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The level sets of functions with bounded critical
sets and bounded Hess+ complements
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Abstract. We denote by Hess+(f) the set of all points p ∈ Rn such that the Hes-
sian matrix Hp(f) of the C2-smooth function f : Rn −→ R is positive definite. In
this paper we prove several properties of real-valued functions of several variables
by showing the connectedness of their level sets for sufficiently high levels, under
the boundedness assumption on the critical set. In the case of three variables we
also prove the convexity of the levels surfaces for sufficiently high levels, under the
additional boundedness assumption on the Hess+ complement. The selection of
the a priori convex levels, among the connected regular ones, is done through the
positivity of the Gauss curvature function which ensure an ovaloidal shape of the
levels to be selected. The ovaloidal shape of a level set makes a diffeomorphism out
of the associated Gauss map. This outcome Gauss map diffeomorphism is then
extended to a smooth homeomorphism which is used afterwards to construct
one-parameter families of smooth homeomorphisms of Loewner chain flavor.
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1. Introduction

After analyzing in [12] the Hess+(fa) region of the polynomial function

fa : R2 −→ R, fa(x, y) = (x2 + y2)2 − 2a2(x2 − y2)

and noticing that its complement is bounded, we provided in [2] a class of norm-
coercive polynomial functions with large Hess+ regions, as their Hess+ complements
happen to be bounded as well. A detailed analysis of the Hess+ regions for some par-
ticular polynomial functions which happen to have bounded Hess+(f) complements
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along with bounded critical sets is done there. Basic properties of their level curves,
such as regularity, connectedness even convexity of their level sets, for sufficiently
large levels, are also pointed out. These properties are then proved to hold true for
the whole class of norm-coercive functions of two variables with bounded Hess+(f)
complements. Since the convex hypersurfaces will be repeatedly used, let us mention
that one way to consider convexity for regular hypersurfaces of Rn consists in their
quality to stay on the same side of each of its tangent hyperplane [10, p. 174], [3, p.
37]. On the other hand a regular hypersurface could sometimes bound a convex set
and such a hypersurface is also said to be convex [13] (see also [10, p. 175]). Apart
from the mentioned source of examples, some sufficient conditions on two functions
f, g : R2 −→ R with bounded Hess+ complements are provided in [2] in order for the
product fg to keep having bounded Hess+ complement.

In this paper we partially extend [2, Theorem 3.6] to real-valued functions of
several variables by showing several properties of their level sets for sufficiently high
levels, under the boundedness assumption on the critical set. Although we loose con-
vexity of level hypersurfaces in the general case of several variables, we still prove the
connectedness in this general case and recapture their convexity in the case of three
variables for sufficiently high levels, under the additional boundedness assumption on
the Hess+ complement.

The paper is organized as follows: In the second section, we prove the connect-
edness of the level sets, for sufficiently large levels, of a real valued function with
several variables having bounded critical set. Section 3 is still devoted to properties of
the level sets but for functions with three variables under the additional requirements
on the function to be norm-coercive and to have bounded Hess+ complement. For
this particular number of variables we recapture the convexity of the level sets for
sufficiently large levels, a property we used to have in the case of two variables as well
(see [2, 12]). In this case of three variables we still use the positivity test of the Gauss
curvature function along a level set to select the a priori ovaloidal level sets, among
the connected regular ones. For two variables we used the nonvanishing test of the
curvature function. In section 4 we first use the outcome Gauss map diffeomorphism
of the ovaloidal level sets of the norm-coercive functions with bounded critical set and
bounded Hess+ complement to construct a smooth homeomorphism from the disc D3

to some sub-level set bounded by an ovaloidal level set. Such smooth homeomorphisms
are than used to construct one-parameter families of Loewner chain flavor (compare
Theorem 4.1(2)(4) with the definition of Loewner chains [4, 8, 6, 7, 9] and Theorem
4.1(4) with [4, Theorem 1.6 (iv)]) by using a homothetic perturbation of the gradient
vector field of the function itself which permutes the, sufficiently high, regular levels.

2. Properties of the level sets of functions with bounded critical set

In order to state the first result of this paper, we shall quickly recall the criti-
cal/regular points and critical/regular sets of real-valued functions in a similar fashion
with [2]. If f : Rn −→ Rm is a Fréchet differentiable map, then the rank of f at x ∈ Rn

is defined as rankxf := rank(df)x = rank(Jf)x. Observe that rankxf ≤ min{m,n} for
every x ∈ Rn. A point x ∈ Rn is said to be a critical point of f if rankxf < min{m,n}.
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Otherwise x is said to be a regular point of f . If f : Rn −→ Rm is a C1-smooth
map, then each point x ∈ Rn has an open neighbourhood, say Vx ⊆ Rn, such that
rankyf ≥ rankxf , for all y ∈ Vx. In particular, once a point x is regular, it has a whole
neighbourhood of regular points. Indeed the Jacobian matrix (Jf)x has a non-zero
minor of order rankxf and all minors of (Jf)x of superior order are zero. But the
nonzero minor of (Jf)x is nonzero on a whole open neighbourhood of x since it is a
continuous function. This shows that rankyf = ranky(Jf)y ≥ rank(Jf)x = rankxf ,
which are satisfied for y in a whole neighbourhood of x. Consequently the set R(f), of
regular points of f , is open in Rn, while the set C(f), of critical points of f , is closed
in Rn. We denote by B(f) the set f(C(f)) of critical values of f . Note that for a real
valued function f : U −→ R, the critical set of f is the vanishing set of its gradient
∇f .

