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Advanced versions of the inverse function
theorem
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Dedicated to the memory of Professor Gabriela Kohr

Abstract. This short opus is dedicated to the bright memory of the distinguished
mathematician Gabriela Kohr and her mathematical heritage. Gabriela Kohr ’s
contribution to analysis of one and several complex variables brought new knowl-
edge into the modern theory as well as new colors to the subject. During our
meetings with Gabriela at various conferences she always proposed some inter-
esting and often nonstandard questions related to classical issues as well as new
directions. It is worth to be mentioned her excellent book [50] together with
Ian Graham on classical and modern problems in Geometric Function Theory in
complex spaces (see also, [46], [56], [27], [22], [24], [49] and [48]).
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1. Introduction

A number of the results presented in this manuscript is based mostly on the joint
and works with Filippo Bracci, Mark Elin, Victor Khatskevich, Marina Levenstein,
Simeon Reich and Toshiyuki Sugawa [58], [14], [19], [35], [33], [68], [95] as well as
addendum from Vladimir Mazi’ya and Gregory Kresin [64], [63], [66] who had many
joint mathematical interests with Gabriela Kohr. Also we would like to mentioned a
great contribution to the theory of semigroups of holomorphic mappings and complex
dynamical systems developed by Leonardo Arosio, Filippo Bracci, Manuel D. Contr-
eras and Santiago Diaz-Madrigal and Hidetaka Hamada (see [7], [12], [14], [13] and
references therein).

A deep understanding and knowledge of Gabriela Kohr in various topics related
to generalizations of the Loewner chains to higher dimensions is presented in her
joint book in with Ian Graham [50]. In a parallel way Filippo Bracci, Manuel D.
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Contreras, Santiago Diaz-Madrigal and Hidetaka Hamada [15], [13], [20], [17] and [7]
have developed geometrical aspects of this theory; some of them were probably waft
by Gabrela’s work. They have produced very interesting questions and problems (as
well as their solutions) which in our opinion will give a push for further investment the
Loewner Theory to general complex analysis. In particular, Leandro Arosio, Filippo
Bracci, Hidetaka Hamada and Gabriela Kohr [7] have presented a new geometric
construction of Loewner chains in one and several complex variables which holds on a
complete hyperbolic complex manifold M and proved that there is essentially a one-
to-one correspondence between evolution families of order d and Loewner chains of
the same order. As a consequence they obtained a solution for any Loewner-Kufarev
PDE, given by univalent mappings.

Finally, we would like to highlight some questions and problems inspired by
Gabriela Kohr which for the one-dimensional case have discussed and developed in-
dependently by Mark Elin and Fiana Jacobson [31] and [30].

As far as we will see below that actually the inverse function is an element of
the so-called resolvent family of a discrete (or continuous) semigroup of holomorphic
mappings. By using this fact and previous investigations in [39] and [40] in order to
answer some Gabriela Kohr’s questions one can employ the results in [31] to establish
new features of nonlinear resolvents of holomorphic generators of one-parameter semi-
groups acting in the open unit disk. Since the class of nonlinear resolvents consists
of univalent functions, it can be studied in the frameworks of classical and modern
geometric function theories. In this way in works [31] and [30] the authors establish
some distortion and covering results as well as pointed out the order of starlikeness
and strong starlikeness of resolvents. It is shown that any resolvent admits quasicon-
formal extension to the complex plane C. Also, they obtain some characteristics of
semigroups generated by these resolvents.

Also, we have to mention a recent work of Xiu-Shuang Ma, Saminathan Pon-
nusamy and Toshiyuki Sugawa on spirallikeness and strongly starlikeness of harmonic
functions.

2. Preliminary notions and results

It often happens in mathematics, in examinations of classical issues, that one
can discover (sometimes surprisingly) a number of renewed problems and questions.

In this short survey we trace some traits and relationships between invertibil-
ity and the numerical range of holomorphic mappings in the one dimensional and
(partially) higher dimensional cases.

It is well known that for holomorphic mappings in Banach spaces the Inverse
Function Theorem, the Implicit Function Theorem and the Fixed Point Theorem are
closely related each other.

The classical Inverse Function Theorem says.

Theorem 2.1. Let X be a complex Banach space and let F be a holomorphic mapping
in a neighborhood of the origin such that

F (0) = 0 and F ′ (0) is the invertible linear operator on X.
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Then there are positive numbers r and ρ such that F (Br) ⊃ Bρ and F−1 : Bρ → Br
is a well defined holomorphic mapping on Dρ .These numbers r and ρ are often called
the Bloch radii for F (cf. for example, [52], [53], [55], [82], [50], [35] and [37]).

Note in passing that the pair (r, ρ) is not uniquely defined. See details in [59],
[55], [50], [82], [35] and [37]. This manuscript in a sense can be considered an additional
chapter to the book [37].

Let X∗ denote the dual of the Banach space X and let 〈z, z∗〉 denote the duality
pairing of z∗ ∈ X∗ and z ∈ X. For each z ∈ X the set J(z) defined by

J(z) =
{
z∗ ∈ X∗ : 〈z, z∗〉 = ‖z‖2 = ‖z∗‖2

}
is not empty by virtue of the Hanh-Banach theorem and is a closed and convex
bounded subset of X∗. The mapping J : z 7→ z∗ is in general multi-valued, however
it is single-valued if X∗ is strictly convex. For a Hilbert space X = H the semi-scalar
product 〈·, ·〉 in X ∗ X, can be just identify with the standard inner product in H.

Let D and Ω be domains in X and let Hol(D,Ω) be the set of all holomorphic
mappings on D with values in Ω. If D = Ω, then we list write Hol(D) for the set
Hol(D,D) of holomorphic self-mappings of D.

2.1. Holomorphically accretive and dissipative mappings

Let X be a complex Banach space with its dual X∗. By 〈·, ·〉 we denote the

semi-scalar product in X ∗ X∗, so that 〈z, z∗〉 = ‖z‖2 and |〈z, w∗〉| ≤ ‖z‖ ‖w‖.
Let B be the open unit ball in X and let f : B → X be a holomorphic mapping

on B.

Definition 2.2. (cf. [34]) Let f ∈ Hol(B,X). We say that f is (holomorphically) accre-
tive on B if

lim
s→1−

inf Re 〈fs(z), z∗〉 ≥ ε ≥ 0,

where fs(z) = f(sz), 0 ≤ s < 1, ‖z‖ = 1. It is called to be strongly (holomorphically)
accretive on B if ε > 0. Respectively, a holomorphic mapping g : B → X is called
(holomorphically) dissipative if f = −g is (holomorphically) accretive on B.

We call these conditions one side estimates (see, for example, [3]).
Let f ∈ Hol(B,X) admit a continuous extension onto B-the closure of B and be

such that
Re 〈f (z) , z∗〉 ≥ 0

for all z ∈ ∂B -the boundary of B. Then f : B → X is obviously (holomoprphically)
accretive on B. It is strongly holomorphically accretive if

Re 〈f (z) , z∗〉 ≥ ε > 0, z ∈ ∂B.

In this connection we recall the Bohl - Poincare´- Krasnoselskii fixed point theorem.

