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Abstract. We study the Fekete–Szegö problem on the open unit ball of a complex
Banach space. Namely, the Fekete–Szegö inequalities are proved for the class
of spirallike mappings relative to an arbitrary strongly accretive operator, and
some of its subclasses. Next, we consider families of non-linear resolvents for
holomorphically accretive mappings vanishing at the origin. We solve the Fekete–
Szegö problem over these families.
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1. Introduction

Let X be a complex Banach space equipped with the norm ‖ · ‖ and let X∗ be
the dual space of X. We denote by B the open unit ball in X. For each x ∈ X \ {0},
denote

T (x) = {`x ∈ X∗ : ‖`x‖ = 1 and `x(x) = ‖x‖} . (1.1)

According to the Hahn–Banach theorem (see, for example, [25, Theorem 3.2]), T (x) is
nonempty and may consists of a singleton (for instance, in the case of Hilbert space),
or, otherwise, of infinitely many elements. Its elements `x ∈ T (x) are called support
functionals at the point x.

Let Y be a Banach space (possibly, different from X). The set of all holomorphic
mappings from B into Y will be denoted by Hol(B, Y ). It is well known (see, for
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example, [20, 9, 15, 24]) that if f ∈ Hol(B, Y ), then for every x0 ∈ B and all x in some
neighborhood of x0 ∈ B, the mapping f admits the Taylor series representation:

f(x) =

∞∑
n=0

1

n!
Dnf(x0) [(x− x0)n] , (1.2)

where Dnf(x0) :
n∏
k=1

X → Y is a bounded symmetric n-linear operator that is

called the n-th Fréchet derivative of f at x0. Also we write Dnf(x0) [(x− x0)n] for
Dnf(x0)[x−x0, . . . , x−x0]. One says that f is normalized if f(0) = 0 and Df(0) = Id,
the identity operator on X.

Recall that a holomorphic mapping f : B → X is called biholomorphic if the
inverse f−1 exists and is holomorphic on the image f(B). A mapping f ∈ Hol(B, X)
is said to be locally biholomorphic if for each x ∈ B there exists a bounded inverse
for the Fréchet derivative Df(x), see [9, 15].

In the one-dimensional case, where X = C and B = D is the open unit disk in C,
one usually writes an(x− x0)n instead of 1

n!D
nf(x) [(x− x0)n] in (1.2). The classical

Fekete–Szegö problem [12] for a given subclass F ⊂ Hol(D,C) is to find

sup
f∈F

∣∣a3 − νa22∣∣ , where f(z) = z + a2z
2 + a3z

3 + . . . .

In multi-dimensional settings various analogs of the classical Fekete–Szegö prob-
lem for different classes of holomorphic mappings have been studied by many math-
ematicians. Nice survey of the current state of the art and references can be found in
[19] and [22].

H. Hamada, G. Kohr and M. Kohr in [19] introduced a new quadratic functional
that generalizes the Fekete–Szegö functional to infinite-dimensional settings. More-
over, they estimated this functional over several classes of holomorphic mappings,
including starlike mappings and non-linear resolvents of normalized holomorphically
accretive mappings.

The aim of this paper is to extend the method used in [19] and solve the Fekete–
Szegö problem over the classes of spirallike mappings and resolvents of non-normalized
holomorphically accretive mappings. Along the way we generalize some results in [19]
and [6].

Spirallike mappings in Banach spaces were first introduced and studied in the
mid 1970’s by K. Gurganus and T. J. Suffridge. This study has evolved into a coherent
theory thanks to the influential contributions of Gabriela Kohr and her co-authors
(I. Graham, H. Hamada, M. Kohr and others) over the past decades (some details
can be found below). As for non-linear resolvents, they seem to have been among the
last issues that caught her attention. Progress on this topic is reflected in [13, 19].

2. Preliminaries

Recall that for a densely defined linear operator A with the domain DA ⊂ X,
the set V (A) = {`x(Ax) : x ∈ DA, ‖x‖ = 1, `x ∈ T (x)} is called the numerical range
of A.
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Definition 2.1. Let A ∈ L(X) be a bounded linear operator on X. Then A is called
accretive if

<`x(Ax) ≥ 0

for all x ∈ X \ {0}, or, what is the same, if m(A) ≥ 0, where

m(A) := inf {<λ : λ ∈ V (A)} .
If for some k > 0,

<`x(Ax) ≥ k‖x‖
for all x ∈ X \ {0}, the operator A is called strongly accretive.

The notion of accretivity was extended by Harris [20] to involve holomorphic
mappings (see also [24, 9]).

