ Y , ∀ n ∈ N. But, fn(x) → x∗ as n → ∞. Since

Y is closed, it follows that x∗ ∈ Y . In fact, we have (i)-(vi) in Theorem 1.1, with
respect to Y . Indeed, for the second part of (vi), we have δ(f(Y ), {x∗}) ≤ δ(Y, {x∗}),
where δ is the diameter functional with respect to d. Moreover, δ(fn(Y ), {x∗}) ≤
lnδ(Y, {x∗})→ 0 as n→∞. So,

⋂
n∈N

fn(Y ) = {x∗}. �

We also have the following result.
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Theorem 2.3 (SPQC with respect to a strongly equivalent metric). Let X be a
nonempty set, d and ρ be two metrics on X and f : X → X be an operator. We
suppose that:

(a) There exist c1, c2 > 0 such that

c1d(x, y) ≤ ρ(x, y) ≤ c2d(x, y), ∀ x, y ∈ X.
(b) There exists a fixed point x∗ of f and 0 < l < 1 such that

ρ(f(x), x∗) ≤ lρ(x, x∗), ∀ x ∈ X.
Then we have (i)-(vi) in Theorem 2.1

Proof. The proof follows from Theorem 2.2 in (X, ρ) and condition (a). �

Now, we finish this section with the following definition.

Definition 2.4. Let (X, d) be a complete metric space and f : X → X be an operator.
We call relevant a metric condition on f which implies the uniqueness of fixed point
if it implies also, conclusions such as in SPC.

3. Examples of relevant metrical conditions

We start with the following remark.

Lemma 3.1. Let (X, d) be a complete metric space and f : X → X be an operator.
If a metrical condition on f implies the conclusions in CP and if in addition f is an
l-quasicontraction, then we have for f the conclusions in SPC with

(iii) d(x, x∗) ≤ 1
1−ld(x, f(x)), ∀ x ∈ X.

Proof. The proof follows from SPQC. �

From this Lemma the following question rises.

Problem 3.2. Which metric conditions on f imply that f is a quasicontraction ?

From Lemma 3.1, we have, as examples, the following results.

Theorem 3.3. Let (X, d) be a complete metric space and f : X → X be such that there
exists 0 < l < 1

2 , with

d(f(x), f(y)) ≤ l[d(x, f(x)) + d(y, f(y))], ∀ x, y ∈ X.
Then we have the conclusions in SPC, with

(iii) d(x, x∗) ≤ 1
1−2ld(x, f(x)), ∀ x ∈ X.

Proof. (i)-(ii). This is Kannan’s theorem. Kannan’s theorem is not a generalization
of CP, but implies conclusions in CP.

(iii)-(vi). From Kannan’s metrical condition it follows that f is a 2l-quasicon-
traction. From SPQC we have (iii)-(vi). �

Theorem 3.4. (see [4], [52]) Let (X, d) be a complete metric space and f : X → X be
an operator. We suppose that there exist a, b, c ∈ R+, a < 1, b and c < 1

2 , such that
for each x, y ∈ X at least one of the following conditions is true:
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(1) d(f(x), f(y)) ≤ ad(x, y),
(2) d(f(x), f(y)) ≤ b[d(x, f(x)) + d(y, f(y))],
(3) d(f(x), f(y)) ≤ c[d(x, f(y)) + d(y, f(x))].

Then we have the conclusions in SPC with

(iii) d(x, x∗) ≤ 1
1−ld(x, f(x)), ∀ x ∈ X,

where l = max{a, 2b, 2c}.

Proof. (i)-(ii). This is Zamfirescu’s theorem. It is a generalization of CP.
(iii)-(vi). From Zamfirescu’s metrical conditions it follows that f is an l-

quasicontraction with l = max{a, 2b, 2c}. The proof follows from SPQC. �

Theorem 3.5. (see [35]) Let (X, d) be a complete metric space, m be a positive integer,

A1,. . . , Am ∈ Pcl(X), Y :=

m⋃
i=1

Ai, and f : Y → Y be an operator. We suppose that:

(a)

m⋃
i=1

Ai is a cyclic representation of Y with respect to f .