Theorem 2.3. [62] Let B be the open unit ball of a real Hilbert space H with the inner
product 〈·, ·〉 and let Φ : B → B be a completely continuous (compact) mapping on
B (not necessarily holomorphic). If condition

〈Φ (z) , z〉 ≤ 1, z ∈ ∂B,
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holds, then Φ has at least one fixed point in B. If 〈Φ (z) , z〉 < 1, z ∈ ∂B, then Φ has
a unique fixed point in B.

Analogously, if B is the open unit ball in a complex Hilbert space H and f :
B → H is holomorphically accretive (respectively, dissipative) completely continuous
vector field which does not vanish on ∂B then it has at least one null point in B. With
some additional restrictions a similar result holds also for Banach spaces.

Theorem 2.3 has many applications to the solvability of nonlinear equations.
One-sided estimates of such type have been systematically used in many fields. For
example, in [62] it is mentioned Galerkin’s approximation methods, the theory of
equations with potential operators, monotone operator theory and nonlinear integral
and partial differential equations. One of the main points in Theorem 2.3 is, of course,
the compactness of the mapping Φ (or more generally the complete continuity of the
vector field defined by I − Φ) which allows us to use the methods of the rotation
theory of vector fields or degree theory [62]. Since we are interested in the class of
holomorphic vector fields, we note that in infinite dimensional spaces this class is not
contained in the class of completely continuous vector fields. Moreover, in this case
the intersection of these classes is quite narrow.

Despite this lack of compactness, there exists a well-developed fixed point theory
for holomorphic mappings in Hilbert spaces and Banach spaces (see, for example, [3],
[13], [37], [35], [44], [45], [66] and [50]). In particular, for a complex Hilbert space one
can reach more information.

Theorem 2.4. [4] Let H be a complex Hilbert space and let B be the open unit ball in
H. Suppose that f is a holomorphic mapping in B which has a uniformly continuous
extension onto B and satisfies the boundary condition

Re 〈f (z) , z〉 ≥ 0, respectively, Re 〈f (z) , z〉 ≤ 0,

for all z ∈ ∂B. The following assertions hold:

1. Null f/B 6= ∅;
2. If Null f/B 6= ∅, then it is an affine sub-manifold of B.

Corollary 2.5. If f satisfies one of the above boundary conditions and has no null
point on ∂B, then it has a unique null point in B. In particular, if Re 〈f (z) , z〉 > 0,
(respectively, Re 〈f (z) , z〉 < 0 ), z ∈ ∂B, then f has a unique null point in B.

2.2. One sided estimates in Banach spaces

Let B be the open unit ball in a complex Banach space X. The following result
can be easily obtained from [4] (Theorem 3).

Theorem 2.6. Let f : B → X be a holomorphic mapping on B which admits a uni-
formly continuous extension to the boundary ∂B. Assume also that f is strongly
holomorphically accretive on B. Then f has a unique null point in B.

Clearly this result can be rephrased in the terms of fixed points. To do this we
first recall the following version of the famous Earle-Hamilton Theorem [29]: for the
unit ball in a complex Banach space.
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If F ∈ Hol (B) is such that F (B) lies strictly inside B, that is

inf (‖F (x)− y‖ ≥ σ > 0, x ∈ B, y ∈ ∂B) ,

then F has a unique fixed point in B.
The standard proof of this theorem is based on the construction of pseudo-metric

ρ on B such that F is a strict contraction with respect to ρ, i.e.,

ρ (F (x) , F (y)) ≤ kρ (x, y)

for some k ∈ (0, 1) . For some generalized versions of the Earl-Hamilton Theorem and
additional information see [54] and references therein.

Theorem 2.7. [91] (cf. [85]) Let G be a holomorphic self-mapping of B which admits
a uniformly continuous extension onto the boundary ∂B and satisfies the following
boundary condition

Re 〈G (z) , z∗〉 ≤ 1− δ,
for some δ > 0 and all z ∈ ∂B. Then G has a unique fixed point in B.

It can be easily seen that for the unit ball in a complex Banach space theorem 2.7
is a generalization of the Earle-Hamilton Theorem. For more details see also [55]. The
latter theorem can be also extended to a wider class of pseudo-contractive mappings
[68], [19] and [37].

The results in Theorem 2.6 and Corollary 2.5 can be completed as follows.

Theorem 2.8. [91] Let B be the open unit ball in a complex Banach space X and let
F : B → X be a holomorphic mapping on B. Assume that F admits a continuous
extension onto B and for some ε > 0 the condition of strong accretivity holds:

Re 〈F (z) , z∗〉 ≥ ε, z ∈ ∂B.

Then the inverse mapping z (w) = F−1 (w) is well-defined and holomorphic on the
ball ‖w‖ < ε. In other words, the numbers R = 1 and r = ε are the Bloch radii for
F. Moreover, for each w : ‖w‖ < ε and z0 ∈ B the sequence zn+1 = zn − F (zn) + w,
n = 0, 1, ...,converges locally uniformly to this solution z (w) on B.

Clearly this result implies the classical inverse function theorem mentioned
above. Earlier results in this theme see also in [16].

In the next part we get down to the one-dimensional case which itself has non-
standard particular qualities and has been developed in various directions. We start
this part quoting the estimates suggested in [65]. Actually those evaluations can be
also obtained by employing the results below.

Assume that F : ∆ → C is a holomorphic mapping on the open unit disk ∆
normalized by the conditions F (0) = 0 and F ′ (0) = 1 and admits a continuous
extension onto ∂∆ the boundary of ∆.

Define a holomorphic mapping f on ∆ by

f (z) = z − F (z) ,

so that f (0) = 0 and f ′ (0) = 0.
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We also suppose that for some real numbers θ and N the following condition is
satisfied

max
z∈∂∆

Re
(
eiθf (z) z

)
≤ N.

Theorem 2.9. Under the above conditions the inverse mapping mapping F−1 is a
well-defined holomorphic mapping in the disk

Ω =

{
w ∈ C: |w| <

(
(1 + 2N)

1
2 − (2N)

1
2

)2
}

and satisfies the following modulus estimate∣∣F−1 (w)
∣∣ ≤ 1−

(
2N

1 + 2N

) 1
2

.

Thus, Φ (N) =
(

(1 + 2N)
1
2 − (2N)

1
2

)2

is a lower estimate for the Bloch radius RB .

Remark 2.10. Recently G. Kresin by using some more delicate calculations has shown
that the latter estimate can be improved as follows.

RB ≥ π−1
(

(4N + π)
1
2 − 2N

1
2

)2

>
(

(1 + 2N)
1
2 − (2N)

1
2

)2

.

Further we discuss some geometrical aspects of the inverse functions.

Definition 2.11. Let D be a circular domain in X. A locally biholomorphic mapping
G : D → X, G (0) = 0, is called star-like if for each z ∈ D and t ∈ [0, 1] the line
tG (z) ∈ G (D) .

In the one dimensional case where D = · -the open unit disk in C, a locally
univalent mapping G : · → C, G (0) = 0, is star-like if and only if it satisfies the
inequality

zG′ (z)

G (z)
≥ α ≥ 0.