Definition 2.2. Let h ∈ Hol(B, X). This mapping h is said to be holomorphically
accretive if

m(h) := lim inf
s→1−

(
inf {<`x(h(sx)) : ‖x‖ = 1, `x ∈ T (x)}

)
≥ 0.

In the case where the last lower limit m(h) is positive, h is called strongly holomor-
phically accretive.

Remark 2.3. According to [9, Proposition 2.3.2] if h(0) = 0 then V (A) ⊂ conv V (h),
where A = Dh(0), in particular, m(A) ≥ m(h). Consequently, if h is holomorphically
accretive, its linear part at zero A is accretive too. Furthermore, for such mappings
Proposition 2.5.4 in [9] implies that h is holomorphically accretive if and only if
<`x(h(x)) ≥ 0 for all x ∈ B \ {0}.

The main feature of the class of holomorphically accretive mappings is that they
generate semigroups of holomorphic self-mappings on B, so they are of most impor-
tance in dynamical systems [24, 9]. A very fruitful characterization of holomorphically
accretive mappings is:

Proposition 2.4 (Theorem 7.3 in [24], see also [9]). A mapping h ∈ Hol(B, X) is
holomorphically accretive if and only if it satisfies the so-called range condition (RC),
that is, (Id +rh)(B) ⊇ B for each r > 0, and the inverse mapping Jr := (Id +rh)−1

is a well-defined holomorphic self-mapping of B.

The mapping Jr that occurs in this proposition is called the non-linear resolvent
of h. In other words, the non-linear resolvent is the unique solution w = Jr(x) ∈ B of
the functional equation

w + rh(w) = x ∈ B, r > 0.

Assuming h(0) = 0, one sees that Jr(0) = 0 for all r > 0.
If, in addition, A = Dh(0), then DJr(0) = (Id +rA)−1. Furthermore, the accretiv-
ity of A mentioned in Remark 2.3, implies DJr(0) is strongly contractive because
‖(Id +rA)−1‖ < 1.

We use the following classes (see [15] and references therein):

N = {h ∈ Hol(B, X) : h(0) = 0,<`x(h(x)) > 0, x ∈ B\{0}, `x ∈ T (x)},
M = {h ∈ N , Dh(0) = Id}
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and (see [14])

NA := {h ∈ N : Dh(0) = A} . (2.1)

To proceed, we note that the inclusion h ∈ N can be expressed as `x(h(x)) ∈
g0(D), x ∈ B\{0}, where g0(z) = 1+z

1−z . At the same time, V (A) is a compact subset of

the open right half-plane, hence the inclusion `x(h(x)) ∈ g0(D) is imprecise. It can be
improved by using other functions g ≺ g0, bearing in mind that g(D) should contain
V (A) by Remark 2.3.

Throughout this paper we suppose that the following conditions hold

Assumption 1. A linear operator A is bounded and strongly accretive. A function
g = gA ∈ Hol(D,C) satisfies g ≺ g0 and V (A) ⊂ g(D). Therefore ∆ := g−1(V (A)) is
compactly embedded in D.

Definition 2.5 (cf. [2, 27]). Let A and g satisfy Assumption 1. Denote

NA(g) :=

{
h ∈ NA :

`x(h(x))

‖x‖
∈ g(D), x ∈ B\{0}, `x ∈ T (x)

}
. (2.2)

We now consider specific choices of g providing some properties of semigroups
generated by h ∈ NA(g):

(a) gα1 (z) :=
(

1+z
1−z

)α
, α ∈ (0, 1): It can be shown that the semigroup generated by

every h ∈ NA(gα1 ) can be analytically extended with respect to parameter t to

the sector | arg t| < π(1−α)
2 ; for the one-dimensional case see [11];

(b) gα2 (z) := α+ (1− α) 1+z
1−z , α ∈ (0,m(A)): it follows from Lemma 3.3.2 in [8] that

the semigroup {u(t, x)}t≥0 generated by any element of NA(gα2 ) satisfies the
estimate ‖u(t, x)‖ ≤ e−tα‖x‖ uniformly on the whole B;

(c) gα3 (z) := 1−z
1−(2α−1)z , α ∈ (0, 1), maps D onto a disk ∆ tangent the imaginary

axis. In a sense this choice is dual to the previous one (in the one-dimensional
case such duality was investigated in [1]);

In what follows we will refer to these functions as g0, g
α
1 , g

α
2 , g

α
3 .

Another area where holomorphically accretive mappings are widely used is geo-
metric function theory. The study of spirallike mappings is a good example of this
fruitful connection.