Theorem 2.1. Let f : Rn −→ R be a smooth norm-coercive function. If C(f) is
bounded, then the c-level set f−1(c) of f is a regular compact connected and orientable
hypersurface for c sufficiently large.

The proof of Theorem 2.1 works along the same lines with the proof of [2, Theorem
3.6].

Remark 2.2. ([14, Theorem 2.5.7]) If f : Rn −→ R is a C1-smooth convex function,
then its critical set C(f) is convex. Indeed the critical points of f coincide with the
global minimum points of f (see also [2]).

Apart from the examples of real-valued polynomial functions of two variables

1. fa : R2 −→ R, fa(x, y) = (x2 + y2)2 − 2a2(x2 − y2), (a > 0);
2. ga : R2 −→ R, ga(x, y) = (x2 + y2)2 + 2a2(x2 − y2), (a > 0);
3. faga : R2 −→ R, (faga)(x, y) = (x2 + y2)4 − 4a4(x2 − y2)2, (a > 0);

which are not convex as their critical sets are discrete with at least two critical points,
mentioned in [2], we consider here a polynomial function of three variables.

Example 2.3. f : R3 −→ R, fa(x, y, z) = (x2 + y2 + z2)2 − 8(x2 − y2 − z2).

This function is not convex as its critical set C(f) = {(−4, 0, 0), (0, 0, 0), (4, 0, 0)} is
obviously not convex. In the sections to come this function will be analyzed from the
Hess+(f)-region point of view.

3. Levels of functions whose Hess+ complements are additionally
bounded

Let D be a nonempty open convex subset of Rn, and let f : D → R be a C2-
smooth function. The Hessian matrix of f at an arbitrary point x ∈ D will be denoted
by Hx(f). Recall that Hf (x) is a symmetric matrix and it defines a symmetric bilinear
functional

Hf (x) : Rn × Rn −→ R, Hf (x)(u, v) := u ·Hx(f) · vT .
We are interested about the region

Hess+(f) = {x ∈ D : Hx(f) is positive definite}.
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Example 3.1. ([12]) For the polynomial function fa : R2 −→ R, given by

fa(x, y) = (x2 + y2)2 − 2a2(x2 − y2), (a > 0)

we have

Hess+(fa)={(x, y) ∈ R2|3(x2 + y2)2+2a2(x2−y2) > a4}=g−1

a/
√

3

(
a4/3,+∞

)
, (3.1)

where gb : R2 −→ R is given by gb(x, y) = (x2 + y2)2 + 2b2(x2 − y2), (b > 0).

Figure 1. The boundary of Hess+(fa), the critical

level f−1
a (0) and a positive regular value of fa

Recall that the nondis-
crete level sets of fa
are the Cassini’s ovals
and its zero level curve,
which is critical, is the
Bernoulli’s lemniscate.

Example 3.2. In this
example we deal with a
polynomial function of
three variables whose
restriction to R2 is
f2. More precisely, the
Hess+ region of the
polynomial function
f : R3 −→ R, given by
f(x, y, z) = (x2 + y2 + z2)2 − 8(x2 − y2 − z2),

is Hess+(f) = {(x, y, z) ∈ R3|3(x2 + y2 + z2)2 + 8(x2 − y2 − z2) > 16}.
The characteristic polynomial CPH(f) of the Hessian matrix

H(f) =

 4(3x2 + y2 + z2 − 4) 8xy 8xz
8yx 4(x2 + 3y2 + z2 + 4) 8yz
8zx 8zy 4(x2 + y2 + 3z2 + 4)



Figure 2. The 0-critical level of f , a noncon-
vex regular level of f and the boundary of

Hess+(f)

is invariant under the action

R× R3−→R3, (t, x) 7→ t ∗ x, (3.2)

where t ∗ x := r(t) · xT and
x = (x1, x2, x3) ∈ R3 is
identified, on the right hand
side, with the row matrix
[x1 x2 x3] and r(t) stands
for the 3 × 3 matrix of the
rotation around the x-axis
of angle t.

r(t) =

 1 0 0
0 cos t − sin t
0 sin t cos t
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Thus, the action (3.2) is

t ∗ (x1, x2, x3) :=

 x1

x2 cos t− x3 sin t
x2 sin t+ x3 cos t

 .
Indeed, the characteristic polynomial CPH(f) of the Hessian matrix of the polynomial

function TrH(x,y,z)(f) = 4(5(x2 + y2 + z2) + 4)