If α > 0 the mapping G is characterized as star-like of order α (see additional
details and certain sources in [57] and [50], [51], [94], [97], [98] and [35].

Theorem 2.12. (cf. [40]) Let f ∈ Hol(∆,C) with f ′ (0) 6= 0. Then there exist numbers
r (0 < r < 1) such that f−1 is a star-like self-mapping of ∆r.

In a parallel way for a domain D in C we consider the resolvent equation

z − λf (z) = w (2.1)

where, in general, λ and w are elements in C.

Definition 2.13. One says that f ∈ Hol(∆,C) is a locally semi-complete vector field on
∆ if there is r (0 < r ≤ 1) such that for each w : |w| < r and each λ > 0 the equation
z − λf (z) = w has a unique solution z = Φ (λ,w) ∈ ∆r. If r = 1, then f is just said
to be semi-complete on ∆.

Remark 2.14. Another way to define a semi-complete vector field is through ordinary
differential equations and the Cauchy problem (see, the next Section). As a matter of
fact, for bounded convex domains both definitions are equivalent.
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Remark 2.15. Sometimes it is more convenient in place of equation (2.1) to define
the resolvent family Ψλ (= Ψ (λ,w)) by solving equation z + λf (z) = w, λ > 0,
|w| < r ≤ 1 (see, for example, [82], [80] and [35]).

Clearly, if h ∈ Hol(∆,C) with h (0) = 0 and h′ (0) 6= −1 is a locally semi-
complete vector field on ∆, then setting f (z) = z + h (z) we get that f−1 exists and
is an element of the resolvent family {Jλ}λ≥0 with λ = 1.

We conclude these observations with a simple consequence of the classical maxi-
mum principle (or, alternatively, the classical Schwarz Lemma) to deduce the following
relations.

Lemma 2.16. Let ∆ be the open unit disk in C and let h ∈ Hol(∆,C) with h (0) = 0.
Assume that

sup
z∈∆

Reh (z) z = N <∞. (2.2)

Then
L = Reh′ (0) ≤ N.

Theorem 2.17. [91] Let h be holomorphic in the open unit disk with h (0) = 0, and let

N = sup
z∈∆

h (z) z <∞.

Then h is a locally semi-complete vector field if and only if the following condition
holds:

L = h′ (0) < min {0, N} .

In this case h is semi-complete on each disk of radius r ∈
(

0,
−L

2N − L

)
.

3. Semi-complete vector fields and semigroups

Let X be a complex Banach space and let X∗ denote the dual of the Banach
space X and let 〈z, z∗〉 denote the duality pairing of z∗ ∈ X∗ and z ∈ X. For each
z ∈ X the set J(z) defined by

J(z) =
{
z∗ ∈ X∗ : 〈z, z∗〉 = ‖z‖2 = ‖z∗‖2

}
(3.1)

is not empty by virtue of the Hahn-Banach theorem and is a closed and convex
bounded subset of X∗.

The mapping J : z 7→ z∗ is in general multi-valued, however it is single-valued
if X∗ is strictly convex.

Let D be a domain in X and let Hol(D,X) be the set of all holomorphic mappings
on D with values in X.

Definition 3.1. A mapping f ∈ Hol(D,X) is said to be a semi-complete vector field
on D if the Cauchy problem {

∂u(t,z)
∂t + f(u(t, z)) = 0

u(0, z) = z
(3.2)

has a unique solution u = u(t, z) ∈ D for all z ∈ D and t ≥ 0.
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Furthermore, one can show (see [82] and [86]) that the function u(t, z) satisfies
the following partial differential equation

∂u(t, z)

∂t
+
∂u(t, z)

∂z
f(z) = 0, z ∈ D.

Definition 3.2. A mapping f is a complete vector field if the solution of (3.2) exists
for all t ∈ R and z ∈ D.

In other words, f is complete if both f and −f are semi-complete.

Note also that f is complete if and only if this solution {u(t, ·)} of (3.2) is a
group (with respect to the parameter t ∈ (−∞,∞)) of automorphisms of D.

The set of semi-complete vector fields on D will be denoted by G(D). The set of
complete vector fields is denoted by Gaut(D).

Various presentations of semi-complete and complete vector fields on the open
unit ball B in Cn, general Hilbert and Banach spaces can be found in [1], [2], [3], [86],
[82], [35] and [37].

It is well known that in the case where D = ∆ = {z ∈ C : |z| < 1}, a semi-
complete vector field is complete if and only if it admits the representation

f (z) = a− az2 + ibz

for some complex number a and real b (see, for example, [86] and [35]).
If a family {Ft = u(t, ·)}, t ≥ 0, (t ∈ R) forms a semigroup ( group) of holomor-

phic self-mappings of ∆, it follows from the remarkable result of E. Berkson and H.
Porta [9] that the limit

f (z) = lim
t→0+

1

t
(z − Ft (z))

exists and defines a semi-complete (complete) vector field f on ∆.Clearly f ∈
Hol(∆,C) and determines the holomorphic generator of {Ft} via the above formula.

In general, if D is a convex domain in X and the latter limit exists one can
identify the set G (D) of semi-complete vector fields with the set of all holomorphic
generators on D. The set G (D) is a real cone in Hol(D,C), while the set Gaut(D) of
all group generators on D is a real Banach algebra (see [2] and [82]).

We observe also, that for some z0 ∈ D, the equality Ft(z0) = z0 holds for all
t ≥ 0 if and only if f(z0) = 0.

Definition 3.3. Let D be a domain in X and let h ∈ Hol(D,X). One says that h
satisfies the range condition on D if for each λ ≥ 0 the following condition holds
(I − λh) (D) ⊃ D and the equation

z − λh(z) = w (3.3)

has a unique solution

z = Jλ(w)
(

= (I − λh)
−1

(w)
)

(3.4)

holomorphic in w ∈ D.

In this case the family {Jλ}λ≥0 ∈ Hol(D) is called the resolvent family of h

on D. Obviously, the inverse function (I − h)
−1

is an element of the resolvent family
with λ = 1.
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Theorem 3.4. [82] Let D be a bounded convex domain in X and let f ∈ Hol(D,X).
The mapping f defines a semi-complete vector field on D if and only if it satisfies the
range condition of Definition 3.3.

For the one-dimensional case we list the following geometric properties of the
resolvent established in [39] and [40] among others:

• Any resolvent Jλ is a hyperbolically convex self-mapping of ∆ and, consequently,
is a star-like function of order 1

2 (see definition 2.11 and sources in [75], [69],
[70], [72], [71] and [93]).

• Any resolvent Jλ satisfies Re Jλz > 1
2(1+λf ′(0)) . Consequently, Jλ is a generator

on ∆ and, moreover, the semigroup generated by Jλ converges to 0 uniformly
on ∆ with exponential squeezing coefficient κ = 1/[2(1 + λf ′(0))].

• If a generator f itself is a star-like function of order α > 1
2 , then any element

Jλ, λ ≥ 0, of the resolvent family extends to a (sinπα)-quasiconformal mapping
of C.

Quantitative characteristics of semi-complete vector fields can be formulated as
follows.