Definition 2.6 (see [26, 15, 8, 24]). Let A be a strongly accretive operator. A biholo-
morphic mapping f ∈ Hol(B, X) is said to be spirallike relative to A if its image is
invariant under the action of the semigroup {e−tA}t≥0, that is, e−tAf(x) ∈ f(B) for
all t ≥ 0 and x ∈ B. The set of all spirallike mappings relative to A is denoted by

ŜA(B).
If f is spirallike relative to A = e−iβ Id for some |β| < π

2 , then f is said to be
spirallike of type β. In the particular case where β = 0, spirallike mappings relative
A = Id are called starlike.

The following result is well known (see, for example, Proposition 2.5.3 in [8] and
references therein).
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Proposition 2.7. Let A ∈ L(X) be strongly accretive, and let f ∈ Hol(B, X) be a

normalized and locally biholomorphic mapping. Then f ∈ ŜA(B) if and only if the
mapping h := (Df)−1Af belongs to NA.

This proposition inter alia implies that a spirallike mapping f relative to A
linearizes the semigroup u(t, x) generated by h = (Df)−1Af in the sense that
f ◦ u(t, f−1(x)) = e−tAx on f(B). In the one-dimensional case, any linear oper-
ator is scalar, hence can be chosen to be A = eiβ Id. In this case the inclusion

h = (Df)−1Af ∈ NA is equivalent to <
(
e−iβ zf

′(z)
f(z)

)
> 0. This is the standard

definition of spirallike functions of type β on D (see, for example, [5, 15]).

Moreover, according to Proposition 2.7, it is relevant to consider biholomorphic
functions g ∈ Hol(D,C) satisfying Assumption 1 and to distinguish subclasses of

ŜA(B) letting

Ŝg(B) :=
{
f ∈ ŜA(B) : (Df)−1Af ∈ NA(g)

}
. (2.3)

In particular, Ŝg0(B) = ŜA(B). Further, Ŝgα1 (B) consists of mappings that are spirallike

relative to operator eiβA with any |β| < 1 − α. The classes Ŝgα2 (B) and Ŝgα3 (B) are

also of specific interest. For instance, if A = eiβ Id and α = λ cosβ, the class Ŝgα3 (B)
of spirallike mappings of type β of order λ is a widely studied object. The intersection

Ŝgα2 (B)
⋂
Ŝgα3 (B) consists of strongly spirallike mappings (for an equivalent definition

and properties of these mappings see [17, 18, 3]).

3. Auxiliary lemmata

Our first auxiliary result essentially coincides with Theorem 2.12 in [19]. We
present it in a somewhat more general form.

Lemma 3.1. Let p(z) = a + p1z + p2z
2 + o(z2) and φ(z) = a + b1z + b2z

2 + o(z2)
be holomorphic functions on D such that φ ≺ p. Then for every µ ∈ C the following
sharp inequality holds:

|b2 − µb21| ≤ max
(
|p1|, |p2 − µp21|

)
.

Proof. Since φ ≺ p, there is a function ω ∈ Ω such that φ = p ◦ ω.
Let ω(z) = c1z + c2z

2 + o(z2). Then

b1 = p1c1 and b2 = p2c
2
1 + p1c2.

Therefore

b2 − µb21 = (p2 − µp21)c21 + p1c2.

Because the inequality |c2| ≤ 1− |c1|2 holds and is sharp (see, for example, [5]), one
concludes that |b2−µb21| is bounded by a convex hull of |p1| and |p2−µp21|. The result
follows. �
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Lemma 3.2. Let h ∈ Hol(B, X) with h(0) = 0 and B ∈ L(X) with ρ := ‖B‖ ≤ 1. For
any x ∈ ∂B and ` ∈ X∗ denote

ϕ(t) :=
` (h(tBx))

t
, t ∈ D \ {0}.

(i) The function ϕ can be analytically extended to the disk 1
ρD with the Taylor

expansion ϕ(t) = b0 + b1t+ b2t
2 + o(t2), where b0 = `(Dh(0)Bx),

b1 =
1

2!
`
(
D2h(0)[(Bx)2]

)
and b2 =

1

3!
`
(
D3h(0)[(Bx)3]

)
. (3.1)

(ii) If, in addition, ` ∈ T (Bx) and h ∈ NA(g), then ϕ(D) ⊂ ρĝ(ρD), where

ĝ(t) = g

(
τ − t
1− tτ

)
and τ = g−1

(
`(Dh(0)Bx)

‖Bx‖

)
.