(b) f is a cyclic l-contraction.

Then we have the conclusions in SPC with

(iii) d(x, x∗) ≤ 1
1−ld(x, f(x)), ∀ x ∈ Y .

Proof. (i)-(ii). This is Kirk-Srinivasan-Veeramany’s theorem. It is a generalization of
CP.

(iii)-(vi). From the definition of cyclic representation it follows that x∗ ∈
m⋂
i=1

Ai.

From the definition of cyclic l-contraction it follows that f : Y → Y is an l-
quasicontraction. The proof follows from SPQC. �

Theorem 3.6. (see [71]) Let (X, d) be a complete metric space and f : X → X be an
operator. Let θ : [0, 1[→] 12 , 1] be defined by

θ(t) :=


1 if 0 ≤ t ≤ (

√
5− 1)/2,

(1− t)t−2 if (
√

5− 1)/2 ≤ t ≤ 2−
1
2 ,

(1 + t)−1 if 2−
1
2 ≤ t < 1.

We suppose that there exists l ∈ [0, 1[ such that

x, y ∈ X, θ(l)d(x, f(x)) ≤ d(x, y)⇒ d(f(x), f(y)) ≤ ld(x, y).

Then, we have the conclusions in SPC with

(iii) d(x, x∗) ≤ 1
1−ld(x, f(x)), ∀ x ∈ X.

Proof. (i)-(ii). This is Suzuki’s theorem. It is a generalization of CP.
(iii)-(vi). From the Suzuki’s metrical condition we have that f is an l-

quasicontraction. The proof follows from SPQC. �

Now, we give an example in a set with two metrics.
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Theorem 3.7. (see [64], p. 40; see also [15], [43], [51]) Let X be a nonempty set, d and
ρ be two metrics on X and f : X → X be an operator. We suppose that:

(a) d(x, y) ≤ ρ(x, y), ∀ x, y ∈ X.
(b) (X, d) is a complete metric space.
(c) f is an l-contraction with respect to ρ.
(d) f is continuous with respect to d.

Then we have:

(i) Ffn = {x∗}, ∀ n ∈ N∗.
(ii) fn(x)

d→ x∗ as n→∞, and fn(x)
ρ→ x∗ as n→∞.

(iii) ρ(x, x∗) ≤ 1
1−lρ(x, f(x)), ∀ x ∈ X.

(iv) The fixed point problem for f is well posed with respect to ρ.
(v) The operator f has the Ostrowski property with respect to the metric ρ.

(vi) If Y ⊂ X is a bounded and closed subset in (X, ρ) with f(Y ) ⊂ Y , then x∗ ∈ Y
and ⋂

n∈N
fn(Y ) = {x∗}.

Proof. (i)-(ii). This is Maia’s fixed point theorem. It is a generalization of CP.

(iii)-(vi). We remark that f is an l-quasicontraction. The proof follows from
SPQC. �

In what follows we shall present an example from asymptotical fixed point the-
orems.

There are many asymptotic metrical fixed point results. We mention the con-
tributions made by R. Caccioppoli (1930), J. Weisinger (1952), A.N. Kolmogorov
and S.V. Fomin (1957), I.I. Kolodner (1964), S.C. Chy and J.B. Diaz (1965), V.W.
Bryant (1968), V.M. Sehgal (1969), L.F. Guseman (1970), V.I. Istrăţescu (1973), W.
Walter (1970, 1981), F. Browder (1979), I.A. Rus (1980), J.D. Stein (1998 (2000)),
J. Jachymski and J.D. Stein (1999), K. Goebel (2002), W.A. Kirk (2003), S. Andras
(2003), A.D. Arvanitakis (2003), A.S. Mureşan (2014) (see [13], [20], [72], [50], [73],
[66], [70](this paper of Stein has no references on asymptotic conditions!), [23], [1],
[2], [16],. . . ).