Theorem 3.5. Let B be the open unit ball in X and let f ∈ Hol (B,X). Then f ∈ G(B)
if and only if one of the following conditions hold:

(i) Abate’s inequality [1]:

Re
[
2 〈f(z), z∗〉+ 〈f ′(z)z, z∗〉 (1− ‖z‖2)

]
≥ 0.

(ii) Aharonov-Reich-Elin-Shoikhet’s [2] criterion:

Re 〈f(z), z∗〉 ≥ Re 〈f(0), z∗〉 (1− ‖z‖2), z ∈ B.

Note that condition (i) originally was establish by Abate in [1] for the finite
dimensional Euclidian ball. For the general Banach space it was shown in [2] (see also
[82]) by using the reduction to the unit disk ∆ in the complex plane C.

Let B be the open unit ball in X. Following G. Kohr let us denote by D the
invariant differential operator on Hol(B,X) defined by

Df(z) = (1− ‖z‖2)f ′(z).

Remark 3.6. For the one-dimensional case operator D has the property that Df (z) =
(f ◦ T )

′
(0) , where T is the automorphism on ∆ given by T (w) = z+w

1+zw , w ∈ ∆. Thus,

if D is the invariant differential operator on Hol(∆,C) defined by the above formula,
condition (i) of Theorem 3.5 can be written as

Re
[
2f(z)z + Df(z) |z|2

]
≥ 0.

So, in this case the set G(∆) can be described by the last inequality given in
Remark 3.6.

Another very useful representation of the class G(∆) was obtained by Berkson
and Porta in [9].



268 David Shoikhet

Theorem 3.7. If ∆ is the open unit disk in the complex plane C, then f ∈ G(∆) if and
only if

f(z) = (z − τ)(1− zτ)p(z) (3.5)

for some τ ∈ ∆ and p ∈ Hol (∆,C) with Re p(z) ≥ 0, z ∈ ∆.

The equivalence of conditions (i)-(ii) and (3.5) by using direct complex analysis
methods was shown in [2].

In addition, we notice that since presentation (3.5) is unique it follows that
f ∈ G(∆) must have at most one null point in ∆.

This fact is no longer true for the higher dimensional case. If, in particular, X
is a reflexive Banach space, then the null point set of f ∈ G(B) is a holomorphic
retract of B, whence a connected analytic submanifold of D (see [82] and references
therein). In particular, for X = H being a complex Hilbert space, the null point set
of a semi-complete vector field is an affine submanifold of X. In any case, it follows
by the uniqueness of the solution of the Cauchy problem (3.2) that the null point set
of f ∈ G(B) coincides with the common fixed point set of the generated semigroup
S = {u(t, ·)}∞t=0. In particular, f ∈ G(B) has a unique null point τ ∈ B if and only if
τ (= u(t, τ)) is a unique fixed point of u(t, ·) for at least one, hence, for all t > 0.

This point τ is referred to be the Denjoy-Wolff point for the semigroup S =
{u(t, ·)}t≥0 generated by f , if

lim
t→∞

u(t, x) = τ, for each x ∈ B.

It is known ( see, for example, [82] and reference therein) that τ ∈ B is the Denjoy-
Wolff point of S if and only if the spectrum σ (A) of the linear operator A = f ′ (0)
lies in the open right-half plane.

Proposition 3.8. [82]Let D be a bounded convex domain in X and let f ∈ G(D). Then
the null point set of f in D is a connected analytic submanifold of D.

Now by N (B) we denote the class{f ∈ G(B) : f(0) = 0, Reσ (f ′ (0)) > 0}. In
other words, N (B) consists of those semi-complete vector fields which generate the
semigroups with the Denjoy-Wolff point at the origin. This class of generators is
closely related to the class S∗ (B) of star-like mappings or, more generally, the class
Sp (B) of spiral-like mappings on B (see, for example, [87] and [37]).

Namely, h ∈ Sp(B) if and only if it is locally biholomorphic and satisfies the
differential equation

Ah(x) = h′(x) · f(x),

where f ∈ N (B) and A = f ′ (0) . In particular, h is star-like if and only if operator A
can be chosen A = I - the identity operator on X (see, for details the books [47], [86],
[50], [82] and [37]). For the geometric description of the convex hull of the set S∗ (·)
see a pioneer work [21] (see also a recent works [26] and [42]).

For the finite dimensional case X = Cn the subclass M (B) = {f ∈ N (B) :
f(0) = 0, f ′ (0) = I} of N (B) was studied by Gabriela Kohr (see [60], [61], [50] and
references therein). In particular, the following result was presented in [50].

Theorem 3.9. If X = Cn , then the set M (B) is compact.
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To motivate our further discussion we note that for the one-dimensional case
characterizations of the class N (B) can be written as:

(a’) Re
[
2f(z)z + Df(z) |z|2

]
≥ 0 and f (0) = 0

or

(b’) Re f(z)z ≥ 0, z ∈ ∆
(
or Re f(z)

z ≥ 0, z 6= 0
)
.

Surprisingly, it turns out, that formally much weaker condition than condition
(a’), namely,

Re f ′ (z) ≥ 0, f(0) = 0, (3.6)

also implies condition (b), that is the property of f to be a semi-complete vector
field on ∆. The class of functions satisfying (3.6) is a well-known class consisting
of univalent functions due to the Noshiro-Warshawskii Theorem (see [50], [37]). We
mention interalia the following result.

Theorem 3.10. [90] Let f ∈ Hol(B,C), f(0) = f ′(0) − I = 0 satisfy the generalized
Noshiro-Warshawskii condition:

Re 〈f ′(x)x, x∗〉 ≥ 0, x ∈ B. (3.7)

Then f is a strongly semi-complete vector field satisfying

Re 〈f(x), x∗〉 ≥ (2 log 2− 1) ‖x‖2 > 0, x ∈ B. (3.8)

This inspires us to consider some more general classes of holomorphic mappings de-
fined by a convex combination of conditions (a) and (b) of Theorem 3.5.
The following question (G. Kohr) naturally rises from Theorem 3.5 and Remark 3.6.

Whether the condition,

Re
[
α 〈f(x), x∗〉+ 〈f ′(x)x, x∗〉 (1− ‖x‖2)

]
≥ 0,

x ∈ B, f (0) = 0, and α ≥ 0 (3.9)

also characterizes the class N (B)?
The answer is affirmative for all α ≥ 2. At the same time, condition (3.9) is

sufficient, but is not necessary [14].
Following condition (3.9) at the end of this section we consider some special

subclasses of N (B) which define the so-called parametric filtration of the class N (B)
([14] and [39]).

For 0 ≤ t ≤ 1 we denote Gt(B) the class which consists of functions f ∈ Hol(B,X)
such that f(0) = 0 and

Re
[
t 〈f(x), x∗〉+ (1− t) 〈f ′(x)x, x∗〉 (1− ‖x‖2)

]
≥ 0.

Theorem 3.11. For each 0 ≤ s ≤ t ≤ 1 the following inclusions hold

Gs(B) ⊆ Gt(B) ⊆ N (B) . (3.10)

Moreover,
(i) For all 2

3 ≤ s ≤ t ≤ 1 the following equality holds

Gs(B) = Gt(B) = N (B) .