A11 +A22 +A33 = 16(7(x2 + y2 + z2)2 + 8(x2 + y2 + z2) + 16x2 − 16)

1

43
detH(f) =2x2(x2 + y2 + z2 + 4)2 + (x2 + y2 + z2 − 4)[(x2 + y2 + z2)2

+ 2(y2 + z2 + 4)(x2 + y2 + z2) + 8(y2 + z2) + 16]

are all invariant with respect to the action (3.2). Since t ∗
Ä
x,
√
y2 + z2, 0

ä
= (x, y, z)

for every t ∈ R such that cos t = y
/√

y2 + z2, sin t = z
/√

y2 + z2 we get by perform-
ing elemetary computations

CPH(x,y,z)(f)(λ) = CPH
(x,
√

y2+z2,0)
(f)(λ)

= (4(x2 + y2 + 3z2 + 4)− λ)CP
H

(x,
√

y2+z2)

Ä
f
∣∣
R2

ä
= (4(x2 + y2 + z2 + 4)− λ)CPH

(x,
√

y2+z2)
(f2),

where f2 : R2 −→ R, f2(u, v) = (u2 +v2)2−8(u2−v2). Consequently the Hessian ma-
trix Hf (x, y, z) is positive definite if and only if both eigenvalues of H(

x,
√

y2+z2
) (f2),

i.e. the roots of the characteristic polynomial,

CP
H

(x,
√

y2+z2)

Ä
f
∣∣
R2

ä = CPH
(x,
√

y2+z2)
(f2)

are positive. Equivalently, the Hessian matrix Hf2

Ä
x,
√
y2 + z2

ä
must be positive

definite, as one eigenvalue λ = 4(x2 + y2 + z2 + 4) of H(x,y,z)(f) is positive. In other
words

(x, y, z) ∈ Hess+(f)⇐⇒
Ä
x,
√
y2 + z2

ä
∈ Hf2

Ä
x,
√
y2 + z2

ä
(3.1)⇐⇒

Ä
x,
√
y2 + z2

ä
∈ {(u, v) ∈ R2|3(u2 + v2)2 + 8(u2 − v2) > 16}

⇐⇒ 3(x2 + y2 + z2)2 + 8(x2 − y2 − z2) > 16.

Definition 3.3. ([10, p. 174], [3, p. 322]) A compact connected surface S ⊂ R3 is said
to be an ovaloid if its Gauss curvature is everywhere positive.

According with the Hadamard-Stoker Theorem [10, Theorem 6.1, p. 175], the interior
of every ovaloid along with the closure of its interior are convex sets.

Theorem 3.4. Let f : R3 −→ R be a C2-smooth norm-coercive function. If C(f)
and R3 \Hess+(f) are bounded, then the level surface f−1(c) is a compact connected
regular ovaloid for c sufficiently large.
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The compactness, connectedness and the regularity of the hypersurfaces f−1(c), for
c sufficiently large, follow via Theorem 2.1. In order to prove the ovaloidal shape of
the level surfaces f−1(c) for c sufficiently large, we need the following

Lemma 3.5. The Gauss curvature function associated to the C2-smooth function f :
Rn −→ R is positive over the Hess+(f) region.

Proof. Indeed, according to [5], the Gauss curvature function associated to f is

KG = −

∣∣∣∣ H(f) (∇f)T

∇f 0

∣∣∣∣
‖∇f‖4

=
∇f ·H∗(f) · (∇f)T

‖∇f‖4
= detH(f)

∇f ·H−1(f) · (∇f)T

‖∇f‖4
,

where H∗(f) is the adjugate matrix of the Hessian matrix H(f) of f . Its value at
x ∈ R(f) = Rn \C(f) is the Gauss curvature of the level surface f−1(f(x)) at x. We
next recall that x ∈ Hess+(f) if and only if the eigenvalues of Hx(f) are all positive,
which implies that detHx(f) > 0 for x ∈ Hess+(f). On the other hand the eigenvalues
of H−1

x (f) are the inverse values of the eigenvalues of Hx(f) and are therefore positive
as well. Consequently the inverse matrix H−1

x (f) is also positive definite which implies
that ∇xf ·H−1

x (f) · (∇xf)T > 0 and KG(x) > 0 therefore. �

Corollary 3.6. Let f : R3 −→ R be a C2-smooth norm-coercive function. If C(f) and
R3 \ Hess+(f) are bounded, then the level surface f−1(c) is diffeomorphic with the
sphere S2 and bounds an open convex set for c sufficiently large.