Our example in this direction is the following.

Theorem 3.8. (see [72]) Let (X, d) be a complete metric space and f : X → X be such
that there exists k ∈ N∗ for which fk is an l-contraction. Then we have:

(i) Ffn = {x∗}, ∀ n ∈ N.
(ii) fn(x)→ x∗ as n→∞, ∀ x ∈ X.

If in addition, fs is ls-Lipschitz, s ∈ N∗, then:

(iii) d(x, x∗) ≤ c2

1−l
1
k
d(x, f(x)), ∀ x ∈ X,

where c2 = 1 + l1l
− 1

k + . . .+ lk−1l
1−k
k .

(iv) The fixed point problem for f is well posed.
(v) The operator f has the Ostrowski property.
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(vi) If Y ⊂ X is a bounded and closed subset with f(Y ) ⊂ Y , then x∗ ∈ Y and⋂
n∈N

fn(Y ) = {x∗}.

Proof. (i)-(ii). It follows from the following remark:

If (X, τ) is a Hausdorff topological space and f : X → X is an operator, then
the following statements are equivalent:

(1) f is a Picard operator
(2) There exists k ∈ N∗ such that fk is a Picard operator.

(iii)-(vi). The functional, ρ : X ×X → R+, defined by

ρ(x, y) := d(x, y) + l−
1
k d(f(x), f(y)) + . . .+ l

1−k
k d(fk−1(x), fk−1(y))

is a metric on X which is strongly equivalent with the metric d (see, for example

[72]), with c1 = 1 and c2 = 1 + l1l
− 1

k + . . .+ lk−1l
1−k
k . Moreover the operator f is an

l
1
k -contraction with respect to ρ. The proof follows from Theorem 2.1. �

In order to present the next example we need some preliminaries.

Let (X,+,R, ‖·‖,K) be an ordered Banach space. By definition the cone K is
normal if there exists cN > 0 such that,

x, y ∈ X, 0 ≤ x ≤ y ⇒ ‖x‖ ≤ cN‖y‖.

The cone K is reproducing if, X = K − K. So, each element x ∈ X admits a
presentation, x = u − v, where u, v ∈ K. Moreover each element x ∈ X admits a
presentation, x = u− v such that, ‖u‖, ‖v‖ ≤ cr‖x‖, where cr does not depend of x.

In an ordered Banach space with reproducing cone, the functional, ‖·‖r : X →
R+, defined by, ‖x‖r := inf{‖y‖ | − y ≤ x ≤ y}, is a norm on X. For this norm we
have (see [26], p. 320),

(2cN + 1)−1‖x‖ ≤ ‖x‖r ≤ 2cg‖x‖, ∀ x ∈ X.

Our example in an ordered Banach space is the following.

Theorem 3.9. (see [26]) Let X be an ordered Banach space with a reproducing and
normal cone K and g : X → X be a positive linear operator with, ‖g‖ < 1. If an
operator f : X → X satisfies the condition

−g(x− y) ≤ f(x)− f(y) ≤ g(x− y), ∀ x, y ∈ X, x ≥ y

then f satisfies the conclusions in SPC, with

(iii) ‖x− x∗‖ ≤ 2cg(2cN+1)
1−‖g‖ ‖x− f(x)‖, ∀ x ∈ X.

Proof. (i)-(ii). It is the Krasnoselskii’s theorem. From the Krasnoselskii’s proof it
follows that the operator f is a ‖g‖-contraction with respect to the strongly equivalent
norm, ‖·‖r. So, the conclusions (iii)-(vi), follows from Theorem 2.1. �
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4. The case of generalized metric spaces

The universe of generalized metric spaces is a very large one (see, for example,
[5], [15], [22], [24], [43], [44], [46], [55], [64],. . . ). In what follows we shall present only
some examples for our problem in some generalized metric spaces.