Proof. The function ϕ is holomorphic whenever ‖tBx‖ < 1, that is, for |t| < 1
ρ ≤

1
‖Bx‖ .

Represent h by the Taylor series (1.2). A straightforward calculation proves (i).

Recall that h ∈ NA(g), hence Definition 2.5 implies ϕ(t)
‖Bx‖ ∈ g(D) = ĝ(D) as |t| < 1

ρ .

Therefore the function ĝ−1( ϕ(·)
‖Bx‖ ) maps the disk of radius 1

ρ into D and preserves

zero. By the Schwarz Lemma ĝ−1( ϕ(t)
‖Bx‖ ) ≤ ρ|t|. Thus ϕ ≺ ‖Bx‖ĝ(ρ ·). The proof is

complete. �

A mapping f ∈ Hol(B, X) is said to be of one-dimensional type if it takes the
form f(x) = s(x)x for some s ∈ Hol(B,C). Such mappings were studied by many
authors (see, for example, [23, 10, 4] and references therein).

Lemma 3.3. Let f ∈ Hol(B, X) be a mapping of one-dimensional type. Then for every
n ∈ N the entire mapping x 7→ Dnf(0)[xn] is also of one-dimensional type. Therefore
for any x ∈ ∂B, `x ∈ T (x) and constants µj ∈ C, j = 1, 2, . . . , we have∣∣∣∣∣∣`x

 n∑
j=1

µjD
jf(0)[xj ]

∣∣∣∣∣∣ =

∥∥∥∥∥∥
n∑
j=1

µjD
nf(0)[xj ]

∥∥∥∥∥∥ .
Proof. The first assertion is evident (for detailed calculation see [7]). To prove the
second one we note that there is a function F ∈ Hol(X,C) such that

n∑
j=1

µjD
jf0)[xj ] = F (x)x.

Thus for any x ∈ ∂B we have∥∥∥∥∥∥
n∑
j=1

µjD
jf(0)[xj ]

∥∥∥∥∥∥ = |F (x)|‖x‖ and

`x

 n∑
j=1

µjD
jf(0)[xj ]

 = F (x)`x(x) = F (x),

which completes the proof. �
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4. Fekete–Szegö inequalities for spirallike mappings

In what follows A and g satisfy Assumption 1, and the class Ŝg(B) is defined by
formula (2.3).

Theorem 4.1. Let x ∈ ∂B, `x ∈ T (x) and τ = g−1(`x(Ax)). Assume that

g

(
τ − z
1− zτ

)
= q0 + q1z + q2z

2 + o(z2).

Given f ∈ Hol(B, X) denote

ã22 =
1

2
`x

(
D2f(0)

[
x,D2f(0)[x,Ax]

]
− 1

2
D2f(0)

[
x,AD2f(0)[x2]

])
,

a2 =
1

2!
`x
(
2D2f(0)[x,Ax]−AD2f(0)[x2]

)
, (4.1)

a3 =
1

2 · 3!
`x
(
3D3f(0)[x2, Ax]−AD3f(0)[x3]

)
.

If f ∈ Ŝg(B), then for any ν ∈ C we have∣∣a3 − (ν − 1)a22 − ã22
∣∣ ≤ |q1|

2
max

{
1,

∣∣∣∣q2q1 + 2(ν − 1)q1

∣∣∣∣} . (4.2)

Remark 4.2. It can be directly calculated that q1 = −g′(τ)(1− |τ |2) and

q2
q1

= τ − g′′(τ)

2g′(τ)
(1− |τ |2).

Thus the right-hand side in (4.2) can be expressed by the hyperbolic and pre-
Schwarzian derivatives of g.

Proof. Let h(x) = [Df(x)]
−1
Af(x). Recall that f is a normalized biholomorphic

mapping. Let the Taylor expansion of f be

f(x) = x+
1

2!
D2f(0)[x2] +

1

3!
D3f(0)[x3] + o(‖x‖3), (4.3)

so that

Df(x)[w] = w +D2f(0)[x,w] +
1

2
D3f(0)[x2, w] + o(‖x‖2). (4.4)

Take the Taylor expansion h(z) = Ax+ 1
2D

2h(0)[x2] + 1
6D

3h(0)[x3] + o(‖x‖3) and
substitute it together with (4.3)–(4.4) into the equality

Df(x)[h(x)] = Af(x).