(ii) For each 0 ≤ s < t ≤ 2
3 the inclusion Gs(B) ⊂ Gt(B) is strong.
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4. Null points of holomorphic generators in the disk

First we summarize some preliminary properties of continuous semigroups and
their generators, which follow from the Berkson–Porta representation (i) of Theorem
3.5.

Consider a semigroup S = {Ft}t≥0 ⊂ Hol(∆) generated by f ∈ G(∆) and make
the following observations.

� If the point τ in [9] is an interior null point of ∆ and f does not vanish identically
on ∆, then τ is the unique null point of f in ∆, and (due to the uniqueness of
the solution to the Cauchy problem (3.2)), τ is a common fixed point of S, i.e.,

Ft(τ) = τ for all t ≥ 0. (4.1)

� If τ ∈ ∂∆, then it is a fixed point of Ft for each t ≥ 0 in the sense that

lim
r→1−

Ft(rτ) = τ. (4.2)

In general, if S is not the trivial semigroup of the identity mappings and does
not contain an elliptic automorphism of ∆, then the point τ ∈ ∆ in (4.2) is an
attractive fixed point of the semigroup S, i.e.,

lim
t→∞

Ft(z) = τ for all z ∈ ∆. (4.3)

The last assertion is a continuous analog of the Denjoy–Wolff Theorem.

Definition 4.1. The point τ in (4.3) is called the Denjoy–Wolff point of the semigroup
S = {Ft}t≥0.

To proceed we need the following notions.

Definition 4.2. One says that a function f ∈ Hol(∆,C) has the angular limit L at a
point τ ∈ ∂∆ denoted by L := ∠ lim

z→τ
f(z) if f(z)→ L as z → τ in each nontangential

approach region

Γ(τ, k) =

{
z ∈ ∆ :

|z − τ |
1− |z|

< k

}
, k > 1.

Definition 4.3. If L in definition 4.2 is finite and the angular limit (finite or infinite)

M := ∠ lim
z→τ

f(z)− L
z − τ

exists, then M is said to be the angular derivative of f at τ . We denote it by f ′(τ).

It is known (see [76] p. 79) that this angular derivative exists finitely if and only
if the angular limit ∠ lim

z→τ
f ′(z) exists finitely,hence f ′(τ) = ∠ lim

z→τ
f ′(z).

Remark 4.4. By using the Riesz–Herglotz representation (see, for example, [47]) of
functions with a positive real part, one can show (see [37] and [15]) that if τ ∈ ∂∆
is the boundary Denjoy–Wolff point of the semigroup S = {Ft}t≥0 generated by
f ∈ G(∆), then the angular derivative f ′(τ) exists finitely and is a real nonnegative

number. Moreover, f ′(τ) = limr→1−
f(rτ)τ
r−1 . Some inequalities for angular derivatives

related to interpolation problems are given in [11]. The second angular derivative and
parabolic iteration were studied in [26].
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Thus, every non-trivial semigroup S = {Ft}t≥0 on ∆ which does not contain an
elliptic automorphism of ∆, falls in one of three mutually exclusive classes depending
on the nature of its Denjoy–Wolff point τ . These classes can be described in terms
of generators as follows: the Denjoy–Wolff point τ of S satisfies f(τ) = 0 and the
semigroup S must be of one of the following three types:

– dilation type if τ ∈ ∆ and Re f ′(τ) > 0;
– hyperbolic type if τ ∈ ∂∆ and 0 < f ′(τ) <∞;
– parabolic type if τ ∈ ∂∆ and f ′(τ) = 0.
The real part Re f ′(τ) vanishes at an interior null point τ ∈ ∆ of a generator

f ∈ G(∆) if and only if the semigroup S generated by f contains either the identity
mappings or elliptic automorphisms of ∆.

Without loss of generality up to appropriate Möbius transformations of the unit
disk we distinguish two cases: τ = 0 and τ = 1.

4.1. Interior null points

Let f be the generator of a one-parameter continuous semigroup S = {Ft}t≥0

on ∆. Suppose that S is not trivial, does not contain elliptic automorphisms, and
that τ ∈ ∆ is the interior null point of f . Without loss of generality we set τ = 0.
In this case τ = 0 is the attractive fixed point of the semigroup, <f ′(τ) > 0, and the
rate of convergence of the semigroup in terms of the Euclidean distance is completely
determined by the following theorem (see, for example, [86]).

Theorem 4.5. Let f ∈ G(∆) be such that f(0) = 0 and λ := Ref ′(0) > 0, and let
S = {Ft}t≥0 be the semigroup generated by f . Then there exists c ∈ [0, 1] such that
for all z ∈ ∆ and t ≥ 0, the following estimates hold:

(i) |z| · exp

(
−λt1 + c|z|

1− c|z|

)
≤ |Ft(z)| ≤ |z| · exp

(
−λt1− c|z|

1 + c|z|

)
;

(ii) exp(−λt) |z|
(1 + c|z|)2

≤ |Ft(z)|
(1− c |Ft(z)|)2 ≤ exp(−λt) |z|

(1− c|z|)2
.

Inequality (ii) implies that for each z ∈ ∆ the rate of convergence of the semi-
group to its interior Denjoy–Wolff point is of exponential type.

Note that for c = 1 estimate (i) is due to Gurganus [51], while estimate (ii) was
established by Poreda [77].

4.2. Boundary null points

Note that a generator f ∈ G(∆) may have more than one boundary null point,
and for each such point ζ ∈ ∂∆, the angular derivative f ′(ζ) exists and is a real
number or infinity (see [86], [33], [25] and [35]).

Definition 4.6. A point ζ ∈ ∂∆ is called a boundary regular null point of f ∈
Hol(∆,C) if the angular (radial) derivative f ′(ζ) exists finitely.

In fact, a boundary regular null point ζ of f is the attractive fixed point of the
semigroup S generated by f if and only if f ′(ζ) ≥ 0. If for a boundary null point
ζ ∈ ∂∆ of f , f ′(ζ) < 0 then ζ is a repelling (or repulsive) fixed point of S (see
[36]-[32]).
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For a point ζ ∈ ∆, we define the class

G[ζ] := {f ∈ G(∆) : f(ζ) = 0 and f ′(ζ) exists finitely}. (4.4)

In other words, the class G[ζ] is the subcone of G(∆) of all generators vanishing
at the point ζ, and having a finite (angular) derivative at this point.

For a boundary point ζ ∈ ∂∆, each element f of G[ζ] has another useful para-
metric representation.

Theorem 4.7. (see [86] cf. also [87] and [82]) Let ζ ∈ ∂∆. Then f ∈ G[ζ] admits the
representation

f(z) = (z − ζ)(1− zζ)p(z) +
λ

2
(ζz2 − ζ), (4.5)

where
λ = f ′(ζ), Re p (z) ≥ 0 and ∠ lim

z→ζ

(
1− zζ

)
p (z) = 0. (4.6)

It is clear that the point ζ in (4.5) is the Denjoy–Wolff point of the corresponding
semigroup if and only if λ ≥ 0.

