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Complex operators generated by q-Bernstein
polynomials, q ≥ 1
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Abstract. By using a univalent and analytic function τ in a suitable open disk
centered in origin, we attach to analytic functions f , the complex Bernstein-
type operators of the form Bτn,q(f) = Bn,q

(
f ◦ τ−1

)
◦ τ , where Bn,q denote the

classical complex q-Bernstein polynomials, q ≥ 1. The new complex operators
satisfy the same quantitative estimates as Bn,q. As applications, for two concrete
choices of τ , we construct complex rational functions and complex trigonometric
polynomials which approximate f with a geometric rate.
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1. Introduction

Starting from the classical Bernstein polynomials defined for f ∈ C [0, 1] by

Bn(f)(x) =

n∑
k=0

(
n

k

)
xk (1− x)

n−k
f

(
k

n

)
,

a new sequence of Bernstein-type operators of real variable is introduced in [1] by the
formula

Bτnf := Bn
(
f ◦ τ−1

)
◦ τ,

where τ is a real-valued function on [0, 1] which satisfies the following conditions:

(τ1) τ is differentiable of any order on [0, 1],
(τ2) τ (0) = 0, τ (1) = 1 and τ ′ (x) > 0 on [0, 1].

Specifically, Bτn (f) in [1] is given by

Bτn (f) (x) =
n∑
k=0

(
n

k

)
τk (x) (1− τ (x))

n−k
(f ◦ τ−1)( kn ), x ∈ [0, 1].

According to [1], the sequence Bτn (f), n ∈ N, converges uniformly to f ∈ C [0, 1].
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In [6]-[7] and [2], the complex form of the q-Bernstein polynomials, q ≥ 1, given by

Bn,q (f) (z) =

n∑
k=0

(
n

k

)
q

zk ·Πn−k−1
s=0 (1− qsz)f

(
[k]q
[n]q

)
, n ∈ N,

were intensively studied. Here f is a complex-valued analytic function in an open disk
of radius ≥ 1 and centered in origin. Also, above we have

[n]q = (qn − 1)/(q − 1),(
n

k

)
q

=
[n]q!

[k]q! · [n− k]q!
,

[n]q! = [1]q · [2]q · ... · [n]q, [0]q! = 1.

Note that for q = 1, Bn,q(f) reduce to the classical Bernstein polynomials.
Inspired by the real case in [1], in this paper we consider the idea in the complex

setting and introduce the complex operators defined by

Bτn,q(f)(z) = Bn,q(f ◦ τ−1)(τ(z)), n ∈ N, z ∈ C, q ≥ 1,

where denoting DR = {z ∈ C; |z| < R}, now τ satisfies the following properties:

τ : DR → C, R > 1, is analytic, univalent, τ(0) = 0, τ(1) = 1,

and there exists R′ > 1 such that DR′ ⊂ τ(DR). (1.1)

By using the approach in [2], for the complex operators Bτn,q we prove upper and
lower estimates and a quantitative Voronovskaja-type result in some compact subsets
generated by τ .

Also, two important examples for τ are considered, which generate sequences
of complex rational operators and of trigonometric polynomials of complex variable,
approximating for q > 1 the function f with the geometric rate 1

qn in some compact

disks centered in origin.

2. Approximation results

In this section, we present the main approximation properties of the operators
Bτn,q. Firstly, we consider the case when q = 1. We have:

Theorem 2.1. Let τ be satisfying the conditions in (1.1) and f : DR → C be analytic
in DR, R > 1. Since g : DR′ → C defined by g(w) = (f ◦ τ−1)(w) is analytic on the
disk DR′ , R′ > 1, let us write g(w) =

∑∞
k=0 ckw

k, for all w ∈ DR′ .
Let 1 ≤ r′ < R′ be arbitrary fixed. Then, for all z ∈ DR with |τ(z)| ≤ r′ and for

all n ∈ N, we have:
(i) (Upper estimate) ∣∣Bτn,1 (f) (z)− f (z)