Theorem 4.1 (Saturated principle of contraction in a partial metric space (see [55]).
Let (X, p) be a complete partial metric space and f : X → X be an l-contraction.
Then we have:

(i) Ffn = {x∗}, ∀ n ∈ N∗.
(ii) p(fn(x), x∗)→ 0 as n→∞, ∀ x ∈ X.

(iii) p(x, x∗) ≤ 1
1−lp(x, f(x)), ∀ x ∈ X.

(iv) {yn}n∈N ⊂ X, p(yn, f(yn))→ 0 as n→∞ ⇒ p(yn, x
∗)→ 0 as n→∞.

(v) {yn}n∈N ⊂ X, p(yn+1, f(yn))→ 0 as n→∞ ⇒ p(yn, x
∗)→ 0 as n→∞.

(vi) Let Y ⊂ X be a nonempty subset such that f(Y ) ⊂ Y , x∗ ∈ Y and
sup{p(x, y) | x, y ∈ Y } < +∞. Then,⋂

n∈N
fn(Y ) = {x∗}.

Proof. (i)-(ii). This is Matthews’ theorem.
(iii)-(v). See [55]. See also [64], pp. 53-58.

(vi) It is clear that x∗ ∈
⋂
n∈N

fn(Y ). Let u ∈
⋂
n∈N

fn(Y ). Then there exists xn ∈ Y

such that u = fn(xn).
We have, p(u, x∗) = p(fn(xn), x∗) = p(fn(xn), fn(x∗)) ≤ lnp(xn, x

∗) ≤ lnδp(Y ) → 0
as n→∞. So, u = x∗. �

In a similar way we have

Theorem 4.2 (Saturated principle of quasicontraction in a partial metric space). Let
(X, p) be a partial metric space and f : X → X be an operator. We suppose that:

(a) There exists an x∗ ∈ X, fixed point of f .
(b) f is an l-quasicontraction.

Then we have the conclusions in Theorem 4.1.

There are examples of saturate principle of generalized contractions in Rm+ -metric
spaces. For the example corresponding to Perov’s fixed point principle, see [64], pp.
82-85.

Now we give an example in a gauge space. Let (X, d) be a generalized metric
space with d(x, y) ∈ s(R+). So, d(x, y) = {dk(x, y)}k∈N∗ where dk is a pseudometric,
for all k ∈ N∗ and for each (x, y) ∈ X ×X there exists k ∈ N∗ such that dk(x, y) 6= 0.
Let l = (l1, . . . , ln, . . .) be such that 0 ≤ lk < 1, ∀ k ∈ N∗. By definition, an operator
f : X → X is an l-contraction if

dk(f(x), f(y)) ≤ lkdk(x, y), ∀ x, y ∈ X, ∀ k ∈ N∗.
For the basic notions in a generalized metric space with d(x, y) ∈ s(R+), see [64], [21],
[56],. . .

We have
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Theorem 4.3 (Saturated principle of contraction in a s(R+)-metric space). Let (X, d),
d(x, y) ∈ s(R+), be a complete metric space and f : X → X be an l-contraction. Then
we have:

(i) Ffn = {x∗}, ∀ n ∈ N∗.
(ii) fn(x)→ x∗ as n→∞, ∀ x ∈ X.

(iii) dk(x, x∗) ≤ 1
1−lk d(x, f(x)), ∀ x ∈ X.

(iv) {yn}n∈N ⊂ X, d(yn, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞.
(v) {yn}n∈N ⊂ X, d(yn+1, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞.

(vi) Let Y ⊂ X be a bounded and closed subset with f(Y ) ⊂ Y . Then x∗ ∈ Y and⋂
n∈N

fn(Y ) = {x∗}.

Proof. (i)-(ii). This is the Cain and Nashed’s fixed point theorem. The Cain-Nashed’s
theorem is a generalization of CP.

(iii). From the definition of l-contraction we have that f is an lk-contraction
with respect to the pseudometric dk. Now the proof is standard.