In general, it turns out, that even for a boundary regular null point τ of f ,
which is not necessarily the Denjoy–Wolff point, but f ∈ C3

A(τ) ( i.e., f has the third
angular derivative at the point τ , its quadratic part, say g, is also a generator of a
semigroup of linear-fractional transformations on ∆. Therefore, the natural question
is: which conditions provide f = g?

Theorem 4.8. Let f ∈ G[1] be of class C3
A(1) and let g(z) = f ′(1)(z−1)+ 1

2f
′′(1)(z−1)2

be its quadratic part. Then
(i) g is the generator of a semigroup of linear-fractional transformations on ∆;
(ii) f ′(1)− Re f ′′(1) ≥ 0;
(iii) If h := f − g belongs to the class G(∆) then Re f ′′′(1) ≥ 0. Moreover,

Re f ′′′(1) = 0 if and only if f = g.
In particular, f(z) ≡ 0 if and only if f ′(1) = f ′′(1) = f ′′′(1) = 0.

Since for a self-mapping F of ∆ the mapping I − F defines a semi-complete
vector field (generator) on ∆, the latter assertion is a generalization of the Burns-
Krantz Theorem [23].

In this connection we also would like to mention that the classical Shwarz Lemma
and Shawrz-Pick Lemma are the prototype of earlier rigidity results. Recently Filippo
Bracci, Daniela Kraus and Oliver Roth [20] have continue the study and developments
of this issue and established several versions for conformal pseudometrics on the unit
disk including boundary versions of Ahlfors-Schwarz and Nehari-Schwarz Theorems,
as well as for holomorphic self-mappings of strongly convex domains in Cn .

The so-called ”slice rigidity property” of holomorphic mappings Kobayashi-
isometrically preserving complex geodesics have been given by Filippo Bracci,  Lukasz
Kosiński, W lodzimierz Zwonek [18] More precisely.

Let ∆ be the unit disc in C and let F : ∆→ C be a Riemann mapiing such that
F (∆) = ∆. Then it was presented a necessary and sufficient condition in terms of
hyperbolic distance and horocycles which assures that a compactly divergent sequence
{zn} ⊂ ∆ has the property that {f−1(zn)} converges orthogonally to a point of ∆.
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In this connection we also mentioned the papers [15] and [20].
In addition, verifying the proofs in [43] and [36] one shows that the point w = 0 is

the boundary regular fixed point of the restriction of Jr on Ω whenever r ∈
(
− 1
f ′(0) , 0

)
with J ′r(0) = 1

1+rf ′(0) .To illustrate Proposition 6.2 take Example 2 in [40] and consider

the semigroup generator f(z) = z(1− z). Its resolvent Jr is:

Jr(w) =
r + 1−

√
(r + 1)2 − 4rw

2r

First we see that the angular limit ∠ lim
w→1
Jr(w) = 1 for every r < 0 and J ′r(1) = 1

1−r

for every r ∈ (−∞, 1). In addition, Jr(0) = 0 if r ≥ −1 and J ′r(0) = 1
1+r for

r > −1. Finally, it can be seen by using the results in [43] that the maximal BFID
corresponding to ζ = 1 is Ω =

{
z :
∣∣z − 1

2

∣∣ < 1
2

}
.

5. Analytic extension of one-parameter semigroups

In this section we discuss the following problem.
Let {Ft}t≥0 be the semigroup generated by an f ∈ G(∆). Whether there is a

domain Q in the right half-plane such that the semigroup admits an analytic extension
to Q, preserving it’s algebraic properties?

For the case when f = A is a continuous linear operator on X an affirmative
answer was given by E. Hille [29] see also the book of Hille-Phillips [56].

Proposition 5.1. Let B be the infinetesimal generator of a semigroup of linear contin-
uos operators {At} , t = 0, on X such that AtX ⊂ D (B)−the domain of definition of
B.Assume that there is a constant N > 0 with t ‖BAt‖ ≤ N, 0 ≤ t < 1.Then there is a
holomorphic operator function {Aς} : ς ∈ D, where Q =

{
ς : Re ς > 0, |arg ς| < 1

eN

}
and Aς1Aς2 = Aς1+ς2 whenewer ς1 and ς2 belong to D. In addition, the strong limit
limς→0Aςx = x, x ∈ D, whenever |arg ς| ≤ ε

eN , ε ∈ (0, 1) .

Remark 5.2. By using the tools and methods of the theory composition operators
(see, for example, [27], [92]) one can easily establish analogs of this result for nonlinear
semigroup of holomorphic mappings [37].

The following fact is a key for our considerations in the sequel.

Theorem 5.3. [31] Let α, β ∈ (0, π2 ). Then the semigroup {Ft}t≥0 generated by f ,
f(z) = zp(z), can be analytically extended to the sector {t ∈ C : arg t ∈ (−α, β)} for
all z in the open unit disk ∆ if and only if −π2 + α < arg p(z) < π

2 − β, z ∈ D.

We deduce here another result from [31] which completes the material in previous
sections.

Theorem 5.4. Let f be a semi-complete vector field and let Jr be its resolvent with

r ≥ 6
Re q . Denote γr := 1−A(rRe q)

1+A(rRe q) , where A is defined by

A(r) :=
6r(1 + r)

(1 + r)3 − 3(5r − 1)
(5.1)

Then for the semigroup {Φt,r}t≥0 generated by Jr the following assertions hold:
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(i) for fixed t > 0 the net {Φt,r} converges to 0 as r → ∞, uniformly on the open
unit disk with the exponential squeezing coefficient

κ(r) :=

(
Re (1 + rq)

1
γr

)γr
21−γr |1 + rq|2

.

Theorem 5.5. For every fixed z in the open unit disk, and r > 0 the mapping Φt,r (z)
can be analytically extended in the parameter t to the sector{

t ∈ C : |arg t− arg(1 + rq)| < πγr
2

}
.

6. Backward flow invariant domains

To proceed we quote partially the result proved in [43] (see also [37]).

Lemma 6.1. A function f ∈ N has a boundary regular null point ζ ∈ ∂∆ if and only
if there is a simply connected domain Ω ⊂ ∆ such that f generates a one-parameter
group S = {Ft}−∞<t<∞ of hyperbolic automorphisms on Ω such that the points z = 0
and z = ζ belong to ∂Ω and are boundary regular fixed points of S on ∂Ω. Moreover,
f ′(ζ) is a real negative number.

We call such a domain backward flow invariant domain (or shortly BFID). Note
that in general a BFID Ω is not unique for a point ζ ∈ ∂∆, but there is a unique BFID
Ω (called the maximal BFID) with the above properties such that Ω has a corner of
opening π at the point ζ (see [76]). Other characterizations of backward flow invariant
domains can be found in [43], [36], [35] and [13].

An interesting phenomenon occurs when we consider the resolvent family only
on BFID. Namely,

Proposition 6.2. Let f ∈ N (∆) have a boundary regular null point ζ ∈ ∂∆ and Ω is
a BFID in ∆ corresponding to ζ. If Ω is convex, then the restriction of the resolvent
family Jr on Ω can be continuously extended in the parameter r ∈ (−∞, 0) such that ζ
is a boundary fixed point of Jr for every r < 0. Moreover, lim

r→−∞
Jr(w) = ζ whenever

w ∈ Ω.