Proof. It follows immediately by combining Theorem 3.4 with the Hadamard-Stoker
Theorem [10, Theorem 6.5, p. 178]. �

Proof of Theorem 3.4. The boundedness of R3\Hess+(f) combined with its closedness
imply its compactness. For c > hmax(f) := max

{
f(x) x ∈ R3 \Hess+(f)

}
, the level

surface f−1(c) is completely contained in Hess+(f) and for c > µmax(f) the level
surface f−1(c) is regular. Therefore the level surface f−1(c) is additionally an ovaloid
for c > max{hmax(f), µmax(f)}, besides its compactness, connectedness and regularity
ensured by Theorem 2.1. Indeed, for such a value of c, the compact connected regular
level surface f−1(c) is completely contained in Hess+(f), where the Gauss curvature
function associated to f is, according to Lemma 3.5, positive. �

Corollary 3.7. Every two level surfaces of a function f : R3 −→ R subject to the
hypothesis of Theorem 3.4, above the level µmax(f), are connected regular hyper-
surfaces diffeomorphic to the unit sphere S2 which bounds a convex open set for
c > max{hmax(f), µmax(f)}.

Proof. The statement follows by combining Corollary 3.6 with the Non-Critical Neck
Principle (see e.g. [11, p. 194]) and the proof of Theorem 3.4. �

Corollary 3.8. The sublevel set f−1 (−∞, hmax(f)] of a function f : R3 −→ R subject
to the hypothesis of Theorem 3.4 is convex, whenever hmax(f) ≥ µmax(f).

The two dimensional couterpart of Corollary 3.8 is [2, Corollary 3.8] whose proof
works along the same lines.
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Example 3.9. The first convex connected level curve of the function

fa : R2 −→ R, fa(x, y) = (x2 + y2)2 − 2a2(x2 − y2) (a > 0),

is f−1
a (3a4). It is the first positive regular level of fa which is completely contained in

cl Hess+(fa) = {(x, y) ∈ R2|3(x2 + y2)2 + 2a2(x2 − y2) ≥ a4} = g−1

a/
√

3

[
a4/3,+∞

)
,

and is illustrated in Figure 3 (see [12]).

The higher level curves of fa are also contained in cl Hess+(fa) and they keep be-
ing convex. The convex level curves of fa were selected through the nonvanishing
requirement of the determinant

δa : =

∣∣∣∣ H(f) (∇f)T

∇f 0

∣∣∣∣ =

∣∣∣∣∣∣
(fa)xx (fa)xy (fa)x
(fa)yx (fa)yy (fa)y
(fa)x (fa)y 0

∣∣∣∣∣∣ = −43 a
4 + c

2

{
3(x2 + y2)2 − c

}

Figure 3. The boundary of Hess+(fa), the last
negative regular level and the first positive convex
regular level of fa contained in cl Hess+(fa), Posi-
tive nonconvex regular level and disconnected nega-
tive regular level of fa with convex components which
are not contained in cl Hess+(fa)

as part of the curvature
formula

ρC = −

∣∣∣∣ H(f) (∇f)T

∇f 0

∣∣∣∣
‖∇f‖3

over the level curve
C = f−1

a (c) of f . We
can similarly select the
level surfaces of a func-
tion f : R3 −→ R
through the positive-
ness requirement on
the determinant

∆ =

∣∣∣∣ H(f) (∇f)T

∇f 0

∣∣∣∣
as part of the Gauss
curvature formula

KG = −

∣∣∣∣ H(f) (∇f)T

∇f 0

∣∣∣∣
‖∇f‖3

= −

∣∣∣∣∣∣∣∣
fxx fxy fxz fx
fyx fyy fyz fy
fzx fzy fzz fz
fx fy fz 0

∣∣∣∣∣∣∣∣
‖∇f‖3

of the level surface S = f−1(s). The theoretical basis for the convexity of the ovaloids
is the Hadamard-Stoker [10, Theorem 6.5, p. 178].

Example 3.10. The first convex level of the function

f : R3 −→ R, f(x, y, z) = (x2 + y2 + z2)2 − 8(x2 − y2 − z2),

is f−1(3 · 16). It is also the first positive regular level of f completely contained in

cl Hess+(f) = {(x, y, z) ∈ R3 | 3(x2 + y2 + z2)2 + 8(x2 − y2 − z2) ≥ 16}.
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Indeed ∆ is invariant with respect to the one parameter group of rotations (3.2) as

1

162
∆ = [(x2 + y2 + z2)2 − 16]{−x2(x2 + y2 + z2 − 4)[x2 + 3(y2 + z2)]

− (y2 + z2)[(y2 + z2 + 4)2 − x4]}.