This gives us

Ax+
1

2
D2h(0)[x2] +

1

6
D3h(0)[x3] +D2f(0)[x,Ax]

+
1

2
D2f(0)[x,D2h(0)x2] +

1

2
D3f(0)[x2, Ax] + o(‖x‖3)

= Ax+
1

2
AD2f(0)[x2] +

1

6
AD3f(0)[x3] + o(‖x‖3).



336 Mark Elin and Fiana Jacobzon

Equating terms of the same order leads to

1

2
D2h(0)[x2] +D2f(0)[x,Ax] =

1

2
AD2f(0)[x2]

and
1

6
D3h(0)[x3] +

1

2
D2f(0)[x,D2h(0)x2] +

1

2
D3f(0)[x2, Ax] =

1

6
AD3f(0)[x3].

In turn, these equalities imply

D2h(0)[x2] = AD2f(0)[x2]− 2D2f(0)[x,Ax]

and

D3h(0)[x3] = AD3f(0)[x3]− 3D2f(0)[x,D2h(0)x2]− 3D3f(0)[x2, Ax]

= AD3f(0)[x3]− 3D3f(0)[x2, Ax]

−3D2f(0)
[
x,AD2f(0)[x2]

]
+ 6D2f(0)

[
x,D2f(0)[x,Ax]

]
.

Recall that `x(Ax) ∈ V (A) ⊂ g(D), so τ ∈ ∆ is well-defined. Similarly to the proof of
the Theorem 3.1 in [19], denote

ϕ(t) =

{
`x(h(tx))

t , t ∈ D \ {0},

`x(Ax), t = 0.

Then ϕ ∈ Hol(D,C) by assertion (i) of Lemma 3.2 with B = Id,

b1 =
1

2!
`x
(
D2h(0)[x2]

)
and b2 =

1

3!
`x
(
D3h(0)[x3]

)
.

Using a2, ã
2
2 and a3 defined in (4.1) we get

b1 = −a2 and b2 = 2ã22 − 2a3.

Therefore, ∣∣a3 − ã22 − (ν − 1)a22
∣∣ =

1

2

∣∣b2 − 2(1− ν)b21
∣∣ .

Also, by assertion (ii) of the same Lemma 3.2, ϕ ≺ ĝ, ĝ(t) = g( τ−t1−τt ).

To this end we apply Lemma 3.1 with p = ĝ and µ = 2(1−ν) and obtain estimate (4.2).
�

There are two ways to make the above result more explicit: to fix some concrete
forms of the function g, or to put additional restrictions on the mapping f . We start
with some concrete choices of g.

Recall that for every strongly accretive operator A and every spirallike mapping
f relative to A, the mapping h := (Df)

−1
Af is holomorphically accretive. Hence one

can always choose g = g0, where g0(z) = 1+z
1−z is defined above. Denoting ` := `x(Ax)

and using Remark 4.2, we conclude that every spirallike mapping relative to A satisfies∣∣a3 − (ν − 1)a22 − ã22
∣∣ ≤ <` ·max (1, |1 + 4(ν − 1)<`|) . (4.5)

In the one-dimensional case, this inequality coincides with the result of Theorem 1 in
[21] for λ = 0. By choosing other g ≺ g0 functions and denoting ` := `x(Ax) as above,
more precise estimates can be obtained.
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Assume, for example, that `x(h(x)) belongs to some sector of the form{
w : | argw| < πα

2

}
, α ∈ (0, 1), for all x ∈ B, where h = (Df)

−1
Af . Then one can set

g = gα1 and to get

Corollary 4.3. Every f ∈ Ŝgα1 (B) satisfies∣∣a3 − (ν − 1)a22 − ã22
∣∣ ≤ α|`| cos arg `

1
α ·max {1, Q1,α} ,

where Q1,α = <` 1
α

∣∣∣4α(ν − 1)`
α−1
α + 1

`
1
α

(
α+ i tan arg `

1
α

)∣∣∣.
Also assuming that `x(h(x))

‖x‖ is bounded away from the imaginary axis, namely,

<`x(h(x))

‖x‖
> α, α ∈ (0, 1),

we choose g = gα2 . In this situation, we have

Corollary 4.4. Every f ∈ Ŝgα2 (B) satisfies∣∣a3 − (ν − 1)a22 − ã22
∣∣ ≤ <` ·max {1, Q2,α} ,

where Q2,α = |1 + 4(ν − 1)(1− α)<`| .

In particular, taking α = 0, we return to inequality (4.5) for all spirallike map-
pings relative to the linear operator A.

Another interesting (and, as we mentioned, dual) case occurs when `x(h(x))
‖x‖ lies

in some circle tangent to the imaginary axis. We can then set g = gα3 .