Lemma 6.3. A function f ∈ N (∆) has a boundary regular null point ζ ∈ ∂∆ if
and only if there is a simply connected domain Ω ⊂ ∆ such that f generates a one-
parameter group S = {Ft}−∞<t<∞ of hyperbolic automorphisms on Ω such that the
points z = 0 and z = ζ belong to ∂Ω and are boundary regular fixed points of S on
∂Ω. Moreover, f ′(ζ) is a real negative number.

It follows from the Scwarz Lemma that F
′−tf ′(0)
t < 1 while F

′−tf ′(ζ)
t > 1.

Thus the point w = 0 is a boundary regular fixed point of the restriction of Jr
on Ω whenever r ∈

(
− 1
f ′(0) , 0

)
with J ′r(0) = 1

1+rf ′(0) .

To illustrate Proposition 6.2 and the latter fact, return now to the semigroup
generator f(z) = z(1− z) and its resolvent

Jr(w) =
r + 1−

√
(r + 1)2 − 4rw

2r
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that were considered in [39] and [40]. First we see that the angular limit ∠ lim
w→1
Jr(w) =

1 for every r < 0 and J ′r(1) = 1
1−r for every r ∈ (−∞, 1). In addition, Jr(0) = 0 if

r ≥ −1 and J ′r(0) = 1
1+r for r > −1. Finally, it can be shown by using the results in

[43] that the maximal BFID corresponding to ζ = 1 is Ω =
{
z :
∣∣z − 1

2

∣∣ < 1
2

}
.

Re
wJ ′r(w)

Jr(w)
= Re

1

1− wϕ′
(
Jr
) > 1

2
.

7. Inverse Löwner chains

Theorem 3.11 tells us that Ωr = Jr(∆), 0 ≤ r < ∞, is a decreasing family of
domains in the unit disk ∆ (in this connection see also [20]).

One can thus introduce some aspects of Inverse Löwner theory which lead to a
deeper geometric understandings of the structure of the family of nonlinear resolvents
for f ∈ N (∆) .

Definition 7.1. A mapping p : ∆ × [0,+∞) → C is called a Herglotz function of
divergence type if the following three conditions are satisfied:

(a) pt(z) = p(z, t) is analytic in z ∈ ∆ and measurable in t ≥ 0,
(b) Re p(z, t) > 0 (z ∈ ∆, t ≥ 0),
(c) p(0, t) is locally integrable in t ≥ 0 and∫ ∞

0

Re p(0, t)dt = +∞.

Note that the term Herglotz function of order d is used in [12] to mean the func-
tion p(z, t) with the divergence condition being replaced by Ld([0,∞))-convergence
in the above definition.

The following result was proved by Becker [8].

Theorem 7.2. Let p(z, t) be a Herglotz function of divergence type. Then there exists
a unique solution ft(z) = f(z, t), (which is analytic and univalent in |z| < 1 for each
t ∈ [0,+∞) and locally absolutely continuous in 0 ≤ t < ∞ for each z ∈ ∆) to the
differential equation

ḟ(z, t) = zf ′(z, t)p(z, t) (z ∈ ∆, t ≥ 0) (7.1)

with the normalization conditions f0(0) = 0 and f ′0(0) = 1. Moreover, the solution
satisfies fs ≺ ft for 0 ≤ s ≤ t.

Here we have written

ḟ(z, t) =
∂

∂t
f(z, t), f ′(z, t) =

∂

∂z
f(z, t).

for the partial derivatives of f(., .). Observe that the uniqueness assertion is no longer
valid if we drop the univalence condition on ft. For instance, one can consider the
function f̃(z, t) = Φ(f(z, t)) which satisfies (7.1) as well as f̃(0, 0) = 0 and f̃ ′(0, 0) = 1
when Φ is an entire function with Φ(0) = 0 and Φ′(0) = 1.

We now give a definition belonging to Betker [10].
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Definition 7.3. A family of analytic functions gt(z) = g(z, t) (0 ≤ t <∞) on the unit
disk ∆ is called an inverse Löwner chain if the following conditions are satisfied:

(i) gt : ∆→ C is univalent for each t ≥ 0,
(ii) gt ≺ gs whenever 0 ≤ s ≤ t,
(iii) b(t) = g′t(0) is locally absolutely continuous in t ≥ 0 and b(t)→ 0 as t→∞.

Note that condition (ii) means that gt(∆) ⊂ gs(∆) and gt(0) = gs(0) for 0 ≤
s ≤ t. The following lemma gives us sufficient conditions for g(z, t) to be an inverse
Löwner chain.

Lemma 7.4. Let gt(z) = g(z, t) be a family of analytic functions on ∆ for 0 ≤ t <∞
with the following properties:

1) gt is univalent on ∆ for each t ≥ 0,
2) g(0, s) = g(0, t) for 0 ≤ s ≤ t,
3) g(z, 0) = z for z ∈ ∆,
4) g(z, t) is locally absolutely continuous in t ≥ 0 for each z ∈ ∆,
5) the differential equation

ġ(z, t) = −zg′(z, t)p(z, t) (z ∈ ∆, t ≥ 0) (7.2)

holds for a Herglotz function p(z, t) of divergence type. Then gt(∆) ⊂ gs(∆) for
0 ≤ s ≤ t.

Corollary 7.5. Under the assumptions of Lemma 7.4, we suppose, in addition, that
the inequality ∣∣ arg p(z, t)

∣∣ < πα

2
, z ∈ ∆, t ≥ 0, (7.3)

holds for a constant 0 < α < 1. Then the conformal mapping gt on ∆ extends to a
k-quasiconformal mapping of C for each t ≥ 0, where k = sin(πα/2).

Here for a constant 0 ≤ k < 1, a mapping f : C→ C is called k-quasiconformal
if f is a homeomorphism in the Sobolev class W 1,2

loc (C) and if it satisfies |∂z̄f | ≤ k|∂zf |
almost everywhere on C.

Proposition 7.6. The family Jr(w) = J (w, r), r ≥ 0, is an inverse Löwner chain with
the Herglotz function p(w, r) of divergence type. In particular, Jr(∆) ⊂ Js(∆) for
0 ≤ s ≤ r.

Remark 7.7. The condition (7.3) is known to be equivalent to that the semigroup{
Ft
}
t≥0

in Hol(∆) generated by f(z) can be analytically extended to the sector

{t ∈ C : |arg t| < π(1− α)/2} in the parameter t (see [41]).

By virtue of Corollary 7.5, it is enough to prove the following assertion.

Corollary 7.8. Suppose that a holomorphic function f : ∆ → ∆ with f(0) = 0,
f ′(0) > 0 is star-like of order α with 1

2 < α < 1. Then its nonlinear resolvent
Jr : ∆ → ∆ extends to a k-quasiconformal mapping of C for every r ≥ 0, where
k = sin(πα).
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8. Rigidity properties of holomorphic generators

Let ∆ be the open unit disk in the complex plane C. By Hol (∆,C) we denote the
family of all holomorphic functions on ∆. For the special case when F ∈ Hol (∆,C)
is a self-mapping of ∆ we will simply write F ∈ Hol (∆) .