The detailed computations of ∆ were done in [1]. Therefore, the obvious equality

∆(x, y, z) = ∆(x,
√
y2 + z2, 0)

can now be exploited to obtain

1

162
∆ = (x2 + 3y2 + 3z2 + 4)δ2

Ä
x,
√
y2 + z2

ä
Therefore, the Gauss curvature

KG(x, y, z) =
−∆(

f2
x + f2

y + f2
z

)3/2
=

162(x2 + 3y2 + 3z2 + 4)
î
−δ2

Ä
x,
√
y2 + z2

äó
(
f2
x + f2

y + f2
z

)3/2

Figure 4. The 0-critical level of
f , a nonconvex regular level of f , The
boundary of Hess+(f) and the first
convex regular level of f

is positive over f−1(s) if and only if
over f−1

2 (s) = f−1(s) ∩ (z = 0)

δ(x,±y) = δ2
Ä
x,
√
y2 + z2

ä
< 0.

But, according to [12], the determi-
nant δ2 is negative over f−1

2 (s) if and
only if one has s2 − 3 · 16s > 0, i.e.

s ∈ (−∞, 0] ∪ [3 · 16,+∞).

4. One parameter families
of one-to-one smooth maps

In this section we shall exploit
the Theorem 3.4 to produce some
one parameter families of one-to-one smooth maps of Loewner chain flavor. In this
respect we first consider a smooth norm-coercive function f : R3 −→ R with bounded
critical set and bounded Hess+(f) complement region. Then the level surface f−1(c)
is a compact connected regular ovaloid for every c > max{hmax(f), µmax(f)}, one of
which is fixed.

4.1. The Gauss map outcome smooth homeomorphism of an ovaloidal level set

Therefore, the inside of f−1(c), i.e. ÷̊Mc(f) = f−1(−∞, c) = f−1[min f, c), is
convex open set and its closure Mc(f) = f−1(−∞, c] = f−1[min f, c] is a compact
convex set. Moreover, the restriction and co-restriction of the normalized gradient

Gc : f−1(c) −→ S2, Gc(x) =
∇xf

‖∇xf‖
,
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which is the Gauss map of the surface f−1(c) is, according with the Hadamard-Stoker
theorem, a diffeomorphism (see [10, 178]). Therefore, the map

F c
x0

: D3 −→Mc(f), F c
x0

(x) =

 x0 + exp
‖x‖4 − 1

‖x‖2

ñ
−x0 +G−1

c

Ç
x

‖x‖

åô
if x 6= 0

x0 if x = 0.

is a smooth homeomorphism for every x0 ∈÷̊Mc(f). In order to justify this statement,
we first observe that the map

ϕ : D3 −→ [0, 1], ϕ(x) =

 exp
‖x‖4 − 1

‖x‖2
if x 6= 0

0 if x = 0.

is well-defined, smooth and for each of its level sphere

ϕ−1(l) = S

Ñ
0,

 
(ln l)2 +

√
(ln l)2 + 4

2

é
, 0 ≤ l ≤ 1

the restriction and co-restriction

ϕ−1(l) −→ x0 + l(−x0 + f−1(c)), x 7−→ x0 + l ·
Ç
−x0 +G−1

c

Ç
x

‖x‖

åå
is obviously a diffeomorphism, as G−1

c realizes a diffeomorphism between S2 and
f−1(c). In other words the restriction and co-restriction of F c

x0
to each of the leaves

of the foliation

{ϕ−1(l)}0<l≤1 of D3 \ {0} (4.1)

to the corresponding leave of the foliation {x0+l(−x0+f−1(c))}0<l≤1 of Mc(f)\{x0}
is a diffeomorphism. On the other hand the restriction and co-restriction of F c

x0
to

each of the leaves of the orthogonal foliation

{]0x]}x∈S2 (4.2)

is also a diffeomorphism onto the corresponding leave of the foliation®ô
x0, G

−1
c

Ç
x

‖x‖

åô´
x∈f−1(c))

,

of Mc(f) \ {x0}, which is transversal to the foliation {x0 + l(−x0 + f−1(c))}0<l≤1, as
for every x ∈ S2 and t ∈]0, 1] we have

d

dt
ϕ(tx) =

d

dt

Ç
t2‖x‖2 −

1

t2‖x‖2

å
exp

t4‖x‖4 − 1

t2‖x‖2
=

Ç
2t+ 2

2

t3

å
exp

t4‖x‖4 − 1

t2‖x‖2
> 0.

Therefore F c
x0

is bijective and its Fréchet differential (dF c
x0

)x is an isomorphism

at every point x ∈ D3 \ {x0} as its restrictions to the orthogonal complement
subpaces of Tx(D3), one of which is the tangent space to the leave through x of
the foliation (4.1) and its orthogonal complement, i.e. the tangent space to the
leave through x of the foliation (4.2), are one-to-one. Consequently F c

x0
is a global
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smooth homeomorphism on D3 onto Mc(f) and its restriction and co-restriction
D3 \ {0} −→Mc(f) \ {x0}, x 7−→ F c

x0
(x) is a diffeomorphism, but (dF c

x0
)0 = 0.