(iv). d(yn, f(yn)) → 0 as n → ∞ implies that dk(yn, f(yn)) → 0 as n → ∞.
From (iii) we have (iv).

(v). d(yn+1, f(yn))→ 0 as n→∞ ⇒ dk(yn+1, f(yn))→ 0 as n→∞. But,

dk(yn+1, x
∗) ≤ dk(yn+1, f(yn)) + dk(f(yn), x∗) ≤
≤ dk(yn+1, f(yn)) + ld(yn, f(yn−1)) + . . .+ ln+1dk(y0, x

∗).

Now the proof follows from a Cauchy lemma.

(vi). Let y ∈ Y . Then fn(y) ∈ Y , ∀ n ∈ N, and fn(y)→ x∗ as n→∞. Since Y

is closed it follows that x∗ ∈ Y . It is clear that x∗ ∈
⋂
n∈N

fn(Y ). Let u ∈
⋂
n∈N

fn(Y ).

Then there exists xn ∈ Y such that u = fn(xn). We have that

dk(u, x∗) = dk(fn(xn), x∗) ≤ lnk δdk(Y )→ 0 as n→∞, ∀ k ∈ N∗.

This implies, u = x∗. �

We also have

Theorem 4.4 (Saturated principle of quasicontraction in a s(R+)-metric space). Let
(X, d), d(x, y) ∈ s(R+), be a generalized metric space and f : X → X be an operator.
We suppose that:

(a) There exists an x∗ ∈ X, a fixed point of f .
(b) f is an l-quasicontraction.

Then we have the conclusions in Theorem 4.3.

From the above considerations the following questions rise:

Problem 4.5. Which metric conditions in a s(R+)-metric space (Colojoară, Gheor-
ghiu,. . . ) imply the conclusions in Theorem 4.3 ?
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Problem 4.6. Let (X, d) be a generalized metric space with d(x, y) ∈ s(R+). Let
f : X → X be an operator. Let M(R+) be the set of infinite matrices with elements
in R+ and let I be the identity matrix in M(R+). Our definition of l-contraction reads
as follows

d(f(x), f(y)) ≤ lId(x, y), ∀ x, y ∈ X.
For a good definition for contractions in a such generalized metric space it is neces-
sarily to put a more general matrix instead of lI (see [56]).

In the above setting, which are the contractions with the properties (i)-(vi) ?

5. Applications

5.1. More applications of SPC appear as applications of Picard operators. Let us
mention abstract applications to: data dependence of fixed point under the operator
perturbation ([49], [52], [64], [3], [4], [15], [12], [34], [56], [68]), Ulam stability of fixed
point equations ([60], [65],. . . ), abstract Gronwall lemmas ([57], [9], [15], [27], [53],. . . ).
For concrete applications to functional differential equations and to functional integral
equations, see: [1], [3], [9], [14], [15], [19], [27], [30], [31], [33], [34], [39], [53], [58], [68],
[74], [75],. . .

5.2. An other application is concerning iterated Picard operator systems. Let
(X, d) be a complete metric space and f1, . . . , fm : X → X be some Picard operators.
These operators generate the following operator on P (X),

Tf : P (X)→ P (X), Tf (A) := f1(A) ∪ . . . ∪ fm(A), ∀ A ∈ P (X).

The problem is to study the properties of Tf in terms of properties of f1, . . . , fm.
This problem is a particular case of the following Nadler problem:

Let (X, d) be a complete metric space and f : X → P (X) be a multivalued

operator. Let Tf : P (X) → P (X) be the operator defined by, Tf (A) =
⋃
a∈A

f(a). The

problem is to study the properties of Tf in terms of properties of f .
For example it is well known the following result:

Theorem 5.1 (Nadler (1969), Hutchinson (1981)). Let (X, d) be a complete metric
space and fi : X → X be an l-contraction, i = 1,m. Then the set-to-set operator,
Tf : Pcp(X) → Pcp(X) is well defined and it is an l-contraction in (Pcp(X), Hd).
Here, Hd is the Pompeiu-Hausdorff metric corresponding to d.