Corollary 4.5. Every f ∈ Ŝgα3 (B) satisfies∣∣a3 − (ν − 1)a22 − ã22
∣∣ ≤ (<`− |`|2α) ·max {1, Q3,α} ,

where Q3,α =
∣∣1− 2`α+ 4(ν − 1)(<`− |`|2α)

∣∣ .
Recall that for A = eiβ Id, the class Ŝgα3 (B) consists of so-called spirallike map-

pings of type β of order α.

Remark 4.6. It is worth mentioning that even for the the case in which A is a scalar
operator, the estimates above (starting from (4.5)) are new. Since the class of spirallike
mappings contains the class of starlike mappings, these estimates generalize Corollary
3.4 (i)–(iv) in [19] for starlike mappings.

In the rest of this section we deal with mappings f that satisfy:

Assumption 2. There exists a function κ : ∂B→ C such that

D2f(0)[x2] = κ(x)x, x ∈ ∂B. (4.6)

The Fréchet derivatives of f of second and third order D2f(0) and D3f(0) commute
with the linear operator A in the sense that

Dkf(0)[xk−1, Ax] = ADkf(0)[xk], k = 2, 3. (4.7)
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Condition (4.6) holds automatically for one-dimensional type mappings (spiral-
like mappings of one-dimensional type were studied, for instance, in [10, 22, 7]), while
condition (4.7) holds automatically whenever A is a scalar operator.

In turn, relations (4.7) in Assumption 2 imply that formulae (4.1) become

a2 =
1

2!
`x
(
AD2f(0)[x2]

)
,

ã22 =
1

4
`x
(
AD2f(0)[x,D2f(0)[x2]]

)
, (4.8)

a3 =
1

3!
`x
(
AD3f(0)[x3]

)
.

Corollary 4.7. If f ∈ ŜA(B) satisfies Assumption 2, then for any ν ∈ C,∣∣∣∣a3 − (ν − 1 +
1

`x (Ax)

)
a22

∣∣∣∣ ≤ |q1|2
max

{
1,

∣∣∣∣q2q1 + 2(ν − 1)q1

∣∣∣∣} . (4.9)

Proof. Indeed, denote α = `x (Ax).Then a2 = 1
2κ(x)α and

ã22 =
1

4
`x
(
AD2f(0)[x, κ(x)x]

)
=

1

4
· κ(x)`x

(
AD2f(0)[x2]

)
=

1

4
· κ(x)`x (Aκ(x)x) =

α

4
· (κ(x))2.

Thus ã22 = 1
αa

2
2 and hence

|a3 − (ν − 1)a22 − ã22| =
∣∣∣∣a3 − (ν − 1 +

1

α

)
a22

∣∣∣∣ .
So, estimate (4.9) follows from Theorem 4.1. �

Let A be a scalar operator. Without loss of generality, we assume A = eiβ Id, |β| < π
2 .

Then it follows from Assumption 2 that formulae (4.1) (or (4.8)) become

a2 =
1

2!
κ(x)eiβ ã22 =

(
1

2!
κ(x)

)2

eiβ , a3 =
1

3!
`x
(
D3f(0)[x3]

)
eiβ .

These relations and Lemma 3.3 imply immediately

Corollary 4.8. If f ∈ Hol(B, X) is a spirallike mapping of type β, that satisfies As-
sumption 2. Then for any µ ∈ C we have∣∣a3 − µa22∣∣ ≤ |q1|2

max

{
1,

∣∣∣∣q2q1 + 2(µ− e−iβ)q1

∣∣∣∣} .
If, in addition, f is of one-dimensional type, then for any x ∈ ∂B we have∥∥∥∥ 1

3!
D3f(0)[x3]− µ · 1

2!
D2f(0)

[
x,

1

2!
D2f(0)[x2]

]∥∥∥∥
≤ |q1|

2
max

{
1,

∣∣∣∣q2q1 + 2(µ− e−iβ)q1

∣∣∣∣} .
The last estimate coincides with Theorem 2 in [7].
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5. Fekete–Szegö inequalities for normalized non-linear resolvents

As above, we suppose that A ∈ L(X) and g ∈ Hol(D,C) satisfy Assumption 1
and h ∈ NA(g). In this section we concentrate on the non-linear resolvent

Jr := (Id +rh)−1, r > 0,

that is well-defined self-mappings of the open unit ball B that solves the functional
equation

Jr(x) + rh(Jr(x)) = x ∈ B, r > 0. (5.1)

Lemma 5.1.

(a) For any r > 0, the operator Br := DJr(0) = (Id +rA)−1 is strongly contractive,
that is, ρr := ‖Br‖ < 1.