∣∣ ≤ Cτr′

n
, (2.1)

where Cτr′ = 3r′(r′+1)
2

∞∑
k=2

|ck| k (k − 1) (r′)k−2 <∞.
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(ii) (Voronovskaja-type result)∣∣∣∣Bτn,1 (f) (z)− f (z)− τ (z) (1− τ (z))

2n
D2
τ (f) (z)

∣∣∣∣ ≤ 5(1 + r′)2Mτ
r′

2n2
(2.2)

where D2
τf(z) :=

(
f ◦ τ−1

)′′
(τ(z)) = g′′(τ(z)) is detailed by

D2
τ (f) (z) =

f ′′ (z)

(τ ′ (z))
2 −

τ ′′ (z) f ′ (z)

(τ ′ (z))
3 =

1

τ ′ (z)

(
f ′ (z)

τ ′ (z)

)′
and

Mτ
r′ =

∞∑
k=3

|ck| k (k − 1) (k − 2)
2 · (r′)k−2 <∞.

(iii) If f is not a polynomial in τ of degree ≤ 1, then∥∥Bτn,1 (f)− f
∥∥
r′,τ
∼ 1

n
,

where ‖F‖r′,τ = sup{|F (z)|; |z| < R, |τ(z)| ≤ r′} and the constants in the equivalence
depend only on f , τ and r′.

Proof. Let g(w) =
∑∞
k=0 ckw

k be an analytic function in a disk DR′ with R′ > 1. Also,
for simplicity, denote the classical Bernstein polynomials Bn,1(g)(w) by Bn(g)(w).

(i) According to Theorem 1.1.2, (i), page 6 in [2], for all 1 ≤ r′ < R′, n ∈ N and
|w| ≤ r′, we have

|Bn(g)(w)− g(w)| ≤ Cr′

n
,

where Cr′ = 3r′(1+r′)
2

∑∞
k=2 k(k − 1)|ck|(r′)k−2.

Now, if above we replace g by f ◦ τ−1 and w by τ(z), then we easily arrive at
the required estimate (2.1).

(ii) According to Theorem 1.1.3, (ii), page 9 in [2], for all 1 ≤ r′ < R′, n ∈ N
and |w| ≤ r′, we have∣∣∣∣Bn (g) (w)− g (w)− w(1− w)

2n
g′′(w)

∣∣∣∣ ≤ 5(1 + r′)2Mr′

2n2
,

whereMr′ =
∞∑
k=3

|ck| k (k − 1) (k − 2)
2·(r′)k−2. Take g(w) = (f◦τ−1)(w) = f [τ−1(w)].

Since

g′(w) = f ′[τ−1(w)] · (τ−1(w))′ = f ′[τ−1(w)] · 1

τ ′(τ−1(w))
,

differentiating once again, we easily get

g′′(w) =
f ′′(τ−1(w))

[τ ′(τ−1(w))]2
− f ′(τ−1(w)) · τ ′′(τ−1(w))

[τ ′(τ−1(w))]3
.

Now, replacing in the above estimate g by f ◦ τ−1 and w by τ(z), we immediately get
(2.2).

(iii) According to Corollary 1.1.5, page 14 in [2], it follows that for all 1 ≤ r′ < R′

we have

‖Bn(g)− g‖r′ = sup{|Bn(g)(w)− g(w)|; |w| ≤ r′} ∼ 1

n
.
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But

‖Bn(g)− g‖r′ ≥ sup{|Bn(g)(τ(z))− g(τ(z))|; |z| < R, |τ(z)| ≤ r′}
= ‖Bτn,1(f)− f‖r′,τ ,

which does not imply the required equivalence in the statement.
For this reason, we have to use here the standard method in [2] and the estimates

(2.1) and (2.2). Thus, for all z ∈ DR with |τ(z)| ≤ r′ and n ∈ N we can write

Bτn,1(f)(z)− f(z) =
1

n

{
τ(z)(1− τ(z))

2
D2
τ (f)(z)

+
1

n

[
n2
(
Bτn,1(f)(z)− f(z)− τ(z)(1− τ(z))

2n
D2
τ (f)(z)

)]}
.