4.2. Vector fields with bounded norm on Mc(f) and their global flows

In this subsection we will point out quite a large family of diffeomorphisms from

D3 to Mc(f) which is parametrized by R×GL3(R)×÷̊Mc(f) whenever f : R3 −→ R is
a C2-smooth function whose critical set C(f) and Hess+(f) complement are bounded.
For such a function we rely on Theorem 3.4 to conclude that the level surface f−1(c)
is a compact connected regular ovaloid for c sufficiently large.

For every nonsingular linear operator A : R3 −→ R3, i.e. its matrix repre-

sentation [A] is nonsingular, and every point x0 ∈ ÷̊Mc(f) we consider the vec-
tor field X ∈ X(R3) defiend by Xx = A(x − x0) as well as the smooth function
h := b ◦ (F c

x0
)−1 : Mc(f) −→ R, where x0 ∈ Mc(f) and b : D3 −→ R is a bump

function such that b
∣∣
D3

1−ε

≡ 1, b
∣∣
R3\D3

1−ε/2

≡ 0 for some ε > 0 sufficiently small and

D3
r stands for the disc centered at 0 ∈ R3 of radius r > 0. Now the vector field

hX has obviously bounded norm, which make it completely integrable [11, Corol-
lary 9.1.5, p. 183], i.e. there exists a global one-parameter group of diffeomorphisms
Ψc,x0 : R×Mc(f) −→Mc(f) such that

d

dt
Ψc,x0

t (x) = XΨ
c,x0
t (x), ∀x ∈Mc(f),

where Ψc,x0

t : Mc(f) −→Mc(f), Ψc,x0

t (x) = Ψc,x0(t, x) is a diffeomorphism for every
t ∈ R, which implies that (dΨc,x0

t )x : R3 −→ R3 is an isomorphism for every x ∈
Mc(f). Indeed, the following properties

1. Ψc,x0

0 = idMc(f);
2. Ψc,x0

s ◦Ψc,x0

t = Ψc,x0

s+t for all s, t ∈ R
hold. In fact Ψc,x0

t (x) = x0 + AetA(x − x0) for every x ∈ (F c
x0

)−1(D1−ε), as can be

easily seen, and dxΨc,x0

t (·) = AetA for every such x. On the other hand, Ψc,x0

t (x) = x,
for all x ∈ f−1(c− ε/3, c) and all t ∈ R as (hX)x = 0 for all x ∈ f−1(c− ε/3, c).

4.3. A gradient homothetic vector field whose flow permutes the sublevel sets

In this subsection we additionally assume that f : R3 −→ R satisfies the
Palais-Smale condition, i.e. every sequence (xn) such that (df)xn −→ 0 as n −→ ∞
has a convergent subsequence. For example every norm-coercive function such that
‖∇xf‖ −→ ∞ as x −→ ∞ has this property. Since (∇f)f = ‖∇f‖2 , on the set
R3 \ C(f) of regular points, where ∇f 6= 0, the smooth vector field

Y = ±
∇f
‖∇f‖2

satisfies Y f = ±1. More generally if F : R −→ R is any smooth bounded function
vanishing in a neighborhood of B(f) = f(C(f)), then, following [11, Section 9.3], we
consider the smooth vector field X = (F ◦f)Y on R3 that vanishes in a neighborhood
of C(f), and X(f) = ±(F ◦ f). We denote by Φt the flow on R3 generated by X. Let
us choose F : R −→ R to be a smooth, non-negative function that is identically one on
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a neighborhood of [c, d] and zero outside (c− ε/2, d+ ε/2), where d might be infinity.
In the later case the intervals [c, d] and (c − ε/2, d + ε/2) are understood as [c,+∞)
and (c− ε/2,+∞) respectively. Since ‖Y ‖ = 1/‖∇f‖ and ‖X‖ = ‖∇f‖ · |F ◦ f | along
with the boundedness of F and the vanishing of |F ◦f | outside f−1([c−ε/2, d+ε/2]),
one can show, following the same lines with those in the proof of [11, Proposition
9.3.1] that the vector field X has on R3 bounded length and hence its associated flow
Φt generates a one-parameter group of diffeomorphisms of R3. We denote by γ(t, c′)
the solution of the ordinary differential equation

dγ

dt
= ±F (γ) (4.3)

with initial value c′. Since

d

dt
(f ◦ Φt(x)) = XΦt(x)f = ±(F ◦ f)(Φt(x)), (4.4)

it follows that f(Φt(x)) = γ(t, f(x)), and hence that Φt(f
−1(c′)) = f−1(γ(t, c′)). On

the other hand γ(t, c′) is bounded and its range is contained in the interval [min{0, c−
ε/2},max{0, d+ε/2}], as F vanishes on R\(c−ε/2, d+ε/2), and the flow Φt permutes
the level sets of f on the other hand. From the definition of γ(t, c′) it follows that
γ(t, c′) = c′ ± t for c′ ∈ [c, d] and c′ ± t ∈ [c, d], while γ(t, c′) = c′ if c′ > d + ε or
c′ < c − ε. Therefore, the range of γ(t, c′) is an interval with the endpoints ic, sc,
where ic = inf γ(·, c) and sc = sup γ(·, c) for every c′ ∈ (c − ε/2, d + ε/2) and this
range is the singleton {c′} for every c′ ∈ Im(f) \ (c− ε/2, d+ ε/2), as γ(t, c′) = c′ + t
for c′ ∈ [c, d] and c ≤ c′ + t ≤ d, while γ(t, c′) = c′ if c′ ≥ d+ ε/2 or c′ ≤ c− ε/2.