(b) If h is of one-dimensional type, then A is a scalar operator and Jr, r > 0, is of
one-dimensional type too.

Proof. Assertion (a) follows from the strong accretivity of A.

Since h is of one-dimensional type, it has the form h(x) = s(x)x, where s ∈ Hol(B,C).
Therefore A = Dh(0) = s(0) Id. In addition, (5.1) implies

x = Jr(x) + rs(Jr(x))Jr(x) = (1 + rs(Jr(x)))Jr(x),

that is, Jr(x) is collinear to x. �

Further, it is natural to consider the family of normalized resolvents (Id +rA)Jr
and to study the Fekete–Szegö problem for these mappings.

We now present the main result of this section.

Theorem 5.2. Let h ∈ NA(g) and Jr be the nonlinear resolvent of h for some r > 0.
For x ∈ ∂B and `r := `Brx ∈ T (Brx), let

ã22 := `r

(
(Id +rA)

1

2!
D2Jr(0)

[
x, (Id +rA)

1

2!
D2Jr(0)[x2]

])
,

a2 := `r

(
(Id +rA)

1

2!
D2Jr(0)[x2]

)
, (5.2)

a3 := `r

(
(Id +rA)

1

3!
D3Jr(0)[x3]

)
.

Then for any ν ∈ C we have∣∣a3 − 2ã22 − (ν − 2)a22
∣∣ ≤ r|q1|‖Brx‖ρ2r max (1, Qr(x)) , (5.3)

where

Qr(x) :=

∣∣∣∣q2q1 − (2− ν)rq1‖Brx‖
∣∣∣∣ (5.4)

and q1, q2 are the Taylor coefficients of ĝ(t) = g
(
τ−t
1−tτ

)
with τ = g−1

(
`r(ABrx)
‖Brx‖

)
.
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Proof. Denote xr := Brx. Using the functional equation (5.1), one finds

(I + rA)D2Jr(0)[x, y] = −rD2h(0) [xr, Bry]

and

(Id +rA)
1

2!
D2Jr(0)[x2] = −r 1

2!
D2h(0)

[
(xr)

2
]
,

(Id +rA)
1

3!
D3Jr(0)[x3] = −r 1

3!
BrD

3h(0)
[
(xr)

3
]

+2r2 · 1

2!
BrD

2h(0)

[
xr, Br

1

2!
D2h(0)

[
(xr)

2
]]
.

Thus the quantities a2, ã
2
2 and a3 defined by (5.2) can be expressed by the Fréchet

derivatives of h:

ã22 = r2
1

2!
`r

(
D2h(0)

[
xr,

1

2!
BrD

2h(0)
[
(xr)

2
]])

a2 = −r 1

2!
`r
(
D2h(0)

[
(xr)

2
])

(5.5)

a3 = −r 1

3!
`r
(
D3h(0)

[
(xr)

3
])

+ 2r2`r

(
1

2!
D2h(0)

[
xr,

1

2!
BrD

2h(0)
[
(xr)

2
]])

.

Denote

ϕ(t) =

{
`r(h(txr))

t , t ∈ D \ {0},

`r(Axr), t = 0.

By assertion (i) of Lemma 3.2 with B = Br, the function ϕ is analytic in the disk of
radius 1

ρr
and

b1 =
1

2!
· `r
(
D2h(0)[(xr)

2]
)

and b2 =
1

3!
· `r
(
D3h(0)[(xr)

3]
)
. (5.6)

Comparing formulae (5.6) and (5.5) we see that

b1 = −1

r
a2 and b2 = −1

r
(a3 − 2ã22).

Therefore, ∣∣a3 − ã22 − (ν − 2)a22
∣∣ = r

∣∣b2 − r(2− ν)b21
∣∣ .

Also, by assertion (ii) of Lemma 3.2, ϕ ≺ ‖xr‖ĝ(ρr·).
To complete the proof we apply Lemma 3.1 with p = ‖xr‖ĝ(ρr·) and µ = r(2−ν). �

From now on, for any x ∈ ∂B we will adopt the notations xr = Brx and `r := `xr ∈
T (xr). To compare our results with the previous ones we consider some special cases.
If, for example, A = λ Id, <λ > 0, is a scalar operator, then Br = 1

1+λr Id, xr = 1
1+λrx

and ρr = ‖xr‖ = 1
|1+λr| . Thus

τ = g−1
(
`r(λxr)

‖xr‖

)
= g−1(λ). (5.7)
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Thus inequality (5.3) takes the form∣∣a3 − 2ã22 − (ν − 2)a22
∣∣ ≤ |q1|r
|1 + λr|3

max

(
1,

∣∣∣∣q2q1 − q1r

|1 + λr|
(2− ν)

∣∣∣∣), (5.8)

where q1, q2 are the Taylor coefficients of ĝ(t) = g
(
τ−t
1−tτ

)
with τ = g−1 (λ).