Then, the obvious inequality ‖F +G‖r′,τ ≥ ‖F‖r′,τ − ‖G‖r′,τ implies

‖Bτn,1(f)− f‖r′,τ ≥
1

n

{∥∥∥∥τ(1− τ)

2
D2
τ (f)

∥∥∥∥
r′,τ

− 1

n

[
n2

(∥∥∥∥Bτn,1(f)− f − τ(1− τ)

2n
D2
τ (f)

∥∥∥∥
r′,τ

)]}
.

By the hypothesis on f we immediately get that g(τ(z)) is not a polynomial in τ(z)
of degree ≤ 1. Then, by the formula D2

τ (f)(z) = g′′(τ(z)) we easily get∥∥∥∥τ(1− τ)

2
D2
τ (f)

∥∥∥∥
r′,τ

> 0.

Indeed, supposing the contrary, it follows the obvious contradiction g′′(τ(z)) = 0, for
all z ∈ DR.

Since by (2.2) there exists a constant C > 0 with

n2

(∥∥∥∥Bτn,1(f)− f − τ(1− τ)

2n
D2
τ (f)

∥∥∥∥
r′,τ

)
≤ C,

it is clear that there exists n0 ∈ N such that

‖Bτn,1(f)− f‖r′,τ ≥ 1

2n

∥∥∥∥τ(1− τ)

2
D2
τ (f)

∥∥∥∥
r′,τ

, for all n ≥ n0.

Then, for 1 ≤ n ≤ n0 − 1 we obviously have

‖Bτn,1(f)− f‖r′,τ ≥
Mr′,n,τ (f)

n
,

with Mr′,n,τ (f) = n · ‖Bτn,1(f)− f‖r′,τ > 0, which finally leads to

‖Bτn,1(f)− f‖r′,τ ≥
Cr′,τ (f)

n
, for all n ∈ N,

where

Cr′,τ (f) = min

{
Mr′,1,τ ,Mr′,2,τ (f), ...,Mr′,n0−1,τ (f),

∥∥∥∥τ(1− τ)

4
D2
τ (f)

∥∥∥∥
r′,τ

}
.
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Combining now with the estimate (2.1) from the point (i), we get the required
equivalence. �

In the case q > 1 we have the following upper estimate of the geometric order 1
qn .

Theorem 2.2. Let f : DR → C be analytic in DR, R > q and τ satisfying the conditions
in (1.1). Denote

g(w) = (f ◦ τ−1)(w) =

∞∑
k=0

ckw
k, w ∈ DR′ .

For all q ∈ (1, R′), 1 ≤ r′ < R′

q , n ∈ N and z ∈ DR with |τ(z)| ≤ r′, we have∣∣Bτn,q (f) (z)− f (z)
∣∣ ≤ Mτ

r′,q

[n]q
≤
q ·Mτ

r′,q

qn
,

where Mτ
r′,q = 2

∞∑
k=2

|ck| (k − 1) [k − 1]q(r
′)k <∞.

Proof. According to Theorem 1.5.1, page 51 in [2] we have

|Bn,q(g)(w)− g(w)| ≤ Mr′,q

[n]q
≤
q ·Mτ

r′,q

qn
, for all 1 ≤ r′ < R′, n ∈ N, |w| ≤ r′,

where Mr′,n = 3r′(1+r′)
2

∑∞
k=2 k(k − 1)|ck|(r′)k−2.

Now, if above we replace g by f ◦ τ−1 and w by τ(z), then we easily arrive at
the required estimate. �

Remark 2.3. In a similar manner with Theorem 2.1, (ii), applying the results in, e.g.,
[10], for Bτn,q(f) we may deduce a quantitative Voronovskaja-type result of order 1

q2n .