4.4. One-parameter families of smooth homeomorphisms associated to the flow Φt

This subsection is devoted to the one-parameter family of smooth homeomor-
phisms

Gc,x0
s : D3 −→ R3, Gc,x0

s = Φs ◦ g,

where c > max{hmax(f), µmax(f)}, x0 ∈ ÷̊Mc(f), µmax(f) := max f
∣∣
C(f)

and g :

D3 −→ R3 is a smooth homeomorphism such that Mc(f) = g(D3). Examples of such
smooth homeomorphisms are F c

x0
or Ψc,x0

t for some real parameter t. Note that for
the later option Gc,x0

s is a diffeomorphism. We also consider d > c and ε > 0 such
that [c− ε, c+ ε] remains an interval of regular values of f

Theorem 4.1. The one-parameter family {Gc,x0
s }0≤s<+∞ has the following properties:

1. each function Gc,x0
s is a smooth homeomorphism (diffeomorphism for g = Ψc,x0

t )
2. Gc,x0

s (D3) ⊆ Gc,x0

t (D3), ∀0 ≤ s < t < d ≤ +∞ for the ′′+′′ option in (4.3).
3. Gc,x0

s (D3) ⊇ Gc,x0

t (D3), ∀0 ≤ s < t < d ≤ +∞ for the ′′−′′ option in (4.3).

4. |Gc,x0
s (x)−Gc,x0

t (x)| ≤
∫ t

s

‖∇Φr(g(x))f‖dr.

5.
⋃
t≥0

Gc,x0

t (D3) = R3 for the ′′+′′ option in (4.3) and d = +∞.

6. ◊̊�Msc(f) ⊆
⋃
t≥0

Gc,x0

t (D3) ⊆Msc(f) for the ′′+′′ option in (4.3) and d < +∞.
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7. ◊̊�Mic(f) ⊆
⋂
t≥0

Gc,x0

t (D3) ⊆Mic(f), for the ′′−′′ option in (4.3) and d < +∞.

Proof. (1) Obvious
(2) By using (4.4) for the ′′+′′ option in (4.3) and taking into account that F ≡ 1 > 0
on [c,+∞) we deduce that the real-valued function of one real variable f ◦ Φt is
nondecreasing and for t ≥ 0 we obtain that (f ◦ Φ−t)(x) ≤ (f ◦ Φ0)(x) = f(x). This
shows that Mc(f) is invariant under the action of Φ−t, as f(x) ≤ c =⇒ f (Φ−t(x)) ≤
c. But Φ−t(Mc(f)) ⊆ Mc(f) is equivalent with Mc(f) ⊆ Φt(Mc(f)). Now, for the
required inclusion we have

Gc,x0
s (D3) ⊆ Gc,x0

t (D3)⇐⇒ Φs(g(D3)) ⊆ Φt(g(D3))

⇐⇒ g(D3) ⊆ Φt−s(g(D3))⇐⇒Mc(f) ⊆ Φt−s(Mc(f)),

which holds true as t− s ≥ 0.
(3) Similar with (2).

(4) Since
d

dt
Φt(x) = XΦt(x) ⇐⇒ Φt(x) = x+

∫ t

0

XΦr(x)dr we have successively:

|Gc,x0
s (x)−Gc,x0

t (x)| =
∣∣∣∣∣
∫ s

0

XΦr(x)dr−
∫ t

0

XΦr(x)dr

∣∣∣∣∣=
∣∣∣∣∣
∫ t

s

XΦr(x)dr

∣∣∣∣∣≤
∫ t

s

‖XΦr(x)dr‖

=

∫ t

s

|(F ◦ f)(Φr(x))| · ‖∇Φr(x)f‖dr ≤
∫ t

s

‖∇Φr(x)f‖dr.