The famous rigidity theorem of D. M. Burns and S. G. Krantz [23] (which can be
considered as a boundary version of the second part of the classical Schwarz Lemma)
asserts:

� Let F ∈ Hol(∆,∆) be such that

F (z) = 1 + (z − 1) +O
(

(z − 1)
4
)
,

as z → 1. Then F (z) ≡ z on ∆.
It was also mentioned in [23] that the exponent 4 is sharp, and it follows from

the proof of the theorem that O
(

(z − 1)
4
)

can be replaced by o
(

(z − 1)
3
)

. There

are many generalized versions of this result in different settings for one dimensional,
finite dimensional and infinite dimensional situations (see, for example,[87] [88], [90],
[5],[6],[11], [33],[38] and [32] and references therein). Similar results appeared earlier
in the literature of conformal mappings with the additional hypothesis that F is uni-
valent (and often the function F is assumed to be quite smooth - even analytic - in a
neighborhood of the point z = 1). The theorem presented in [23] has no such hypoth-
esis. The exponent 4 is sharp: simple geometric arguments show that the function

F (z) = z +
1

10
(z − 1)3

satisfies the conditions of the theorem with 4 replaced by 3. Note also that it follows
from the proof that O((z − 1)4) can be replaced by o((z − 1)3).

The Burns–Krantz Theorem was improved in 1995 by Thomas L. Kriete and
Barbara D. MacCluer [67], who replaced F with its real part and considered the
radial limit in o((z − 1)3) instead of the unrestricted limit. Here is a more precise
statement of their result.

Theorem 8.1. Let F ∈ Hol(∆) with radial limit F (1) = 1 and angular derivative
F ′(1) = 1. If

lim inf
r→1−

Re (F (r)− r)
(1− r)3

= 0,

then F (z) ≡ z on ∆.

In [96], Roberto Tauraso and Fabio Vlacci investigated rigidity of holomorphic
self-mappings of the unit disk ∆ after imposing some conditions on the boundary
Schwarzian derivative of F defined by

SF (z) :=
F ′′′(z)

F ′(z)
− 3

2

(
F ′′(z)

F ′(z)

)2

, z ∈ ∂∆.

It is known that the Schwarzian derivative carries global information about F : it
vanishes identically if and only if F is a Möbius transformation. Initially, the original
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rigidity result of Burns and Krantz was extended in [96] from the identity mapping
to a parabolic automorphism.

Theorem 8.2. Let F ∈ Hol(∆)
⋂
C3
A(1). If

F (1) = 1, F ′(1) = 1, ReF ′′(1) = 0 and ReSF (1) = 0,

then F is the parabolic automorphism of ∆ defined by

1 + F (z)

1− F (z)
=

1 + z

1− z
+ ib,

where b = ImF ′′(1).

In the particular case F ′′(1) = F ′′′(1) = 0, this reduces to the result of Burns
and Krantz, i.e., F (z) ≡ z on ∆.

In [26] (2010), Contreras, Dı́az-Madrigal and Pommerenke supplemented Theo-
rem 8.2 as follows.

Theorem 8.3. (1) A non-trivial (i.e., F 6= I) holomorphic map F ∈ Hol(∆) is a
parabolic automorphism if and only if there exists ζ ∈ ∂∆ such that F ∈ C3

A(ζ) and

F (ζ) = ζ, F ′(ζ) = 1, Re (ζF ′′(ζ)) = 0 and SF (ζ) = 0.

(2) F ∈ Hol(∆) is a hyperbolic automorphism if and only if there exist ζ ∈ ∂∆
and α ∈ (0, 1) such that F ∈ C3

A(ζ) and

F (ζ) = ζ, F ′(ζ) = α, Re (ζF ′′(ζ)) = α(α− 1) and SF (ζ) = 0.

The following boundary rigidity principles are given in [88]. In particular, some
conditions on behavior of a holomorphic self-mapping F of ∆ in a neighborhood of
a boundary regular fixed point (not necessarily the Denjoy–Wolff point) under which
F is a linear-fractional transformation have established.

It is known that if a mapping F ∈ Hol(∆) with the boundary regular fixed point
τ = 1 and F ′(1) =: α is linear fractional, then for all k > 0, and for some β ≥ 0 the
following equality holds for all z ∈ ∆,

|1− F (z)|2

1− |F (z)|2
=

α |1− z|2

(1− |z|2) + αβ |1− z|2
. (8.1)

Moreover, F is an automorphism of ∆ (either hyperbolic, α 6= 1, or parabolic, α = 1)
if and only if β = 0.

It turns out that, that under some smoothness conditions, equality (8.1) (and
even some weaker condition) is also sufficient for F ∈ Hol(∆) to be linear fractional.

Theorem 8.4. Let F ∈ Hol(∆) ∩C3
A(1), F (1) = 1 and F ′(1) = α. Then F is a linear

fractional transformation if and only if the following conditions hold:

(i)
|1− F (z)|2

1− |F (z)|2
≤ 1

a
, z ∈ ∆;

(ii) the Schwarzian derivative SF (1) = 0.
So, if conditions (i) and (ii) are satisfied, then equality (8.1) holds for all z ∈ ∆.
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In this connection we also would like to mention other two directions in gener-
alization of the Burns-Krantz Theorem presented in [88], [89],[90] and [87].

The first one is to establish some rigidity property for those functions the third
derivative of which is not necessarily zero. In other words, we assume that

∠ lim
z→τ

F (z)− z
(z − 1)

2 = 0, but ∠ lim
z→τ

F (z)− z
(z − 1)

3 = k.

It turns out that number k is always nonnegative number and the value F (0) lies
always in the closed disk of radius k centred in k.Moreover, F (0) lies on the circle-the
boundary of this disk if and only if F has a special form which immediately becomes
the identity mapping whenever k = 0.

For he second direction we have interested is to extend the mentioned above
results for those functions which are not necessarily self-mappings of ∆, but satisfy
the so-called property to be pseudo-contractive on the open unit disk. Despite the
latter class is much wider that the class of self mappings of ∆, it preserves many
properties of its fixed points as well as the rigidity property in the spirit of the Burns-
Krantz Theorem.

Theorem 8.5. Let F ∈ Hol (∆,C) be pseudo-contractive on ∆, with

F (1) = F ′ (1) = 1 and ∠ lim
z→τ

F (z)− z
(z − 1)

2 = 0.

Assume also that there is the angular limit

∠ lim
z→τ

F (z)− z
(z − 1)

3 = µ

Then µ is a real nonnegative number with

|F (0)− µ| ≤ µ

Moreover, If F (0) = 2µ, then

F (z) = z − µ (z − 1)
3

1 + z
.

In particular, µ = 0 if and only if F (z) = z.

Rigidity principles related to interpolation problems can be found in [6], [5] and
[11]. Boundary behavior of semigroups and rigidity at the boundary point is considered
in [38].
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