3. Applications

In this section we apply the previous results to the cases of two concrete examples
for τ . As consequences, we construct sequences of complex rational functions and
complex trigonometric polynomials, convergent to f with a geometric rate. The first
result is the following.

Theorem 3.1. Let f : DR → C be analytic in DR with R > 1 +
√

2 and denote

τ(z) =
Rz

R+ 1− z
, |z| < R.

Then, with the notations in Theorems 2.1 and 2.2 we have:
(i) Bτn,1(f)(z) and Bτn,q(f)(z), q > 1, are complex rational functions on DR;

(ii) τ satisfies the conditions in (1.1) with R′ = R2

2R+1 > 1;

(iii) if 1 ≤ r′ < R′ then 1 ≤ r′(R+1)
R+r′ < R and for all |z| ≤ r = r′(R+1)

R+r′ , the upper

estimates (2.1), (2.2) in Theorem 2.1, (i)-(ii) and the equivalence ‖Bτn,1(f)−f‖r ∼ 1
n

hold.
(iv) If 1 < q < R′ and 1 ≤ r′ < R′

q , then the estimate in Theorem 2.2 holds for

all |z| ≤ r = r′(R+1)
R+r′ .
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Proof. (i) It is clear that both kinds of operators Bτn,1(f)(z) and Bτn,q(f), q > 1, are
complex rational functions on DR.

(ii) We are interested on the image of DR through the analytic and univalent

mapping τ . Writing w = Rz
R+1−z , we get z = (R+1)w

w+R , so that |z| < R is equivalent to∣∣∣∣ (R+ 1)w

w +R

∣∣∣∣ < R.

Denoting now w = u+ iv, the previous inequality is equivalent to

(R+ 1)
√
u2 + v2√

(u+R)2 + v2
< R,

which is equivalent to the inequality (R + 1)2(u2 + v2) < R2[(u + R)2 + v2]. Simple
calculations lead this last inequality to the following list of equivalent inequalities:

u2[(R+ 1)2 −R2] + v2[(R+ 1)2 −R2] < 2R3u+R4,

u2 − 2u
R3

2R+ 1
+ v2 <

R4

2R+ 1
,(

u− R3

2R+ 1

)2

+ v2 <

[
R2(R+ 1)

2R+ 1

]2
.

This last inequality represents a disk of center (R3/(2R+ 1), 0) and of radius

R2(R+ 1)/(2R+ 1).

Now, simple geometric reasonings lead to the fact that the above disk includes
the disk of center in origin and of radius∣∣∣∣ R3

2R+ 1
− R2(R+ 1)

2R+ 1

∣∣∣∣ =
R2

2R+ 1
,

where by the hypothesis R > 1+
√

2 we immediately get R2/(2R+1) > 1. Concluding,
since also we have τ(0) = 0 and τ(1) = 1, it follows that τ satisfies (1.1) with
R′ = R2/(2R+ 1).

(iii) Let 1 ≤ r′ < R′. Evidently that r′(R+1)
R+r′ ≥ 1 and since the function

F (x) =
(R+ 1)x

R+ x

is strictly increasing as function of x ≥ 0, it follows

r′(R+ 1)

R+ r′
<
R′(R+ 1)

R+R′
=
R3 +R2

3R2 +R
< R.

Then, since R|z|
R+1−|z| ≤ r′ is equivalent with the inequality |z| ≤ r = r′(R+1)

R+r′ , by the

obvious inequality |τ(z)| = R|z|
|R+1−z| ≤

R|z|
R+1−|z| , |z| < R, it follows that the inequality

|z| ≤ r′(R+1)
R+r′ implies |τ(z)| ≤ r′ and therefore Theorem 2.1, (i), (ii) holds for these z.