(5) Indeed, we have successively:⋃
t≥0

Gc,x0

t (D3) =
⋃
t≥0

Φt

Å÷̊Mc(f) ∪ f−1(c)

ã
=
⋃
t≥0

Φt

Å÷̊Mc(f)

ã
∪
⋃
t≥0

Φt(f
−1(c))

=
⋃
t≥0

Φt

Å÷̊Mc(f)

ã
∪
⋃
t≥0

Φt(f
−1(γ(t, c))

=
⋃
t≥0

Φt

Å÷̊Mc(f)

ã
∪
⋃
t≥0

f−1(c+ t) =
⋃
t≥0

⁄̊�Φt (Mc(f)) ∪
⋃
t≥0

f−1(c+ t)

But Mc(f) ⊆ Φt(Mc(f)) implies ÷̊Mc(f) ⊆ ⁄̊�Φt(Mc(f)) = Φt

Å÷̊Mc(f)

ã
. Therefore⁄̊�Φt (Mc(f)) = ÷̊Mc(f) ∪

Å⁄̊�Φt (Mc(f)) \÷̊Mc(f)

ã
, namely

⋃
t≥0

÷̊Mc(f) ∪ f−1(c+ t) = ÷̊Mc(f) ∪
⋃
t≥0

f−1(c+ t) = Mc(f) ∪
⋃
t>0

f−1(c+ t)

=
⋃

min(f)≤r≤c

f−1(r) ∪
⋃
t>0

f−1(c+ t)

=
⋃
t≥0

Å⁄̊�Φt (Mc(f)) \÷̊Mc(f)

ã
∪ R3 = R3.
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Thus ⋃
t≥0

Gc,x0

t (D3) =
⋃
t≥0

⁄̊�Φt (Mc(f)) ∪
⋃
t≥0

f−1(c+ t)

=
⋃
t≥0

Å⁄̊�Φt (Mc(f)) \÷̊Mc(f)

ã
∪
⋃
t≥0

÷̊Mc(f) ∪ f−1(c+ t)

=
⋃
t≥0

Å⁄̊�Φt (Mc(f)) \÷̊Mc(f)

ã
∪ R3 = R3.

(6) Since
d

dt
(f ◦ Φt(x)) = (F ◦ f)(Φt(x)) ≥ 0, it follows that γ(t, f(x)) = f(Φt(x)) is

nondecreasing. Thus⋃
t≥0

Gc,x0

t (D3) =
⋃
t≥0

Φt (Mc(f)) =
⋃
t≥0

Φt

Å÷̊Mc(f) ∪ f−1(c)

ã
=
⋃
t≥0

Φt

Å÷̊Mc(f)

ã
∪
⋃
t≥0

Φt(f
−1(c)) =

⋃
t≥0

Φt

Å÷̊Mc(f)

ã
∪
⋃
t≥0

f−1(γ(t, c))

Since [c, sc) ⊆ {γ(t, c) | t ≥ 0} ⊆ [c, sc] it follows that⋃
c≤u<sc

f−1(u) ⊆
⋃
t≥0

f−1(γ(t, c)) ⊆
⋃

c≤v≤sc

f−1(v) (4.5)

The left hand side inclusion of (4.5) implies that⋃
t≥0

Φt

Å÷̊Mc(f)

ã
∪
⋃

c≤u<sc

f−1(u) ⊆
⋃
t≥0

Φt

Å÷̊Mc(f)

ã
∪
⋃
t≥0

f−1(γ(t, c)) =
⋃
t≥0

Gc,x0

t (D3)

i.e.
⋃
t≥0

Å⁄̊�Φt (Mc(f)) \÷̊Mc(f)

ã
∪÷̊Mc(f) ∪

⋃
c≤u<sc

f−1(u) ⊆
⋃
t≥0

Gc,x0

t (D3)

⇐⇒
⋃
t≥0

Å⁄̊�Φt (Mc(f)) \÷̊Mc(f)

ã
∪◊̊�Msc(f)⊆

⋃
t≥0

Gc,x0

t (D3)=⇒◊̊�Msc(f) ⊆
⋃
t≥0

Gc,x0

t (D3).

The right hand side inclusion of (4.5) implies that⋃
t≥0

Gc,x0

t (D3)=
⋃
t≥0

Φt

Å÷̊Mc(f)

ã
∪
⋃
t≥0

f−1(γ(t, c))⊆
⋃
t≥0

Φt

Å÷̊Mc(f)

ã
∪
⋃

c≤v≤sc

f−1(v)

i.e.
⋃
t≥0

Gc,x0

t (D3) ⊆
⋃
t≥0

Φt

Å÷̊Mc(f)

ã
∪

⋃
c≤v≤sc

f−1(v)

⇐⇒
⋃
t≥0

Gc,x0

t (D3) ⊆
⋃
t≥0

Å⁄̊�Φt (Mc(f)) \÷̊Mc(f)

ã
∪÷̊Mc(f) ∪

⋃
c≤v≤sc

f−1(v)

⇐⇒
⋃
t≥0

Gc,x0

t (D3) ⊆
⋃
t≥0

Å⁄̊�Φt (Mc(f)) \÷̊Mc(f)

ã
∪Msc(f)⇔

⋃
t≥0

Gc,x0

t (D3) ⊆Msc(f),

as γ(t, c) = f (Φt (x)) ≤ sc, for all x ∈Mc(f).
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(7) Similar with (5). �
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