From the SPC we have:

Theorem 5.2. Let Tf be as in Theorem 5.1. Then we have:

(i) FTf
= {A∗}.

(ii) Tnf (A)
Hd→ A∗ as n→∞, ∀ A ∈ Pcp(X).

(iii) Hd(A,A
∗) ≤ 1

1−lHd(A, Tf (A)), ∀ A ∈ Pcp(X).

(iv) If An ∈ Pcp(X), n ∈ N are such that

Hd(An, Tf (An))→ 0 as n→∞,

then, An
Hd→ A∗ as n→∞.
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(v) If An ∈ Pcp(X), n ∈ N are such that

Hd(An+1, Tf (An))→ 0 as n→∞,

then, An
Hd→ A∗ as n→∞.

(vi) Let U ⊂ Pcp(X) be a bounded and closed subset such that f(U) ⊂ U . Then,
A∗ ∈ U and ⋂

n∈N
Tnf (U) = {A∗}.

5.3. The SPC has applications in the variational theory of differential equations.
Let us consider the following example.

In [45] (see also [8]), Radu Precup presents the following interesting result:

Theorem 5.3. Let X be a Hilbert space, N : X → X be a contraction with the unique
fixed point u∗. If there exists a C1-functional, E : X → R, bounded from below such
that

E′(u) = u−N(u), for all u ∈ X,
then u∗ minimizes the functional, i.e.,

E(u∗) = inf
X
E.

The Precup proof for this theorem can be read as follows.
As a consequence of Bishop-Phelps’ theorem, there is a sequence (un) with

E(un)→ inf
X
E and E′(un)→ 0.

Since, E′(un) = un −N(un)→ 0 and N is a contraction, from conclusion (v) in SPC
we have that, un → u∗.

From this proof the following remark follows:

Remark 5.4. In Theorem 5.3 we can put instead of the operator N , an operator for
which the fixed point problem is well posed.

6. Other research directions

6.1. What does it mean Saturated principle of fiber contraction ?
References: [69], [68], [67], [1].
6.2. To extend the results in sec. 2 to the case of nonself operators.
References: [6], [12], [4], [64], [17],. . .
6.3. To extend the results in sec. 2 to the case of multivalued operators.
References: [37], [41], [64],. . .
6.4. To extend the results in sec. 2 to the case of nonself multivalued operators.
References: [42], [64],. . .
6.5. Let (X, d) be a complete metric space, f : X → X be an operator with

Ff = {x∗} and fn : X → X be a sequence which converges in some sense to f .
Consider the iterative algorithm

xn+1 = fn(xn).
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In which conditions on f and fn this algorithm is convergent to x∗ ? What estimate
we have for d(x, x∗) ?

References: [32], [4], [7], [11], [34], [59].
6.6. To extend the results in this paper to the weakly Picard operators.
References: [62], [53], [63], [64], [65], [4],. . .
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ties, Sudia Univ. Babeş-Bolyai Math., 59(2014), no. 2, 199-212.
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[44] Precup, R., The role of the matrices that are convergent to zero in the study of semilinear
operator systems, Math. Computer Modeling, 49(2009), 703-708.

[45] Precup, R., Nash-type equilibria and periodic solutions to nonvariational systems, Adv.
Nonlinear Anal., Doi:10.1515/anona-2014-0006.

[46] Proinov, P.D., A unified theory of cone metric spaces and its applications to the fixed
point theory, Fixed Point Theory Appl., 2013; 2013:103.

[47] Reich, S., Zaslavski, A.J., A fixed point theorem for Matkowski contractions, Fixed Point
Theory, 8(2007), no. 2, 303-307.

[48] Rhoades, B.E., A comparison of various definitions of contractive mappings, Trans.
Amer. Math. Soc., 226(1977), 257-290.

[49] Rus, I.A., Metrical Fixed Point Theorems, Babeş-Bolyai Univ., Cluj-Napoca, 1979.
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