In order to prove the equivalence, we use exactly the same reasonings as in
the proof of Theorem 2.1, (iii), taking into account that (2.1) and (2.2) hold for all

|z| ≤ r = r′(R+1)
R+r′ .
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(iv) If 1 < q < R′ and 1 ≤ r′ < R′

q , then reasoning as in the previous case q = 1,

we immediately get the desired conclusion. �

Theorem 3.2. Let f : Dπ/2 → C be analytic in Dπ/2 and τ(z) = sin(z)
sin(1) , |z| < π

2 . Then,

with the notations in Theorems 2.1 and 2.2 we have:
(i) Bτn,1(f)(z) and Bτn,q(f)(z), q > 1, are trigonometric polynomials of complex

variable on Dπ/2;

(ii) τ satisfies the conditions in (1.1) with R = π
2 and R′ = 1

sin(1) > 1;

(iii) for any 1 ≤ r′ < 1
sin(1) and for all |z| ≤ r := πr′ sin(1)

2 cosh(π/2) <
π
2 , the upper

estimates (2.1), (2.2) in Theorem 2.1, (i)-(ii) and the equivalence ‖Bτn,1(f)−f‖r ∼ 1
n

hold.
(iv) If 1 < q < R′ and 1 ≤ r′ < R′

q , then the estimate in Theorem 2.2 holds for

all |z| ≤ r = πr′ sin(1)
2 cosh(π/2) .

Proof. (i) It is clear that both kinds of operators Bτn,1(f)(z) and Bτn,q(f), q > 1, are
trigonometric polynomials of complex variable on Dπ/2.

(ii) From the well-known facts that sin(z) is univalent in Dπ/2 and that its inverse
arcsin(z) exists in C \ ((−∞, 1)∪ (1,+∞)) (see, e.g., [3], p. 164 and [8], pp. 90-91), it
is immediate that τ(z) satisfies (1.1) with R = π/2 and R′ = 1

sin(1) > 1.

(iii) For any r′ ∈ [1, R′), we are interested to find a disk centered in origin and
contained in the set {z ∈ Dπ/2; |τ(z)| ≤ r′}.

Firstly, we observe that for all |z| < π/2 we have

|τ(z)| = |sin z|
sin(1)

=

∣∣∣∣eiz − e−iz2i sin(1)

∣∣∣∣ ≤ 1

sin(1)

e−y + ey

2
=

1

sin(1)
cosh y <

cosh π
2

sin(1)
.

Now, we will use the following version of the Schwarz’s lemma (see, e.g., [9], p. 218):
if f is analytic in DR, f(0) = 0 and |f(z)| < M for all |z| < R, then |f(z)| ≤ M

R |z|,
for all |z| < R.

Taking above R = π
2 and M =

cosh π
2

sin(1) , we immediately get that for all |z| < π
2

we have |τ (z)| ≤ 2
π

cosh π
2

sin(1) |z| .
Now, if we put the condition 2

π

cosh π
2

sin(1) |z| ≤ r′, then we easily obtain that for all

|z| ≤ r = πr′ sin(1)
2 cosh(π/2) it follows |τ(z)| ≤ r′ and therefore Theorem 2.1, (i) and (ii) hold

for these values of z.
Note here that for any 1 ≤ r′ < 1

sin(1) , we still have πr′ sin(1)
2 cosh(π/2) <

π
2 .

The equivalence is immediate from Theorem 2.1, (iii).

(iv) If 1 < q < R′ and 1 ≤ r′ < R′

q , then reasoning as in the previous case q = 1,

we easily get the desired conclusion. �

Remark 3.3. The hypothesis τ(0) = 0 and τ(1) = 1 in (1.1) imply that the new
defined τ -operators coincide with the function f at the points 0 and 1.

Remark 3.4. Evidently that the considerations in this paper can be applied to other
choices of the mapping τ and to other complex q-Benstein-type operators like, for
example, those studied in [4]-[5].
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