Corollary 5.3. Assume that A = λ Id, <λ > 0 and g = g0. Then for any ν ∈ C we
have ∣∣a3 − 2ã22 − (ν − 2)a22

∣∣ ≤ |1 + λ2|r
|1 + λr|3

max

(
1,

∣∣∣∣λ− (2− ν)r
1 + λ2

|1 + λr|

∣∣∣∣). (5.9)

Proof. Since g = g0, formula (5.7) is τ = g−1(λ) = λ−1
λ+1 . Thus q1 = −(1 + λ2) and

q2 = λ(1 + λ2). Then (5.9) follows from (5.8). �

For A = Id, Corollary 5.3 coincides with [19, Theorem 5.6].
Another interesting case occurs when h satisfies Assumption 2.

Corollary 5.4. If h ∈ NA(g) satisfies Assumption 2, then∣∣a3 − (ν − 2 + 2δ)a22
∣∣ ≤ r|q1|‖xr‖ρ2r max (1, Qr(x)) , (5.10)

where Qr(x) is defined by (5.4) and δ = `r(Brxr)
‖xr‖2 .

Proof. Since h satisfies condition (4.6), there exists a function κ : ∂B→ C such that
D2h(0)[x2] = κ(x)x, x ∈ ∂B. Thus,

a22 =
r2

4

(
`r
(
D2h(0)

[
(xr)

2
]))2

=
r2

4
(`r (κ(xr)xr))

2

=
(r

2
κ(xr)

)2
‖xr‖2.

At the same time,

ã22 = r2
1

2!
`r

(
D2h(0)

[
xr,

1

2!
BrD

2h(0)
[
(xr)

2
]])

= r2
1

4
`r
(
D2h(0) [xr, Brκ(xr)xr]

)
= r2

1

4
κ(xr)`r

(
D2h(0) [xr, Brxr]

)
.

The mapping h also satisfies condition (4.7), then

ã22 = r2
1

4
κ(xr)`r

(
BrD

2h(0)
[
(xr)

2
])

= r2
1

4
κ(xr)`r (Brκ(xr)xr) =

(r
2
κ(xr)

)2
`r (Brxr) .

Now estimate (5.10) follows from the relation ã22 = δa22 with δ = `r(Brxr)
‖xr‖2 . �

If h is of a one-dimensional type, then A = λ Id for some λ ∈ C by Lemma 5.1.
In this case formula (5.10) gets a simpler form.
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Corollary 5.5. If h ∈ NA(g) is one-dimensional type with A = λ Id, then for any
ν ∈ C we have∥∥∥∥(Id +rA)

1

3!
D3Jr(0)[x3]− µ(Id +rA)

1

2!
D2Jr(0)

[
x, (Id +rA)

1

2!
D2Jr(0)[x2]

]∥∥∥∥
=
∣∣a3 − µa22∣∣ ≤ r|q1|

|1 + λr|3
·max

(
1,

∣∣∣∣q2q1 − (2δ − µ)
rq1
|1 + λr|

∣∣∣∣)
with δ = |1+λr|

1+λr .

In particular, if A = Id and g = g0, this coincides with [19, Corollary 5.7].

Proof. By Lemma 3.3, there is a function κ such that 1+λr
2! D2Jr(0)[x2] = κ(x)x. Then

the left-hand term equals to∥∥∥∥1 + rλ

3!
D3Jr(0)[x3]− µ1 + rλ

2!
κ(x)D2Jr(0)[x2]

∥∥∥∥ .
Lemma 3.3 states that this is equal to∣∣∣∣`x(1 + rλ

3!
D3Jr(0)[x3]− µ1 + rλ

2!
κ(x)D2Jr(0)[x2]

)∣∣∣∣
= |a3 − µa2κ(x)| =

∣∣a3 − µa22∣∣ .
Set µ = ν − 2 + 2δ. Then we proceed by Corollary 5.4:

≤ r|q1|
|1 + λr|3

·max

(
1,

∣∣∣∣q2q1 − (2− ν)
rq1
|1 + λr|

∣∣∣∣)
=

r|q1|
|1 + λr|3

·max

(
1,

∣∣∣∣q2q1 − (2δ − µ)
rq1
|1 + λr|

∣∣∣∣) .
�
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